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Abstract. We consider a general class of optimization problems regarding spanning trees in
directed graphs (arborescences). We present an algorithm for solving such problems, which can be
considered as a generalization of Edmonds’ algorithm for the solution of the minimum-cost arbores-
cence problem. The considered class of optimization problems includes as special cases the standard
minimum-cost arborescence problem, the bottleneck and the lexicographically optimal arborescence
problem.
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1. Introduction. Given a directed graph G = (N,A), real number costs ca for
a ∈ A, and a root node r, the minimum-cost arborescence problem is to find the
minimum-cost spanning tree in G directed out of r. Here, tree cost is the sum of the
tree arc costs. An algorithm for solving this problem has been provided independently
by Chu and Liu [3] and Edmonds [4], while Karp [7] provided a combinatorial opti-
mality proof. Efficient implementations have been described by Tarjan [8], Camerini
et. al. [2] and Gabow et. al. [5].

In this paper we consider the following optimization problem. We assume that
arc costs take values in a set V endowed with a “less than” relation and an “addition”
operation and we seek to find the directed spanning tree whose cost (“addition” of
all tree arc costs) is minimal with respect to the “less than” operation. We provide
an algorithm for solving this problem, which can be considered as generalization
of Edmonds’ algorithm. Special cases of this problem provide algorithms for the
minimum-cost, bottleneck [1], [6] and lexicographically optimal spanning tree.

The paper is organized as follows. In the next section we provide the terminology
and definitions used in the paper. In Section 3 we provide an algorithm and show
its optimality. In Section 4 we discuss optimization problems that can be solved as
special cases of the optimization problem considered in this paper.

2. Terminology and Definitions. Let V be a set endowed with a “less than”
relation ¹ and an “addition” operation ⊕ having the following properties.

1 Relation ¹ is defined for every pair of elements v1, v2, of V . If v1 ¹ v2, v1 is
called “smaller than” v2 and v2 “larger than” v1.

2 Relation ¹ is transitive, i.e., v1 ¹ v2 and v2 ¹ v3 implies v1 ¹ v3.
3 The operation ⊕ maps each pair of elements v1, v2, of V to another element
v1⊕ v2 ∈ V and satisfies the following properties
(a) commutativity, v1⊕ v2 = v2⊕ v1,
(b) associativity, (v1⊕ v2)⊕ v2 = v1 ⊕ ( v2⊕ v2).

4 If v1 ¹ v2 and v3 ¹ v4 then v1⊕ v3 ¹ v2⊕ v4.
Note that relation ¹ would be an order relation if we included the antisym-
metric property, i.e., v1 ¹ v2 and v2 ¹ v1 implies v1 = v2. However, for our
purposes, the antisymmetric property is not needed.

Let G = (N,A) be directed graph G = (N,A) with node set N and arc set A.
Denote by A+(n) the set of arcs in A emanating from node n and by A−(n) the set
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of arcs in A terminating at node n. With each arc a ∈ A there is an associated cost
ca ∈ V . A subgraph T = (NT , AT ) of G is called an r-arborescence or directed tree
out of r, if a) there is a directed path from node r of T to every other node of T using
only the arcs in T and b) T has |NT |− 1 arcs, where |NT | is the cardinality of the set
NT . Node r is called the root of the arborescence. It follows from the definition that
for every node n 6= r of T , there is exactly one arc of T terminating at n and there is
no arc of T terminating at r. A set of node-disjoint arborescences with roots the set
R = {r1, r2, ..., rk} is called R-forest.

Let Gs = (Ns, As) be a subgraph of G = (N,A). Consider the cut [Ns,N −Ns]
and let As

+ (As−) be the set of forward (backward) arcs of the cut, i.e., the arcs
emanating from (terminating in) Ns and terminating in (emanating from) N −Ns.
Let Ns

+ (N
s−) be the set of nodes in N −Ns that are endpoints of arcs in As

+ (A
s−).

Define

Gs
e = (N

s
e , A

s
e)

= (Ns ∪Ns
−, A

s ∪As
−)

and for n ∈ Ns−, As
+(n) = A+(n) ∩As−.

The cost of Gs is the sum of its arc costs and is denoted by C(Gs). That is,

C(Gs) =
X
a∈As

ca.

where summation is considered with respect to the ⊕ operation (the commutativity
and associativity of the ⊕ operation makes the order of summation irrelevant).

An r-arborescence (R-forest) in G spans Gs if the arborescence (forest) includes
all nodes in Gs. If G = Gs, we simply say that the r-arborescence (R-forest) spans
G.

The definitions above are illustrated in the following example. Consider the graph
G on Figure 2.1. Let Ns = {3, 4, 5, 7, 8} and let Gs be the subgraph of G induced by
the nodes in Ns. Then,

As = {(3, 4) , (4, 5) , (5, 7), (7, 8) , (8, 3) , (5, 8)} ,
Ns
− = {1, 2, 6} , As

− = {(1, 3), (2, 3), (2, 4), (6, 7)} ,
Ns
+ = {6, 9} , As

+ = {(5, 6), (3, 9), (8, 9)} ,
and Gs

e is the graph with node and arc set respectively,

{1, 2, 6} ∪Ns, {(1, 3), (2, 3), (2, 4), (6, 7)} ∪As.

For node 2 ∈ Ns
−, A+(2) = {(2, 3), (2, 4), (2, 6)}, and As

+(2) = {(2, 3), (2, 4)}. The
graphs

T1 = ({2, 3, 4, 5} , {(2, 3), (3, 4), (4, 5)}) ,
T2 = ({6, 7, 8} , {(6, 7), (7, 8)}) ,

constitute an R-forest in Gs
e spanning Gs, where R = {2, 6}. The 2-arborescence in

G consisting of the path

2→ 3→ 4→ 5→ 6→ 7→ 8,

is spanning Gs but is not a 2-arborescence in Gs
e since the arc (5, 6) does not belong

to As
e. In fact, it is important to note that of the nodes in Gs

e only nodes in Gs are
terminating nodes for some arcs.
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Fig. 2.1. Example Directed Graph G.

3. Optimization Problem and Optimal Algorithm . Let node r be given
and assume that there is an r-arborescence spanning G. We are interested in find-
ing the minimum-cost r-arborescence spanning G. More specifically, our objective is
to find an r-arborescence spanning G, say T ∗, such that if T is any r-arborescence
spanning G then

C(T ∗) ¹ C(T ).

Since no r-arborescence contains links terminating at node r, we assume without loss
of generality that A−(r) = ∅.

Let Gs = (Ns, As) be a subgraph of G that has the following properties.
A: Node r does not belong to Ns

B: For any n ∈ Ns
−, there is an n-arborescence in Gs

e spanning G
s.

C: For any n ∈ Ns−, an n-arborescence in Gs
e spanning G

s has smaller cost than any
R-forest in Gs

e spanning G
s, where R ⊆ Ns− and n ∈ R.

Note that the assumption that there is an r-arborescence spanning G together
with Property A, imply that Ns− is nonempty.

Let Cs
n be the minimum-cost n-arborescence in G

s
e spanning G

s. Due to Property
B, Cs

n is well defined for any n ∈ Ns−. Construct a network G = (N,A) that replaces
all nodes in Ns with a single new node ns, as follows.

• N = N −Ns ∪ {ns}.
• All arcs in A with endpoints in N −Ns belong to A. The cost of these arcs
remains the same.

• The arcs in A−(ns) are emanating from Ns
−. The arcs in A+(ns) are termi-

nating in Ns
+.

• The cost of the arc in A−(ns) emanating from node n ∈ Ns− is Cs
n.

• The cost of the arc in A+(ns) terminating at node n ∈ Ns
+ is

min
a=(i,n):i∈Ns

{ca} ,

that is, the minimum (with respect to relation ¹) of the arcs that are ter-
minating at node n and are emanating from some node in Ns. The node
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Fig. 3.1. The Contraction of Network G.

tn ∈ Ns for which the minimum is achieved will be called associated to node
n.

We refer to G as the contraction of network G. It can be shown that the subgraph
Gs in Figure 2.1 with arc cost the real numbers shown next to each arc, satisfies
properties A-C (see Theorem 3.2 below). Figure 3.1 shows the contraction of network
G in Figure 2.1.

Since by assumption there is an r-arborescence spanning G, it is easy to see that
there is an r-arborescence (in G) spanning G as well. Let T be a minimum-cost r-
arborescence spanning G. Since r ∈ N−Ns, T contains a unique link (n, ns), n ∈ Ns

−.
Construct an r-arborescence T ∗ spanning G as follows.

• Replace node ns with a minimum n-arborescence in Gs
e spanning G

s.
• For each arc (ns, n) of T , include in T ∗ the link (tn, n), where tn is the node
in Ns associated to n.

The r-arborescence T ∗ thus constructed is called the expansion of T .
Next we provide the main theorem on which the construction of the optimal

algorithm is based.
Theorem 3.1. The r-arborescence T ∗ constructed with the above procedure is a

minimum-cost r-arborescence spanning G.
Proof. It is clear that T ∗ is an r-arborescence spanning G. Also, by construction

C(T ∗) = C
¡
T
¢
. (3.1)

Consider any other r-arborescence T 0 spanning G. Arborescence T 0 must be
entering Gs through a subset R of the nodes in Ns

−. Moreover, the set T 0 ∩Gs
e

constitutes an R-forest in Gs
e spanning Gs. Let n0 ∈ R. According to Properties B,

C, there is an n0-arborescence in Gs
e spanning G

s, that has smaller cost than T 0 ∩Gs
e.

Consider the r−arborescence T 1 spanning G that results by replacing the set of arcs
of T 0 ∩Gs

e by this n0-arborescence in Gs
e. Then,

C(T 1) ¹ C(T 0). (3.2)
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Consider now the r-arborescence T 2 spanning G that results by replacing a link
of the form (i, n) ∈ T 1 ∩As

+, with the link (tn, n). Since by definition c(tn,n) ¹ c(i,n),
i ∈ As

+,

C(T 2) ¹ C(T 1). (3.3)

Next, consider the r-arborescence T
2
spanning G that results by contracting all

the nodes in T 2 ∩Gs to a single node ns and by replacing the cost on link (n0, ns)
with Cs

n0 . By construction we have

C
³
T
2
´
= C

¡
T 2
¢
. (3.4)

Since T is a minimum cost r-arborescence spanning G, it holds,

C
¡
T
¢ ¹ C

³
T
2
´
. (3.5)

Relations (3.1)-(3.5) imply that

C(T ∗) ¹ C(T 0).

Since T 0 is arbitrary, the results follows.
According to Theorem 3.1 if a subgraph Gs of G satisfying properties A-C can

be found, the search for the optimal r-arborescence spanning G can be reduced to
the search for the optimal r-arborescence spanning the contracted graph G. It turns
out that Properties A-C are satisfied by the cycles constructed during the course
of Edmonds’ algorithm. Specifically, let Gs be a subgraph of G with the following
property.
Property D There is a directed cycle (i0 → i2 → ... → im−1) (i1 = im−1 and no

other node is repeated), m ≥ 2, containing all nodes in Ns and such that the
cost of arc (ik−1, ik) , k = 0, ...,m−1, is the minimum of arc costs terminating
at node ik, that is,

c(ik−1,ik) = min
a∈A−(ik)

{ca} . (3.6)

For a node n ∈ Ns−, let Pn be the set of n-arborescences (directed paths in this
case) in Gs

e spanning G
s of the form

(n→ ik → ik+1...→ ik−1) .

Let T ∗n be a minimum cost path among the paths belonging to Pn. We have the
following theorem.

Theorem 3.2. A graph satisfying property D also satisfies properties A -C, and
a minimum cost n-arborescence in Gs

e spanning G
s is T ∗n .

Proof. Property A is satisfied since A−(r) = ∅ and therefore r cannot belong to
a cycle. Property B holds since there is a directed cycle containing all nodes of Gs

and there is at least one arc emanating from n ∈ Ns
− and terminating at some node

of Gs.
Consider now any R-forest F in Gs

e spanning Ge, where R ⊆ Ns− and n ∈ R.
Assume without loss of generality that F contains arc (n, i0), i0 ∈ Ns. If AF is the
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set of arcs of F , then taking into account that of the nodes in Gs
e only nodes in Ge

are terminating nodes for some arcs, the cost of the forest is

c(n,i0) ⊕
m−1X
k=1

X
a∈A−(ik)∩AF

ca º c(n,i0) ⊕
m−1X
k=1

c(ik−1,ik),

where the inequality is due to (3.6), the fact that there is exactly one arc in the
set A−(ik) ∩ AF and to Property 4 (see Section 2) that is satisfied by arc costs as
elements of V . But the right hand side of this inequality is the cost of the directed
path (n→ i0 → i1...→ im−1) , which belongs to Pn and therefore has cost larger than
T ∗n . Hence, Property C is also satisfied.

According to Theorems 3.1 and 3.2, if a cycle Gs in G satisfying Property D
is found, then a minimum r-arborescence spanning G can be determined by finding
a minimum r-arborescence in the contracted network G which has fewer number of
nodes. Hence we have the following algorithm for finding the minimum r-arborescence
spanning G.
Algorithm A.

Contraction Phase
1 Discard all arcs A−(r). Let Gh be the resulting graph.
2 For each node n ∈ Gh pick an arc with the minimum cost in A−(n). Let Th
be the graph consisting of the selected arcs and the associated arc endpoints.

3 If no cycle is formed, Th is a minimal r-arborescence spanning Gh. Go to
step 6. Else,

4 Determine a cycle Gs
h in Th and form the contracted network Gh of Gh.

5 Set Gh ← Gh and go to step 2.
Expansion Phase
6 Starting from the last r-arborescence Th, form successively the expansions of
the arborescences determined in steps 1-5.

As in [3], simple tests can be added to the previous algorithm to detect the case
where no r -arborescence spanning G exists.

According to Theorem 3.2 and the construction of the contracted graph G, the
cost of arc (n, ns), n ∈ Ns− is

Cs
n = min

in:(n,in)∈As+(n)

(
c(n,in) ⊕

n−2X
k=n

c(ik,ik+1)

)
. (3.7)

Here, and through the rest of the paper, the addition operation with respect to cycle
node subscripts refer to modulo-m operations.

4. Applications. If V = <, the set of real numbers with the standard order
relation and addition operation, then

Cs
n = min

in:(n,in)∈As+(n)

(
c(n,in) +

n−2X
k=n

c(ik,ik+1)

)
= min

in:(n,in)∈As+(n)
©
c(n,in) − c(in−1,in)

ª
+ δ,

where

δ =
m−1X
k=0

c(ik,ik+1).
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Hence, the algorithm of Section 3 is the same as Edmonds’ and Chu and Liu’s algo-
rithm with the sole exception that in the latter,

δ = max
k=0,...,m−1

©
c(ik,ik+1)

ª
.

However, as already observed in [5], this difference in the constants does not affect
the resulting arborescence. To see this, note that in the contracted graph G, the
minimum cost r-arborescence spanning G will contain only one of the links incoming
to node ns. Hence, if we add the same constant δ to all links incoming to node ns
in graph G, the cost of all r-arborescences spanning G will increase by this constant,
and hence the minimum cost r-arborescence will not be affected. In fact, we get the
same r-arborescence spanning G if we set δ = 0, i.e., if we set

Cs
n = min

in:(n,in)∈As+(n)
©
c(n,in) − c(in−1,in)

ª
.

Consider next the bottleneck arborescence problem defined as follows.
Bottleneck Arborescence: Given a directed graph G, arc costs
ca ∈ < and a root node r ∈ N, construct an r-arborescence T ∗ in G
such that

max
a∈T∗

{ca} ≤ max
a∈T

{ca} .

This is a special case of the problem described in Section 3 where V = <, ¹ is the
standard order relation between real numbers and v1⊕ v2 = max {v1, v2}. Optimal
algorithms for this problem have been provided previously by Camerini [1] and Gabow
and Tarjan [6]. The algorithm that results form Algorithm A is different than either
of these algorithms.

For the next problem identify V with the set of K−dimensional real vectors with
ordered coordinates, i.e., if ca ∈ V then,

ca = (ca1, ca2, ..., caK) ,

where

ca1 ≥ ca2 ≥ .... ≥ caK .

Consider the lexicographic order relation, i.e., ca ¹lex cb if either ca = cb, or there
exists a number l, 1 ≤ l ≤ K such that cai = cbi, for 1 ≤ i ≤ l − 1 and cal < cbl.

If ca, cb ∈ V , define ca⊕ cb as the vector in V whose coordinates are the K
largest coordinates of the vectors ca, cb, i.e., the K largest numbers in the set

{ca1, ca2, ..., caK , cb1, cb2, ..., cbK} .
It can be verified that the lexicographic order and the ⊕ operation thus defined satisfy
Properties 1-4 in Section 2 and hence we have an algorithm for solving the following
problem.

Lexicographically Optimal Arborescence: Given a directed
graph G, arc costs ca ∈ V and a root node r ∈ N, construct an
r-arborescence T ∗ in G such that

C(T ∗) ¹lex C(T ),

where T is any r-arborescence spanning G.
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To our knowledge, the resulting algorithm is new. Some special cases of the
lexicographically optimal arborescence problem are worth mentioning.

• If K = 1, then the problem reduces to the bottleneck arborescence problem.
• IfK = |A| and ca = (ca1, 0, 0, ...0) , ca1 ≥ 0, then we have the problem of find-
ing the lexicographically optimal arborescence in a directed graph whose arc
costs are real numbers (not vectors). This is a stricter optimization problem
than the bottleneck spanning tree problem.

• If 1 < K < |A| and ca = (ca1, 0, 0, ...0) , ca1 ≥ 0, then we have a problem that
is stricter than the bottleneck spanning tree and weaker than lexicographic
optimization.

The general case where the form of ca is other than ca = (ca1, 0, 0, ...0), can also
be useful in a situation where each arc actually represents a subnetwork. This is a
situation that commonly appears in today’s Internet. More specifically, an arc in G
may represent a subnetwork belonging to a service provider. The endpoints of the arc
represent the “access nodes” to the subnetwork of the service provider. The service
provider may supply a vector ca that represents the “internal” cost of its subnetwork
links when data is transferred between the two access points.

Note also that the general case appears during the course of the optimization
algorithm, even if we start with costs of the form ca = (ca1, 0, 0, ...0). Indeed, in
this case the costs Cs

n of the contracted network will contain more than one nonzero
coordinates.
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