
1

QoS Provisioning and Tracking Fluid Policies in
Input Queueing Switches

Vahid Tabatabaee1, Leonidas Georgiadis2, Leandros Tassiulas1
1 Department of Electrical and Computer Engineering and Institute for Systems Research

University of Maryland at College Park
2Electrical and Computer Engineering Department

Aristotle University, Thessaloniki, Greece

Abstract

The concept of tracking ‡uid policies by packetized policies is extended to input queueing switches. It is considered
that the speed up of the switch is one. One of the interesting applications of the tracking policy in TDMA satellite
Switches is elaborated. For the special case of 2£ 2 switches it is shown that a tracking non-anticipative policy always
exists. It is found that in general non-anticipative policies do not exist for switches with more than 2 input and output
ports. For the general case of N £N witches a heuristic tracking policy is provided. The heuristic algorithm is based on
two notions, port tracking and critical links. These notions can be employed in the derivation of other heuristic tracking
policies as well. Simulation results show the usefulness of the heuristic algorithm and the two basic concepts it relies on.

I. Introduction

One of the main issues in the design of integrated services networks is to provide performance requirements to
a broad range of applications. Application requirements are translated into network quantitative parameters.
The most common performance measures are packet loss probability, delay, and jitter. The delay and jitter
characteristics at each switch of the network is determined by the scheduling algorithm used in the switch and
the incoming tra¢c pattern. On the other hand, the network should also be capable to analyze the amount of
resources that each particular application requires. Based on this analysis a connection request is admitted or
rejected. It is therefore, very important for the network designer to understand the e¤ect a scheduling policy
has on the connection performance and on the usage of network resources.
In many cases, it is easier to perform the analysis and design of scheduling policies under the modeling

assumption that the tra¢c arrives and is treated as a ‡uid, i.e., the realistic case where information is
organized into packets is not taken into account, [6],[7],[15],[16],[9]. Under the ‡uid policy, we assume that
at every time instant arbitrary fractions of the link capacity can be shared among di¤erent applications.
Although in most of the practical situations this is an idealistic assumption, it enables us to analyze the e¤ect
of a scheduling policy on the network resources as well as the major performance parameters, and therefore
to design the scheduling policies more conveniently. One approach to the design of packetized policies is to
…rst …nd an appropriate ‡uid policy, and then to derive a packetized policy that resembles or “tracks” the
‡uid policy in a certain sense.
Existence of packetized tracking policies is a well established fact in the single link case. In fact, several

tracking policies are suggested and their performance and e¢ciency are analyzed [15],[16],[9],[8],[12]. However,
the existence of such policies in input queueing switches is still an open problem. This is the main subject of
this paper.
The research on scheduling N £ N switches is mainly concentrated on output queueing switches. In an

N £N switch, it is possible that all N inputs have packets for the same output at the same time. In order
to accommodate such a scenario in an output queueing switch, the switch fabric should work N times faster
than the line rates. This might be acceptable for moderate size switches working on moderate line rates, but
as the capacity of the lines as well as the switch sizes increase, memories with su¢cient bandwidth are not
available and input queueing is becoming a more attractive alternative.
One way to circumvent this problem is to have Combined Input Output Queueing (CIOQ) switches with

limited speed up that matches the output sequence of a purely output queueing switch. In fact, it is shown
in [5] that speed up of 2 is su¢cient to resemble the output pattern of any output queueing switch. However,

2

the scheduling algorithm proposed to do that is fairly complicated, and the arbiter still requires to receive
information from the input ports of the switch with speed up of N .
In this paper we consider an input queueing switch, where every input and output port can service 1 packet

per time unit (all packets are considered to have equal size). In a ‡uid policy model, at every time slot
every input (output) port can be connected to several output (input) ports, however the total service rate of
any port should not exceed its capacity. Under a packetized policy, every input (output) port can at most
be connected to one output (input) port at every time slot, i.e., there is no speed up in the switch fabric.
Under these circumstances, our objective is to …nd a packetized policy that tracks a given ‡uid policy in an
appropriate manner. For the special case of 2£ 2 switches the existence of tracking policies is proved and a
non-anticipative tracking policy is provided. For the general case a heuristic algorithm with good, but not
perfect tracking properties is proposed.
The heuristic algorithm is based on a weigthed matching algorithm. The weighted matching algorithms

are usually too complex to implement in hardware. Here we employ two notions to reduce the complexity.
The …rst concept is to do port based weighted matching rather that link weighted matching. Mekkittikul and
McKeown [14] used a similar concept. They used the queue length as the weights in their work, and illustrate
that they can achieve 100% throughput. Our weights re‡ect the amount of work by which the ‡uid policy
is ahead of the tracking policy at each port, and our main objective is to be able to provide rate guarantees
and high throughput at the same time. The second notion that aids us in improving the performance and
reducing the complexity is the concept of critical ports and links. Basically, criticality relates to the urgency
by which a port/link needs to be scheduled in order to ensure proper tracking. We detect all critical links and
remove all non-critical links that con‡ict with the critical ones. In this way the number of contending links
and consequently the complexity of the algorithm is reduced.
An interesting application of tracking policies is in the scheduling of TDMA Satellite Switches (TDMA-SS)

with multi-periodic messages. In this problem the objective is to schedule a packet during every period of a
connection stream, and before arrival of the next packet. Since it is not usually possible to queue the packets
in the satellite switches, an input queueing model is more appropriate in this case. The ‡uid policy that
accomplishes the speci…ed TDMA objective is trivial. The original problem is then solved by specifying a
packetized policy that tracks that ‡uid policy.
The organization of paper is as follows. In the next section, we review the concepts of ‡uid and tracking

policies, and provide the feasibility condition for both cases. The problem of scheduling multi-periodic mes-
sages in TDMA-SS is explained and elaborated in section III. It is indicated that this problem is essentially a
special case of the input queueing scheduling problem considered in this paper. In section IV, we show that
for the 2£ 2 switches a tracking policy always exist, and we provide a non-anticipative algorithm to …nd the
tracking policy. In section V, some useful ideas regarding the design of heuristic tracking policies are given.
Based on these concepts a heuristic scheduling algorithm is proposed, and used to implement a …xed rate
scheduler.

II. Fluid and Packetized Tracking Policies

We consider input queueing switches that serve …xed size packets. Each input and output port has the
capacity of serving 1 packet per time unit. Since queues exist only at the input ports, the latter assumption
implies that tra¢c of at most 1 packet per unit of time can be transferred from the input ports to a given
output port.
We assume that the time is slotted and the length of each slot is equal to the length of a packet. Slots are

numbered starting from 1, 2, Slot k is taking the time interval (k¡ 1; k]: Time k¡ 1 (k) is the beginning
(end) of time slot k: Packets arrive at the beginning of each time slot.
Two broad classes of policies are considered, ‡uid and packetized policies. During time slot k a ‡uid policy

transmits, wij(k) ¸ 0, units of information from input port i to output port j. wij(k) is a nonnegative real
number and is measured in units of packets. Since at most one unit of work can be transferred from a given
input port to the output ports, and since no queueing is permitted at the output ports, the wij(k)’s must
satisfy the following inequalities.

3

wij(k) ¸ 0P
j wij(k) · 1; 8i 2 f1; : : : NgP
i wij(k) · 1; 8j 2 f1; : : :Ng

(1)

A packetized policy is based on the assumption that during a time slot an input port can transmit a single
packet to any one of the output ports. Therefore, for a packetized policy we have that Jij(k), the number
of packets transmitted from input port i to output port j during slot k, is either 0 (no packet transmission
during slot k) or 1 (a single packet transmission during slot k). A packetized policy is feasible if at every time
slot k we have, P

j Jij(k) · 1; 8i 2 f1; : : :NgP
i Jij(k) · 1; 8j 2 f1; : : :Ng

Jij(k) 2 f0; 1g:
(2)

Note that the conditions in (2) imply that for any k, there can be at most a single 1 in each column and
row of the matrix [Jij(k)] : That is, the matrix Jij(k) is a sub-permutation matrix.
Usually ‡uid policies cannot be applied directly in a network since mixing of tra¢c belonging to di¤erent

packets is not allowed. However, as mentioned in the introduction, they are considered in this paper, because
the performance analysis and the scheduling policy design is often more convenient for ‡uid policies. An
approach to the design of packetized policies is to …rst design and analyze a ‡uid policy, and then implement
a packetized policy that resembles in a certain sense the departure process of the ‡uid policy. Such a packetized
policy is called a tracking policy. More precisely, for our purposes, we use the following de…nition:
De…nition I: Given a ‡uid policy ¼f , we say that a packetized policy is tracking ¼f if every packet departs
under the packetized policy at the latest by the end of the time slot at which the same packet departs under
the ‡uid policy.
A basic question is if tracking policies exist for a given ‡uid policy. This question is answered positively for

the single link case, where di¤erent sessions share a single link [15], [9]. In that case, perhaps the best known
‡uid policy is the Generalized Processor Sharing (GPS) policy. Several tracking policies are suggested for the
single link case [15], [9], [12]. The concept of GPS can be appropriately extended to the multi-input,multi-
output input queueing switches. However, the existence of tracking policies for these switches is still an open
question. In section IV, we study the special case of 2 £ 2 switches. We will prove that for the special case
of 2£ 2 switches, for every feasible ‡uid policy there exists a feasible packetized policy. In fact, our proof is
constructive and provides an algorithm to derive a tracking policy. Before discussing the 2 £ 2 case, in the
next section we present the problem of multi-periodic TDMA-SS scheduling and indicate how the problem
could be trivially solved by the construction of tracking packetized policies.

III. Multi-periodic TDMA Satellite Switches

One of the potential applications of tracking policies is in the scheduling of TDMA Satellite Switches
(TDMA-SS). The conventional method to do the scheduling is based on the Inukai method [13]. This method
is based on the assumption that all messages have the same period. The scheduling is done for a frame length
equal to the period of the messages and it is repeated periodically thereafter. Let L be equal to the maximum
number of packets that can be serviced by an input/output port during one period. A set of messages is
schedulable if for every port the total number of packets that should be serviced is not more than L. Inukai
provided a scheduling algorithm for any set of schedulable messages.
The Inukai algorithm does not work appropriately when messages have di¤erent periods. Let message m

from input port sm to output port dm have period pm . To apply the Inukai method the frame length should
be set to the Least Common Multiplier (LCM) of all message periods, say L. For each message m, L=pm unit
length packets are scheduled in the frame. Each of these packets is associated to one period of the original
message. Then, we can use the Inukai method to allocate these packets inside the frame length L. The
problem is that there is no control over the place of packets inside the frame in the Inukai method. Thus,
it is possible that all packets attributed to a single periodic message are placed next to each other. Such an

4

assignment su¤ers from high jitter. Moreover, the delay of a packet can be equal to L, which can be very
large.
Suppose that the objective is to schedule every packet in the time frame of its period. Thus, every packet

can tolerate a delay up to its period. The question then arises whether it is possible to provide a schedule
under these constraints. A necessary condition for schedulability, is that the utilization of every input port i
and output port j should not be greater than unity, i.e.,

ui =
X

m:sm=i

1

pm
· 1; (3)

uj =
X

m:dm=j

1

pm
· 1;

If one considers ‡uid policies, then it is easy to provide a schedule provided that (3) is satis…ed. Speci…cally,
consider the ‡uid policy that assigns the …x service rate of 1=pm to every message m. Under this policy the
switch starts servicing every packet immediately after its arrival and it takes pm time units to complete its
service. This means that the target deadlines are all accomplished. Therefore, if we can provide a packetized
policy that tracks the ‡uid policy, then this packetized policy will satisfy the delay constraints as well. In
[17] Philp and Liu conjectured that (3) is the necessary and su¢cient condition for schedulability under the
speci…ed delay constraints. Giles and Hajek [11] have proved this conjecture for a special case. In their model
the messages are sorted based on their period, such that,

p1 ¸ p2 ¸ ¢ ¢ ¢ ¸ pM :

Moreover, for every two subsequent messages we have,

pm = kpm+1;

where k is an integer. Unfortunately, their algorithm does not work well in the general case. More recently,
Bonuccelli and Clo [3] present a counter-example for a 4 £ 4 switch, and illustrate that the conjecture is in
general not correct. In the next section, we show the existence of tracking policies for the special case of 2£ 2
switches. Thus, the conjecture is proved for the special case of 2£ 2 switches.

IV. The 2£ 2 switch
In this section, we consider a 2£2 input queueing switch and provide an algorithm for designing a packetized

policy ¼ that tracks a given ‡uid policy ¼f .
We make the following assumption regarding the ‡uid policy.

Assumption I: The ‡uid policy is non-anticipative (its decisions do not depend on future arrivals) and such
that the order in which packets with origin port i and destination port j complete service, is not a¤ected by
new packet arrivals.
This assumption is similar to the one used in the design of tracking ‡uid policies in the single server case

[9]. Note that the assumption does not preclude the possibility that new packet arrivals a¤ect the order in
which some packets complete service. Consider the following example of a scheduling policy in a 2£ 2 switch
(see Figure 1). Input port 1 employs a GPS scheduler to schedule packets destined to output ports 1; 2 with
weights 1=4 and 3=4 respectively. The scheduler operates in a work-conserving fashion, serving all eligible
packets (i.e., packets that have no transmission constraints at any of the output ports) according to their
weights. Output port 2 uses a strict priority scheme to schedule packets from input ports 1 and 2; packets
from input port 2 have higher priority. Assume now that at the beginning of time slot 1, two packets p1; p2
arrive at input port 1, destined to output ports 1 and 2 respectively. If no new arrival occurs at the beginning
of slot 2, then the …nishing times of p1 and p2 are 2 and 4=3 respectively, as shown in Figure 1, a). Assume
next that at the beginning of time slot 2, packet p3 arrives at input port 2; destined for output port 2 -see
Figure 1, b). Then at time slot 2; packet p3 will be transferred from input port 1 to output port 2, since at

5

1p2p

I n p u t P o r t 1 S c h e du le

In p u t P o r t 2 S c h e du le

I n p u t P o r t 1 S c h e du le

I n p u t P o r t 2 S c h e du le

: D e s t i n e d t o O u tpu t P o r t 1
: D e s t i n e d t o O u tpu t P o r t 2
: D e s t i n e d t o O u tpu t P o r t 2

1p

a) N o p a c k e t a r r iv al
a t In p u t P o rt 2

b) Pa c k e t a r r i v a l
a t In pu t P o r t 2

T i m e T i m e

T r a n s f e r
R a t e

T r a n s f e r
R a t e

2p
3p

1p

2p

3p

Fig. 1. E¤ect of packet p3 on completion times of p1 and p2.

output port 2 packet p3 has higher priority than packet p2: Since p2 cannot be transmitted in slot 2, the GPS
scheduler at input port 1 completes transmission of p1 by time 7=4. The completion time of packet p2 is now
9=4. We see that the order by which packets p1 and p2 complete service is reversed by the arrival of packet p3:
If, however, packets destined to the same input-output port pair (i; j) are served according to, for example, a
strict priority scheme, then the speci…ed switch scheduling policy satis…es Assumption I.
Examples of ‡uid policies that satisfy Assumption I are:

² Any nonanticipative ‡uid policy that serves packets with origin port i and destination port j in a First
Come First Served (FCFS) manner.
² Any ‡uid policy that assigns …xed priorities to packets with origin port i and destination port j
² A policy that employs a general non-anticipative ‡uid scheduler at input port i to provide transmission
intervals to packets destined to di¤erent output ports, and another GPS scheduler to schedule, within the
provided transmission intervals, packets at port i destined to a particular output port j.
The main di¢culty in the design of tracking policies for input switches arises from the fact that if one sees

an input-output port (i; j) as a server, this server will not be work-conserving, since it may be forced to idle
at some slot k. This can happen if, for example, during slot k a packet is transmitted from input port i to
another output port j1, instead of the packet destined to output port j. Below we approach the design of the
tracking policy in two steps: First we design a sequence of sub-permutation matrices Iij(k) that “tracks” the
work performed by the ‡uid policy for any origin-destination pair. The meaning of tracking in this case is
provided below in (4). The interpretation of the matrix Iij(k) is the following. Whenever Iij(k) = 1, a packet
with origin i and destination j may be transferred through the switch at slot k (if there is such a packet in the
queue). Next, we provide a packetized policy, ¼p; that decides which packets among those using a particular
origin-destination pair are to be transmitted at the slots speci…ed by Iij(k):
Before we proceed we need the following de…nition.

De…nition II: `ij(k) is the largest time slot less than or equal to k; at the beginning of which there is no
work at port i destined for port j under ¼f .

6

T im e

1 10 0 0

000 1 1

F lu id P o lic y

1 /2 1 /4

1 /2

1 /21 /4

)(kij

)()1(kI
ij

)()2(kI
ij

Fig. 2. Packet transfer from input port i to output port j.

s `ij(k) `ij(k) + 1 `ij(k) + 1 `ij(k) + 3 `ij(k) + 4

wij(s) 0 1=2 1=4 3=4 1=2Pk
s=l wij(s) 2 2 3=2 5=4 1=2jPk
s=l wij(s)

k
2 2 1 1 0Pk

s=l I
(1)
ij (s) 2 2 2 1 1Pk

s=l I
(2)
ij (s) 2 2 1 0 0

TABLE I
Example of Sub-mermutation Matrices

Let Iij(k) be a sequence of integer sub-permutation matrices that have the following property.

max
`ij(k)·l·k

($
kX
s=l

wij(s)

%
¡

kX
s=l

Iij(s)

)
· 0; k = 1; 2; : : : (4)

where bxc denotes the integer part of x: The design of Iij(k) will be provided later in this section. Consider
the example in Figure where two sequences, I(1)ij (k) and I

(2)
ij (k) are provided. From Table I we see that the

sequence I(1)ij (k) satis…es (4), while I
(2)
ij (k) does not, since

jPk
s=`ij(k)+3

wij(s)
k
¡Pk

s=`ij(k)+3
Iij(s) = 1.

Note that Iij(k) speci…es whether in a slot there may be a transfer of a packet between ports i and j (if
Iij(k) = 1 and there is work at input port i at time k¡ 1 destined for output port j), but it does not specify
which packet from the corresponding queue will be chosen for transfer. We now de…ne a packetized policy ¼p;
that speci…es the packet to be chosen for transfer in such a way that the ‡uid policy ¼f is tracked.
De…nition III: ¼p is the packetized policy that whenever Iij(k) = 1 and there is work at input port i at time
k ¡ 1 destined for output port j; it transfers the packet that completes earliest under ¼f :
Provided that Iij(k) can be designed in a non-anticipative fashion, ¼p is also non-anticipative, since by

Assumption I, one can decide the order of completion times of packets with the same origin-destination pair
without knowledge of future arrivals.
Note that ¼p acts in the same manner that the tracking policy in the single server case acts [9], except that

it …rst checks, based on Iij(k); whether a slot is eligible for transmission of packets with origin-destination

7

pair (i; j). On the other hand, the speci…ed policy can be considered as a generalization of the policy for
the single-server case. Indeed, specializing to the single-server case, we de…ne Iij(k) = 1 whenever there is
backlog in the system at time k ¡ 1 under ¼f and Iij(k) = 0 otherwise. Then (4) is obviously satis…ed, and
the resulting policy is identical to the tracking policy for the single server case, proposed in [9].
The next theorem shows that ¼p is tracking ¼f . In the following it is assumed that the system is empty at

time 0:
Theorem 1: Every packet leaves the switch under ¼p at the latest by the end of the time slot at which the

same packet leaves the switch under ¼f :
Proof: Let bm be the mth time slot at the beginning of which there is no work at input port i destined

for output port j under ¼f ; while at the end of bm there is such work. In other words, bm is the beginning of
the mth busy period under ¼f , for the server related to the pair (i; j). Let also em be the end of the mth busy
period under ¼f , that is, the …rst time slot after bm at the beginning of which there is work at input port i
destined for output port j under ¼f ; while at the end of em there is no such work. The theorem is true until
time slot b1. Assume that the theorem is true for all packets that are transmitted up to time slot bm under
¼f . Notice that then, according to the statement of the theorem it follows that the same packets have been
transmitted up to time slot bm under ¼p.
Next we will show that the theorem holds for all packets that arrive and are transmitted from time bm to

em; and therefore, the theorem holds up to time slot bm+1: Let pn be the nth packet with origin port i and
destination port j to complete transmission in the interval (bm; em] under ¼p. Let fn (bfn) be the …nishing
time of pn under ¼p (under ¼f). We will show that

fn ·
l bfnm

(dxe denotes the smallest integer larger or equal than x). For the proof, assuming the contrary, i.e.,

fn >
l bfnm ; or fn ¡ 1 ¸ l bfnm ; (5)

we will arrive at a contradiction.
Consider two cases.
Case 1. Suppose that for all packets pl; l < n; it holds (see Figure 3)bfl · bfn:

Then, packets p1; p2; :::; pn¡1 leave before packet pn under both ¼p and ¼f : Let ` ¸ bm be the last slot before
fn such that Iij(`) = 1 and there is no packet to be transferred from port i to port j under ¼p at time `¡ 1:
If there is no such slot, set ` = bm. Let also pl, pl+1;...,pn be the packets that are transmitted in the interval
[`; fn] under ¼p. Note that all these packets must have arrived at or after time `: This is so since either
` = bm and the statement is true by de…nition, or Iij(`) = 1; and therefore, if one of these packets was in
the system at the beginning of slot `; it would have been transmitted in that slot. Therefore, we have the
following important properties
² Packets pl, pl+1;...,pn are transmitted in slots `+ 1 to fn under ¼p and in slot `+ 1 to bfn under ¼f :
² Whenever Iij(k) = 1; ` + 1 · k · fn, one of the packets pl, pl+1;...,pn is transferred from port i to port j
under ¼p.
Therefore,

8

mb

lp
1−np

np

nf̂

lp 1−np np

mb

1)(=kI ij

nf

Fig. 3. Arrangement of packets for Case 1 in the proof of Theorem 1

d bfneX
s=`

wij(s) ¸
fnX
s=`

Iij(s) (6a)

=

fn¡1X
s=`

Iij(s) + 1 (6b)

¸
d bfneX
s=`

Iij(s) + 1 (6c)

¸

66664d bfneX
s=`

wij(s)

77775+ 1 (6d)

Equality (6b) follows from the fact that since pn was transmitted in slot fn, Iij(fn) = 1, inequality (6c) follows
from (5), and inequality (6d) from (4). Finally, we have the contradiction,

d bfneX
s=`+1

wij(s) ¸

66664 d bfneX
s=`+1

wij(s)

77775+ 1
Case 2. Suppose there is a packet pl; l < n such that

bfn < bfl
i.e., packet pl leaves earlier that packet pn under ¼p and later than packet pn under ¼f (see Figure 4). Assume
that pl is the last packet before pn with this property. Then, packets pl+1;:::; pn leave earlier than, or at the
same time as, packet pn under both policies. This implies that packets pl+1; :::; pn must have arrived at the
earliest at the end of slot fl: This is so, since otherwise, according to the de…nition of ¼f and Assumption I,
if one of the packets pl+1; :::; pn was in the system at the beginning of slot fl, it would have been transmitted
earlier than pl since its …nishing time under ¼f is smaller than the …nishing time of pl: Therefore, we conclude
that packets pl+1; :::; pn arrive and are transmitted in the interval [fl; fn] under ¼p and in the interval [fl; bfn]
under ¼f : Using again the argument in case 1, we arrive at a contradiction.

9

mb

1+lp
1−np

np

nf̂

1+lp 1−np np

mb nf

lp

lp

nf

Fig. 4. Packet arrangement for Case 2 in the proof of Theorem 1

It remains to show that the matrix Iij(k) can be constructed in a non-anticipative manner, based on ¼f . We
will in fact construct a policy that in addition to (4) has the following property.
Property I. The following inequalities hold for all k:

2X
j=1

wij(k) ·
2X
j=1

Iij(k); i = 1; 2;
2X
i=1

wij(k) ·
2X
i=1

Iij(k); j = 1; 2:

De…ne next Iij(k) recursively as follows

Iij(k + 1) = max
`ij(k+1)·l·k+1

($
k+1X
s=l

wij(s)

%
¡

kX
s=l

Iij(s); 0

)
; k ¸ 0; (7)

where the notation
Pm
n = 0 when n > m; is used. Note that since ¼f is non-anticipative, wij(k + 1) can be

computed at time k based only on the past history of the system. Since wij(s), Iij(s), 0 · s · k are also
known at time k, Iij(k + 1) can indeed be computed at time k. In the next Lemma we show that the matrix
Iij(k + 1) computed using (7), with a slight modi…cation, satis…es (4).

Lemma 2: At slot k+1;compute Iij(k+1) using (7). If it turns out that some row or column of Iij(k+1)
contains only zeros, then one of the elements of this row or column can be rede…ned to one, so that the resulting
matrix remains a sub-permutation matrix. The matrix Iij(k + 1) so de…ned, satis…es (4) and property I.

Proof: Assume Iij(k) satis…es (4) and Property I up to slot k. We show now that the same holds for
slot k + 1. First, we have to show that Iij(k + 1) is an integer sub-permutation matrix, i.e., Iij(k + 1) takes
values 0 or 1; and

2X
j=1

Iij(k + 1) · 1; i = 1; 2;
2X
i=1

Iij(k + 1) · 1; j = 1; 2: (8)

10

To show that Iij(k + 1) takes values 0 or 1; notice that

0 · Iij(k + 1) (9a)

· max
`ij(k+1)·l·k+1

($
1 +

kX
s=l

wij(s)

%
¡

kX
s=l

Iij(s); 0

)
(9b)

= max
`ij(k+1)·l·k+1

(
1 +

$
kX
s=l

wij(s)

%
¡

kX
s=l

Iij(s); 0

)
: (9c)

Inequality (9b) follows from the fact that wij(s) · 1. Suppose `ij(k+1) = `ij(k). Then from (4) we conclude
that $

kX
s=l

wij(s)

%
¡

kX
s=l

Iij(s) · 0; `ij(k + 1) · l · k

and hence

max
`ij(k+1)·l·k+1

(
1 +

$
kX
s=l

wij(s)

%
¡

kX
s=l

Iij(s); 0

)
· 1; (10)

Taking into account(9c) and the fact that Iij(k + 1) is integer-valued, we conclude that Iij(k + 1) takes
the values 0 or 1:Suppose now that `ij(k + 1) 6= `ij(k). Then by the de…nition of `ij(k), we conclude that
`ij(k + 1) = k + 1 and wij(k + 1) = 0, hence it follows from (7) that Iij(k + 1) = 0.
In order to show (8) assume that for, say, row 1 we have

I11(k + 1) = I12(k + 1) = 1:

Then, be the de…nition (7) there must be `1 ¸ `11(k + 1) and `2 ¸ `12(k + 1) such that6664k+1X
s=`1

w11(s)

7775¡ kX
s=`1

I11(s) = 16664k+1X
s=`2

w12(s)

7775¡ kX
s=`2

I12(s) = 1

Assume without loss of generality that `1 ¸ `2. Then, adding the previous equations, we have

2 ·
6664 2X
j=1

w1j(k + 1) +
kX

s=`1

2X
j=1

w1j(s) +
`1¡1X
s=`2

w12(s)

7775 (11a)

¡
kX

s=`1

2X
j=1

I1j(s)¡
`1¡1X
s=`2

I12(s)

· 1 +
6664 kX
s=`1

2X
j=1

w1j(s) +
`1¡1X
s=`2

w12(s)

7775 (11b)

¡
kX

s=`1

2X
j=1

I1j(s)¡
`1¡1X
s=`2

I12(s):

Inequality (11a) follows from the fact that bxc + byc · bx+ yc and inequality (11b) from the fact thatP2
j=1wij(k + 1) · 1. Hence, taking also into account that Iij(s) are integers, we have

1 ·
6664 kX
s=`1

2X
j=1

w1j(s)¡
kX

s=`1

2X
j=1

I1j(s) +
`1¡1X
s=`2

w12(s)¡
`1¡1X
s=`2

I12(s)

7775 :

11

Using Property I we conclude that

kX
s=`1

2X
j=1

w1j(s)¡
kX

s=`1

2X
j=1

I1j(s) · 0

and hence

1 ·
6664`1¡1X
s=`2

w12(s)¡
`1¡1X
s=`2

I12(s)

7775 (12)

If `2 = `1 then
jP`1¡1

s=`2
w12(s)

k
¡P`1¡1

s=`2
I12(s) = 0, which contradicts (12). If `2 < `1; then necessarily

`12(k+1) = `12(k) · `2 < `1; and since Iij(s) satis…es (4) for s · k, we have
jP`1¡1

s=`2
w12(s)

k
¡P`1¡1

s=`2
I12(s) · 0;

which again contradicts (12).
We also need to ensure that Iij(k + 1) satis…es Property I. If Iij(k + 1) = 1; then clearly Property I holds

for column j and row i. Assume next that for a column or a row, say column 1; it is computed based on (7)
that

I11(k + 1) = I21(k + 1) = 0:

In order to ensure that Property I holds for k+1, we claim that we can rede…ne one of I11(k+1); I21(k+1)
to 1 without a¤ecting the sub-modularity property of the matrix. To see this, notice that since Iij(k + 1)
takes values 0 or 1 and satis…es (8), in column 2 there can be at most a single 1, say in position (1; 2). We
can therefore set I21(k+1) = 1 in order to ensure that Property I holds for column 1. Proceeding in this way,
we can rede…ne some of the Iij(k + 1) if necessary, in order to ensure that Property I holds. Notice also that
with this rede…nition, the resulting matrix Iij(k + 1) still satis…es (4).
It remains to show that Iij(s) satis…es (4) for s = k+1: Assume …rst that Iij(k+1) has not been rede…ned.

Since by the de…nition (7),

Iij(k + 1) ¸
$
k+1X
s=l

wij(s)

%
¡

kX
s=l

Iij(s); `ij(k + 1) · l · k + 1;

we easily conclude that

max
`ij(k+1)·l·k+1

($
k+1X
s=l

wij(s)

%
¡
k+1X
s=l

Iij(s)

)
· 0

If any of the Iij(k+1) needs to be rede…ned, this rede…nition only increases the value of Iij(k+1) and hence
(4) still holds.

V. Heuristic Algorithms

Let ¼f be a feasible ‡uid policy that at every time slot k speci…es the appropriate ‡uid scheduling matrix
w(k). We showed in the previous section that as long as ¼f satis…es Assumption 1, a non-anticipative tracking
packetized policy can be designed for a 2 £ 2 switch. For the general case of N £ N switches the tracking
policy does not always exist. Bonuccelli and Claudia present an example [3] for 4£4 switches with …xed rate.
This example shows that even an anticipative tracking policy may not exist for N ¸ 4. Here we provide a
di¤erent example for a 3£ 3 switch where a non-anticipative tracking policy does not exist.
Example : Consider a 3£ 3 switch. Suppose that the serving discipline of every link under the ‡uid policy
is determined by the number of packets in each bu¤er and the priority of the packets as follows.
² 1. If less that one packets are queued in each link, these packets are served with equal rates. If there are
links for which more than one packets are queued, all these links - and only these links - are served with equal
rate.
2. In each of the links, higher priority packets are served …rst.
Suppose that packets p1; : : : ; p9 arrived at the beginning of the …rst time slot. Bu¤ered packets of the ‡uid
and packetized policy are depicted in Fig. 5. The …gure shows the bu¤ering at the beginning of …rst …ve time

12

slots. In every input there are three parallel bu¤ers (virtual queues) corresponding to the three outputs. As
it is illustrated there are 9 packets, one in each virtual queue at time 1. Each of these packets have distinct
input/output pairs and all have the same priority. Let matrix Q(k) specify the bu¤ered packets under the
packetized policy at time k. That is, element qij(k) of Q(k) speci…es the set of packets that are bu¤ered at
input port i and are destined for output port j under the packetized policy. Assume that

Q(1) =

24 p1 p2 p3
p4 p5 p6
p7 p8 p9

35 :
According to rule 1 above, the service matrices of the ‡uid policy will be,

w(1) = w(2) =

24 1=3 1=3 1=3
1=3 1=3 1=3
1=3 1=3 1=3

35 :
Without loss of generality, assume that the tracking policy selects the following two permutation matrices for
the …rst two time slots.

J(1) =

24 1 0 0
0 1 0
0 0 1

35 ; J(2) =
24 0 1 0
0 0 1
1 0 0

35
Now assume that at the beginning of time slot 3; six new packets p10 : : : p15 arrived, so that the backlogged
packets under the packetized policy at the beginning of slot 3 are,

Q(3) =

24 p10 p11 p3
p4 p12 p13
p14 p8 p15

35 :
Hence in the …gure at time slot 3, we have one packet in every queue under the packetized policy. The situation
is di¤erent for the ‡uid policy, 1=3 of the previously arrived packets remain, and there are six new arrivals as
well. Assume that p10; :::; p15 have equal priority, higher than the priority of the previous packets and hence,
according to rule 2, they are placed ahead of the previous arrivals in the ‡uid policy queues. Based on rule 1,
the serving rate of the ‡uid policy becomes,

w(3) =

24 1=2 1=2 0
0 1=2 1=2
1=2 0 1=2

35 :
In order to ensure proper tracking, the tracking policy should also serve a feasible set of these high priority
packets. For instance let,

J(3) =

24 1 0 0
0 1 0
0 0 1

35 :
At the beginning of time slot 4, assume that six new packets arrive, all with low priority, so that the queue
matrix becomes,

Q(4) =

24 0 p11; p16 p3; p17
p4; p18 0 p13; p19
p14; p20 p8; p21 0

35 :
Based on rule 1, the ‡uid policy would select the following serving rate matrix,

w(4) =

24 0 1=2 1=2
1=2 0 1=2
1=2 1=2 0

35 :

13

Fig. 5. The backlogged packets for the ‡uid and packetized tracking policy.

Therefore, at the beginning of time slot 5 six packets, with indices (3,4,8,11,13,14) are fully served under the
‡uid policy. However, by that time the packetized policy can at most, serve three of them. We assume that
the tracking policy serves packets p11; p13; p14, and there remain packets p3; p4; p8 unserved. Similarly, it can
be shown that for any of the other choices of J(3); there is another possible set of new arrivals that makes it
impossible for the packetized policy to track the ‡uid policy.
Since as the previous example shows it is impossible to construct non-anticipative policies in the general

case, we are motivated to seek for heuristic algorithms with good but not perfect tracking properties. The
design of the heuristic relies on two main concepts, port based tracking and critical links, that are discussed
below. We design a simple tracking policy based on these concepts and illustrate its performance using
simulation results.

A. Port Based Tracking

One way to implement a packetized tracking policy can be based on …nding optimal weighted matchings
in bipartite graphs. At slot k; with each input-output port pair (i; j); a weight, tij(k), is associated. This
weight represents the amount of work on input-output port pair (i; j), by which the ‡uid policy is ahead of
the tracking policy, up to slot k. That is,

tij(k) = max

Ã
kX
l=1

(wij(l)¡ Jij(l)) ; 0
!
:

We call these weights the tracking weights, tij(k):
We view the switch as a bipartite graph, with nodes the input and output ports of the switch. The weight

of link (input-output port pair) (i; j) is tij(k). The weight of node (port) i; vi(k), is the sum of the weights of
the links that emanate from or terminate at that node. That is, for an input port i and an output port j; we

14

have respectively.

vi(k) =
NX
j=1

tij(k); (13)

vj(k) =
NX
i=1

tij(k): (14)

Each sub-permutation matrix J(k) de…ning the tracking policy at slot k; corresponds to a matching in
the bipartite graph. The selection of the appropriate matching can be based on the link and node weights
introduced above. Ideally, the matchings should be chosen so that all these weights remain equal to zero.
Bipartite matching algorithms have been extensively used in switch scheduling and they are either based on

the maximum link (edge) weighted matching or on maximum matching (that is, a matching that maximizes
the number of links included in the matching) algorithms. Maximum link weighted matching algorithms are
complex and computationally intensive, while maximum matching algorithms often have poor performance.
We concentrate here on algorithms based on optimal vertex weight related matchings [14]. As will be seen,
algorithms based on these matchings have good performance. Also, their computational cost is not very high.
Two possible candidate matchings are those that satisfy the following optimization criteria.
Maximum node weight sum : With this criterion, the matching whose node weight sum is maximum is
chosen. Hence, at every step it is attempted to …nd the matching whose node weight sum “lags” the most
from the desired schedule. Since packets will be transmitted on the links of this matching, its “cost” will be
reduced in the next time slot.
Maximum Lexicographic Order of Node Weights: In this approach, with each matching we assign
a vector of node weights. Nodes that are included in the matching are assigned their weights ºi(k), while
nodes not included in the matching are assigned weight 0:We then select the matching whose assigned vector
is maximal in the lexicographic order (max-min fair) [2, Section 6.5.2]. In this approach, it is attempted to
select the matching whose nodes have individually large weights and hence are lagging the worst from the
desired schedule.
It can be shown that both the above mentioned criteria are equivalent. This is due to the special structure

of bipartite graphs. In the next lemma we prove the equivalence of the two criteria.
Lemma 3: Any matching that maximizes the node weight sum, maximizes the lexicographic order of weights

and vice versa.
Proof: let M1 be a matching that maximizes the node weight sum and M2 a matching that maximizes

the lexicographic order of weights. Let also M1; M2 be their respective set of nodes. We will show that for
any node i 2 M1 ¡M2; there is a node j 2 M2 ¡M1, such that ºi(k) = ºj(k) and vice versa. This implies
that the two matchings have the same node weight sum, and that they are equal in the lexicographic order.
Consider the graph G that consists of links that belong to one and only one of the two matchings. Note

that the maximum degree of a vertex in G is two. Let i 2 M1 ¡M2: Then, degree of node i in G is one.
Therefore, there is an (undirected) path in G that starts from node i and ends to a node j with degree one.
We concentrate on this path.
The number of nodes in this path is even or odd. If it is even then it follows from the de…nition of G that

the last node in the path belongs to M1, while all intermediate nodes belong to both matching. Thus, if we
replace the alternative set of links in the path belonging toM2 with those belonging toM1, two more vertices
will be included to M2, and this contradicts with the optimality assumption of M2. Therefore, this case is
impossible.
If the number of the nodes in the path is odd, then j 2 M2 ¡M1 . In this case, we necessarily have

vj(k) = vi(k). Indeed, if vj(k) < vi(k) then as in the previous paragraph we can construct a matching that is
better in the lexicographic order thanM2. If on the other hand vj(k) > vi(k), then we can similarly construct
a matrix that is better than M1 in the node weight sum criterion.
We call an optimal matching based on the above criterion, Maximum Node Matching (MNM). Notice that

MNM is di¤erent form conventional maximum weighted matching, since the latter maximizes the sum of the

15

3

2
2

2
2

44

4

4

3

6

4

5

The bipartite graph
with nodes and links
weights.

Maximum link
weighted matching
of the graph.

Maximum Vertex
weighted matching
of the graph.

Fig. 6. Example of node and link weight matching in bipartite graphs.

weights of the links involved in the matching, while MNM maximizes the sum of the weights of the nodes
involved in the matching. The di¤erence is illustrated in Fig.6. Next, we need to have an algorithm for …nding
a Maximum Node Matching of a bipartite graph. Note …rst that MNM should be a maximum matching. To
see this, assume that the algorithm employed to …nd the maximum matching is the augmented path algorithm
for the associated maximum ‡ow problem in an extended network [4]. This algorithm starts with an initial
matching (‡ow on the extended network) and then at each iteration …nds a ‡ow augmenting path and a new
‡ow in the extended network. Observe that at each iteration, due to the fact that the graph is bipartite, all
the nodes in the original matching are still nodes of the new matching. Hence, assuming that the algorithm
uses the MNM matching as its initial matching, the …nal matching includes all MNM nodes. Moreover, the
…nal matching cannot include additional nodes since then its node weight sum would be larger than that of
the MNM matching.
Assume now that we …nd a maximum matching M1:We show next how to obtain a MNM, M

¤
; from M1.

Given any matching M , de…ne an “alternating path” to be a path in the bipartite matching such that of any
two consecutive links in the path, one belongs to M and the other does not belong to M: If M is a maximal
matching, then it is easy to see that any alternating path such that one of its endpoints does not belong toM ,
must contain an even number of links. Hence, the other endpoint of the path belongs to M . The algorithm
for …nding an MNM is based on the following lemma
Lemma 4: A maximum matching M1 is an MNM, if and only for any alternating path with endpoints i

belonging to M1 and j not belonging to M1;we have

vi(k) ¸ vj(k):
Proof: Let M1 be an MNM. If there is an alternating path such that vi(k) < vj(k), then we can replace

the links of M1 in the path with the links in the path not belonging to M1: The resulting matching will have
larger node weight sum than M1, which contradicts the assumption that M1 is MNM.
Assume now that for any alternating path with endpoint i 2 M1 we have vi(k) ¸ vj(k): Let M

¤
be an

MNM matching. Let G be the graph whose links are the links that belong to one and only one of M1 and
M
¤
. Since both M

¤
and M1 are maximum matchings, using arguments similar to those used in the proof

of Lemma 3, it can be seen that in G there can be either alternating cycles or alternating paths with even
number of links. If G contains only cycles, then M1 has the same nodes as M

¤
and hence the same node

weight sum. Assume now that there is a path in G such that one of its end nodes, i, belongs to M1 and the
other, j, in M

¤
. Since M

¤
is MNM, we must have vi(k) · vj(k). Since for any alternating path we have

vi(k) ¸ vj(k), we conclude that vi(k) = vj(k). We conclude that the node weights of M1 are equal to the
node weights of M

¤
in the lexicographic order and hence they again have the same node weight sum.

Based on Lemma 4 we have the following algorithm for …nding an MNM matching.

16

Matching Algorithm:
1. Apply any maximum matching algorithm to obtain an initial maximum matching M1.
2. Sort all vertices not in M1 by their weights, and mark all of them as unexplored.
3. If among the alternating paths originating from the unexplored node, i; with highest weight, there is one
such that its other endpoint, j, (belonging necessarily to M1) has smaller weight than the weight of node i;
then
(a) replace in M1, the links in the path belonging to M1 with the links in the path not belonging to M1:
(b) Remove node i from the unexplored set and include node j in the unexplored set. Else,
(c) Remove node i from the unexplored set.
4. If the set of unexplored nodes is empty, then M1 is an MNM. Else go to step 3.
So far we have assumed that all lagging links (those with positive weights) are included in the bipartite

graph, and that the weight of every node is the sum of weights of the links that emanate from the node.
In the next section, we will discuss a trimming mechanism that enables us to modify the weight of nodes
and to exclude some of the graph links so that the matching algorithm can come up with better assignment
con…gurations.

B. Critical Ports and Links

A critical port is a port for which a packet should be scheduled in the next time slot, in order not to miss
a deadline in the future. As an example suppose that we are at the beginning of kth time slot. Assume that
there are two packets, one that needs to be transmitted from node i to node j1 and the other from node i to
node j2. Assume also that both have deadline k + 2. Note that if we do not schedule any of these packets,
no deadline will be missed in the kth time slot. However, we will de…nitely miss a deadline at the subsequent
time slot, k+1. We say that node i is a critical node, and links (i; j1) and (i; j2) are associated critical links.
In general, a su¢cient condition for a port to be critical at time k is to have at least p packets with deadlines
less than or equal to k + p. Note that we are stating a su¢cient condition. In other words, there might be
some critical ports that cannot be detected well in advance using this criterion. However, for simplicity we
concentrate on nodes that are critical according to the criterion de…ned above. Our goal is to detect critical
nodes and increase their chance to be scheduled.
In case of the tracking policy, the deadlines of packets are implicitly given, and are equal to the end of the

time slot that the packet departs the switch under the ‡uid policy. We may not know the deadlines in advance,
since the future rate of every link under the ‡uid policy depends on the future arrivals, which in general are
not known. Nevertheless, we may have an approximate deadline for every packet based on back-logged tra¢c
or the average arrival rate of the links
The next issue is to set an appropriate inspection horizon. Suppose that we are at time k. To detect the

critical links, we have to account for the packets that should be scheduled in the next p time slots. We call
p the “inspection horizon”. There is a trade-o¤ involved here: increasing the inspection horizon helps us in
detecting more critical links, but it increases the complexity of the algorithm as well.
After detecting a critical port, we know that we have to schedule one of the critical links associated with

that port, otherwise we will miss the deadlines. To give priority to this node, we increase its weight by a
constant, so that its weight exceeds all non-critical nodes weights. Therefore, these nodes are prioritized by
the scheduler. To make sure that one of its critical links are scheduled, we remove all non-critical links that
have a critical node as an endpoint. The algorithm for detecting critical nodes can be described as follows,

Critical Node Detecting Algorithm:
1. At every time step k, set p = 1.
2. For each node, i, …nd the number of packets that have to be sent in the next p time slots. These are the
packets with deadlines at most k + p.
3. If for some node, i;the number of packets that should be sent in the next p time steps is larger than or
equal to p; then i is critical. Moreover, the links emanating from i, over which at least a packet should be
sent in the next p time slots are critical links
4. Increment p and go back to step 2, if p · Lmax (Lmax is the inspection horizon).

17

The computationally expensive part of this algorithm is step 2. At that step we need to estimate the work
done by the ‡uid policy in the next p time slots. In general the estimate depends on future arrivals and cannot
be computed exactly. An approximate value can be obtained by assuming that there are no new arrivals in
the system. There are cases of course, as in the example described in Section III, where the design is done
o¤-line and future arrival can be anticipated.
The scheduling process of a switch can be divided into two stages. In the …rst stage, the weight of the ports

are calculated and the criticality of the ports is investigated. Once the service rates of the ‡uid policy are
computed, the rest of computations for di¤erent ports of the switch can be done in parallel, and no interaction
between them is necessary. In the next stage the computed weights for the nodes and the eligible links for
every node are provided to the matching algorithm.
Finally we provide the scheduling algorithm that is based on the algorithms described above.

Scheduling Algorithm:
1. At every time slot k do the following steps.
2. Calculate node weights using (13), (14).
3. Insert all links with positive weights in the eligible links set.
4. Check for critical nodes and their associated critical links.
5. Increase the weight of every critical node to a value, C; where C is larger than the weights of all non-critical
nodes. Remove all non-critical links of the critical nodes from the eligible links set.
6. Pass the weights of the nodes and the critical links to the matching algorithm. The result of the matching
is the schedule for time slot k.
If there are several sessions that are transmitting packets in an input/output pair, the scheduling algorithm

does not specify, which of them should be scheduled in the associated slot. The scheduler considers all these
sessions as an aggregated session and works with the aggregate rate. Once a slot is assigned to an input/output
pair, it is the responsibility of a local scheduler maintained at the input port to assign the space to one of
the multiple sessions. In principle, any single link sharing algorithm may be used as local scheduler. Here we
will use EDF scheduler. This hierarchal approach improves the scalability of the scheduler. Note that apart
from the computations that may be needed to calculate rates under the ‡uid policy, the complexity of the
scheduler does not depend on the number of sessions between every input/output pair, since all of them are
considered as an aggregated session.
The proposed scheduling algorithm is used in next section to schedule …xed rate sessions, and its performance

is evaluated through simulations.

C. Fix Rate Scheduler Simulation

We consider multiple …xed rate sessions arrive to all input ports of a switch. These sessions are similar to
the periodic sessions introduced in Section III. Each session m; has an integer period pm. In any interval
[kpm; (k+1)pm¡ 1] one slot should be assigned to session m. If the slot is not assigned, we assume that one
packet of that session is discarded. In e¤ect, we are assuming that real time sessions have strict deadlines,
but can tolerate some packet loss. Moreover, the total capacity dedicated to real time sessions is less than
the capacity of the switch. This does not necessarily mean that some of the capacity is wasted, since the
remaining capacity could be dedicated to non-real time tra¢c. In fact, as will be seen, the capacity we
considered allocated to real-time tra¢c in our simulations is much higher than the capacity normally assigned
in today’s networks.
The main input parameters to the simulation are the maximum port utilization and minimum overall

utilization of the switch ports , uM and um respectively, and the switch size N . We denote the …rst two
parameters as the utilization pair, (uM ; um). In the …rst set of experiments, the inspection horizon Lmax is
considered as an input and its e¤ect is studied, while in the rest of experiments it is set to a constant value.
The sessions are generated as follows. A uniform random number generator is used to select the input and
output ports for every session. The rate of a session is selected uniformly in the range of [1=1024; 68=1024], so
that the period of sessions is from 15 to 1024 slots. If the selected rate is such that one of the port load exceeds
the maximum port rate, then the rate is clipped so that the overall load of that port equals the maximum
load. The period of the session is then set to the ceiling of the inverse of the resulting rate. The above process

18

TABLE II
Heuristic Algorithm Performance for different Inspection Horizons(U=(0:85; 0:8), N=32).

Lmax 0% Ratio 10% Ratio

0 0.9322 0.9996
1 0.9732 0.9997
2 0.9786 0.9997
3 0.9797 0.9997
4 0.9803 0.9997
5 0.9800 0.9997

is repeated 10000 times. This does not mean that there are 10000 sessions in each session set, since in some
of the attempts either the input or the output port are fully loaded. Once set of sessions is generated, if
the resulting average utilization of the switch ports exceeds um it is accepted, otherwise it is discarded and
another session set is formed. The minimum session rate is set to 1=1024, because for each session set, the
simulation runs for 1024 time steps.
One of the main advantages of the heuristic algorithm is that its complexity is not a function of the number

of sessions. The rate of all individual sessions with same input and output are added up and the arbiter looks
at them as an aggregated session. Once a slot is assigned to a link, then there is a local scheduler that selects
the session that is going to use that slot. In our case, we simply use an EDF scheduler for this purpose. If no
slot is assigned to a session during one of its period interval, we assume that one of its packets is discarded.
To study the e¤ect of di¤erent parameters several experiments are carried out. Each experiment is speci…ed
by the values selected for switch size, utilization pair, and the inspection horizon. For each experiment 100
sets of sessions are generated, and for each session set 1024 time steps of simulation is performed. For every
session, the percentage of discarded packets is calculated. The performance measure is the percentage of
sessions with no discarded packet (%0 loss ratio), and the percentage of packets with %10 loss ratio. Three
di¤erent aspects of the algorithm are studied, inspection horizon, switch size, and the utilization pair.

C.1 Inspection Horizon

We introduced the concept of critical links as a way to detect and increase the chance of the links and ports
that are more urgent to be scheduled. Obviously this increases the complexity of the scheduling algorithm.
In fact, the additional computation load is a function of the selected inspection horizon. In the …rst series of
experiments, we study the e¤ectiveness of this procedure and the appropriate values for inspection horizon.
The switch size is set to 32 and the utilization pair to (0.85, 0.8). The results are given in table I. We can
deduce that the detection of critical links can improve the capacity, and reduce the percentage of non-perfectly
scheduled sessions by about 5%. Notice that for Lmax = 0 (no check), 0.068 of sessions have discarded packets,
while for Lmax = 1, this reduces to 0.027.

C.2 Switch size

In this series of experiments, the inspection horizon is …xed to 5, and the utilization pair is (0.85, 0.8). Most
of the heuristic algorithms provided for input queueing switches fail to give satisfactory result for moderate size
switches [17]. The results of our simulation are given in table II. We also observe some degree of performance
degradation as the switch size increases. However, in all cases the %0 ratio is around 0.98. In fact, if we
decrease the network load, we can even get better results. This is a very important feature of the algorithm,
since it is vital for the algorithm to perform well for larger switch sizes.

C.3 Utility

In this series of experiments the e¤ect of utilization or switch load is investigated. The switch size is set to
32, which is a moderate size switch. The results are given in table III. As we expect the performance of the

19

TABLE III
Heuristic Algorithm Performance for different switch sizes(U=(0:85; 0:8)).

N 0% Ratio 10% Ratio

8 0.99 0.9999
16 0.98 0.9997
32 0.98 0.9997
64 0.98 0.9997

TABLE IV
Heuristic Algorithm Performance for different utility pairs (N=32).

U 0% Ratio 10% Ratio

(0.55, 0.5) 0.996 1
(0.65, 0.6) 0.993 0.9999
(0.75, 0.7) 0.989 0.9999
(0.85, 0.8) 0.980 0.9997
(0.95, 0.9) 0.952 0.9986

system degrades as a function of utilization. However, with the exception of the utilization pair (0.95, 0.9),
which is very high for a realistic system, the percentage of sessions without any packet loss is above 98%.

VI. Summary and Conclusion

In this paper the notion of ‡uid policies and tracking policies are extended to the N £N switches. These
concepts are useful in the design of high speed input queued switches, where they can aid in the design
of policies that provide guaranteed service to di¤erent applications, and in TDMA-SS with multi-periodic
sessions. The existence of a tracking policy is proved for the special case of 2 £ 2 switches. For the general
case of N £N switches a heuristic algorithm is provided.
The design of tracking policies for a general N £ N switch is still an open question. The examples in

Section V show that such a tracking policies cannot be designed without further constraints on the arrivals
or on the policies themselves. This fact, together with the complexity that a perfect tracking policy might
entail, justify the need for less complicated heuristic tracking policies, with good performance. The proposed
heuristic algorithm is based on two useful notions, the Maximum Node Matching, and Critical Nodes. The
scheduling is done in a hierarchical fashion. First the global scheduler selects the input-output pairs on which
packets may be transmitted in a particular slot, and then a local scheduler assigns the slot to one of the
sessions sharing the input-output pair. This approach makes the scheduler scalable in terms of the number of
sessions. The simulation results are promising and illustrate that the algorithm can be useful in high speed
networks and satellite switches where not only throughput but delay and jitter guarantees are desirable too.

References
[1] J.C.R. Benett and H. Zhang WF2Q: Worst-case Fair Weighted Fair Queueing Proceedings of INFOCOM ’96, IEEE, March

1996.
[2] D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, 1992.
[3] M.A. Bonuccelli, M.C. Clo. EDD Algorithm Performance Guarantee for Periodic Hard-Real-Time Scheduling in Distributed

Systems. IPPS/SPDP 1999, San Juan, Peurtorico Rico, April 1999.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms,” Mc Graw Hill, 1990.
[5] S. Chuang, A. Goel, N. McKeown, B. Prabhakar Proceedings of INFOCOM ’99, 1169–1178, IEEE, April 1999.
[6] R. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE Trans. on Information Theory, 37(1):114–131,

January 1991.
[7] R. Cruz. A calculus for network delay. II. Network Analysis. IEEE Trans. on Information Theory, 37(1):132–141, January

1991.

20

[8] A. Demers, S. Keshav, and S. Shenkar. Analysis and simulation of a fair queueing algorithm. Proceedings of SIGCOM ’89,
pages 1–12.

[9] L. Georgiadis, R. Guerin, and A. Parekh. Optimal multiplexing on single link: Delay and bu¤er requirements. IEEE
Transactions on Information Theory, vol. 43, no. 5, p 1518–1535, Sep. 1997.

[10] L. Georgiadis, R. Guerin, V. Peris, K.N. Sivarajan. E¢cient network QoS provisioning based on per node tra¢c shaping.
IEEE/ACM Transactions on Networking, vol.4, no.4,pp. 482-501, 1996.

[11] J. Giles, B. Hajek. Scheduling multirate periodic tra¢c in a packet switch Shaping. Conf. on Info. Sci. and Systems at John
Hopkins Univ, 1997.

[12] S. Golestani. A self-clocked fair queueing scheme for broadband applications. Proceedings of INFOCOM ’94
[13] T. Inukai An e¢cient SS/TDMA time slot assignment algorithm. IEEE Transactions on Communications, vol.27, pp.

1449-1455, 1979.
[14] A. Mekkittikul, N. McKeown. A Practical Scheduling Algorithm to Achieve 100% Throughput in Input-Queued Switches.

Proceedings of INFOCOM ’98, pp. 792-799.
[15] A.K. Parekh and R.G. Gallager. A generalized processor sharing approach to ‡ow control in integrated services networks:

The single node case. IEEE/ACM Transactions on Networking, 1(3):344–357, June 1993.
[16] A.K. Parekh and R.G. Gallager. A generalized processor sharing approach to ‡ow control in integrated services networks:

The multiple node case. IEEE/ACM Transactions on Networking, 2(2):137–150, April 1994.
[17] I.R. Philp. Scheduling real-time messages in packet-switched networks. Ph.D. Dissertation Dept. Comp. Sci. Univ of Illinois

at Urbana-Champaign , 1997.
[18] H. Zhang, D. Ferrari. Rate-controlled service disciplines. J. High Speed Networks, vol.3, no.4,pp. 389-412, 1994.

