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Abstract

We consider the ring network with spatial reuse. Tra�c streams may enter
and exit the network at any node. We adopt an arrival tra�c model with
deterministic constraints on its sample paths, which conforms to the output
tra�c of a leaky bucket rate control mechanism. A transmission policy speci�es
at each time which tra�c stream will be transmitted at the outgoing link by
each node. We provide an upper bound on the asymptotic backlog of the ring
that holds for all work-conserving policies and is independent of the initial
conditions. This bound remains �nite as long as the maximum load of every
link is less than one. The latter condition is also necessary for the existence of
an asymptotic bound that is independent of the initial conditions.

1 Introduction

We consider a uni-directional ring with spatial reuse, i.e., a ring in which multiple

simultaneous transmissions are allowed as long as they take place over di�erent

links. A node can transmit at the outgoing link at the same time that it receives

tra�c from the incoming link. Initially it is assumed that the ring has cut-through

capabilities, i.e., that a node receiving tra�c from its incoming link may retransmit

the tra�c immediately at the outgoing link. Results are obtained later for store and

forward rings as well. The ring with spatial reuse, special implementation of which
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is the register insertion ring [2], has attracted a lot of attention recently since it

allows a considerable increase in the throughput over the classical ring. Two classes

of transmission control policies have been proposed and analyzed. The �rst class

attempts to achieve the fair treatment of the nodes [7], [4], [11], [8], while the second

guarantees the maximal stability region for the ring [1], [9].

In this paper we address the issue of stability of the ring under work-conserving

policies. We adopt an arrival tra�c model where certain deterministic constraints

are satis�ed by all sample paths. This model was introduced by Cruz [5] and and

conforms to the output tra�c of a leaky bucket rate control mechanism. When the

ring is operated under distributed policies it may exhibit very complicated behavior

as it has been demonstrated in recent studies. Cruz in [6] has obtained a su�cient

stability condition for the ring operated under a simple distributed policy. The

stability condition was strengthened later by [17]. However, the condition in [17]

is still stronger than the condition that all link loads are less than one, and the

question whether the latter condition is su�cient for stability of the ring remained

open [13], [10]. While this condition is intuitive, related studies [12], [16], [14], [15] in

the same context have shown that simple distributed systems may exhibit unstable

behavior even if the condition is satis�ed and sophisticated policies may be needed

for their stabilization. For a single class Jackson-type network, it has been shown in

[3] that the system is stable when the load to each node is less than one. The method

presented in [3], however, does not seem to extend to multi-class non-feedforward

networks, a special case of which is the ring topology studied here.

In this work we show that any work conserving policy provides the maximal

stability region for the ring. This result indicates that no sophisticated control is

required for stabilizing a ring network. More speci�cally we provide an upper bound
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on the asymptotic backlog of the ring that holds for all work-conserving policies and

is independent of the initial conditions, under the condition that the maximum load

of every link is less than one. This condition is also necessary for the existence of

an asymptotic bound that is independent of the initial conditions. Moreover, if the

maximum load of a link is larger than one, then there exist input tra�c patterns

for which the backlog cannot be bounded under any initial conditions. Note that

the results of this paper hold for work-conserving policies. It can be seen by simple

examples that the stability conditions of policies like Metaring [4] and Orwell [7],

which do not have the work-conserving property, are in general stricter than the

condition that the maximum load of every link is less than one (see also [8] where

the throughput properties of these policies are studied under the assumption of zero

propagation delays).

2 The model and the transmission policies

Let M be the number of nodes and denote the set of nodes, M = f0; : : : ;M � 1g.

The operations i� j and i	 j denote respectively, addition and subtraction modulo

M . Furthermore, when i; j refer to node indices we denote
Pj
k=i xk := xi + xi�1 +

: : : + xj	1 + xj . We assume that the nodes are arranged on the ring according to

their index so that the outgoing link of node i is the incoming link of node i � 1.

The ith link is joining nodes i and i � 1: Nodes i � k and i 	 k are called the kth

node \downstream" and \upstream" from node i; respectively. For any two nodes

i; j, there may be tra�c entering the ring at node i with destination node j. Let

Aij(t1; t2); t1 < t2; be the amount of tra�c that arrives to node i from the outside

with destination node j; in the interval [t1; t2) and Ai(t1; t2) =
P
j2M Aij(t1; t2).

If i = j, then the tra�c from node i has to make a full circle around the ring and
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exit at node i again. We assume that the input tra�c satis�es the following relation

Aij(t1; t2) � �ij(t2 � t1) + �ij; i; j 2M: (1)

The transmission capacity of all links is the same, equal to one. Each link i has a

propagation delay �i (it may be zero). At any time the amount of tra�c that exists

in link i is upper bounded by �i: We de�ne � =
PM
i=1 �i:

Let

�m =
X
i2M

iX
j=m�1

�ij :

The quantity �m is an upper bound of the average rate of the total 
ow through link

m: Our objective is to show that if the maximum link utilization on the ring is less

than one, i.e., �:= max f�i : i 2Mg < 1; then the ring is stable under any work-

conserving policy. This is made precise in the theorem of the next section. Before we

proceed we need some notation. Let Qij(t) be the amount of tra�c with destination

node j stored at node i at time t; and Qi(t) =
P
j2M Qij(t): The amount of tra�c

traveling at time t on link i with destination link j is denoted by eij(t): Also, let

ei(t) =
P
j2M eij(t_) be the total tra�c at time t on link i: Note that ei(t) � �i for

all t � 0. The degree of node m at time t, dm(t); is de�ned as the total amount of

tra�c that exists on the ring at time t, that has to cross node m in order to reach

its destination. This tra�c may be either queued at any of the nodes on the ring,

or it may be traveling on any of the links. By de�nition,

dm(t) =
P
i2M

Pi
j=m�1Qij(t) +

P
i2M

Pi
j=m�1 eij(t)

= Qm(t) +
P
i2M; i 6=m

Pi
j=m�1Qij(t) +

P
i2M

Pi
j=m�1 eij(t):

(2)

For the sake of generality we allow more than one packets to be transmitted
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simultaneously as long as the total transmission rate of all packets is less than 1 at

all times. Let �ij(t) be the transmission rate of tra�c with destination j through

link i at time t. Then X
j2M

�ij(t) � 1; t � 0:

A transmission policy is any rule for selecting the transmission rates such that, in

addition to the above capacity condition the following holds

�ij(t) � �i	1j(t); if Qij(t) = 0;

which is necessary for 
ow conservation at every node. The backlog of stream j at

node i evolves according to the equation

Qij(t2) = Qij(t1) +

Z t2

t1

�i	1j(t� �i	1)dt�
Z t2

t1

�ij(t)dt; t2 � t1

In this paper we are interested on the class of work-conserving policiesW. It contains

those policies for which each link transmits in full capacity whenever the backlog in

its origin node is not empty, that is �i(t) = 1 if Qi(t) > 0.

3 The bound on the backlog

A bound of the backlog over all work-conserving policies is given in the following

theorem.

Theorem 1 If the tra�c constraints satisfy the condition max f�i : i 2Mg < 1;

then for any initial condition Qij(0); eij(0); and under any work conserving policy,

lim sup
t!1

(max fQi(t) : i 2Mg) �
M� +M2�

1� � + �;

where � =
P
i;j2M �ij:
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Proof. We will show the stronger result

lim sup
t!1

(max fdi(t) : i 2Mg) �
M� +M2�

1� � + �;

which by (2) implies the theorem. The proof will be by contradiction. The basic

idea is to show that if for an arbitrarily large time the degree of some node is above

the speci�ed bound, then necessarily at some earlier time there will be a node with

even higher degree. Following this backward in time procedure we will conclude

that at the beginning of time at least one node has degree higher than the speci�ed

initial conditions, a contradiction.

Assume that the previous inequality is not true. Then there exists � > 0; such

that for any time t there is a time T � t at which the following holds.

max fdi(T ) : i 2Mg >
M� +M� +M2�

1� � + �: (3)

Denote the right-hand side of equation (3) by B. Equation (3) implies that there

is a node m1, such that dm1(T ) > B: Let � = (B � �)=M and assume that t is

�xed with t > � so that T > � . By (2) there is at least one node, k, such that

Qk(T ) > (B � �)=M . We will show next that the queue of node k is nonempty

during the interval [T � �; T ): To see this, let �0 be the length of time since the last

instant before T that node k was empty (if the node was nonempty in the interval

[0; T ), the claim is true.) Then since the employed policy is work conserving we

have that

Qk(T ) = Ak(T � �0; T ) +Rk	1(T � �0; T )� �0;

where Rk	1(T ��0; T ) is the tra�c received from link k	1 by node k in the interval

[T � �0; T ); with destination a node other than node k: Since the transmission

rate of all nodes is 1 and the nodes have cut-through capability, we have that
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Rk	1(T � �0; T ) � �0 and therefore, Qk(T ) � Ak(T � �0; T ) � ��0 + �: Taking into

account that Qk(T ) > (B � �)=M = �; we conclude

�0 >
� � �
�

:

It remains to observe that by the de�nition of � and B; we have that (� ��)=� > �:

Returning to node m1; de�ne �1 as follows. If the queue of node m1 is nonempty

in the interval [T � �; T ); set �1 = � . Otherwise, let �1 be the length of time since

the last instant before T that the queue of node m1 was empty. Note that �1 = 0 if

Qm1(T ) = 0:

Consider now the sequence of nodes mi and time lengths �i; 1 � i � I, obtained

by the following procedure.

1. If �1 = � , then I = 1; stop. Else, i = 2:

2. mi = mi�1 	 1

3. If the queue of node mi is nonempty in the interval [T � �; T �
Pi�1
j=1 �j); set

�i = � �
Pi�1
j=1 �j ; I = i; stop.

4. else, let �i be the length of time since the last instant before T �
Pi�1
j=1 �j that

the queue of node mi was empty; i i+ 1; go to step 2.

Note that the fact that node k is nonempty in the interval [T � �; T ) implies that

a) I �M and b)
PI
j=1 �j = � .

Let Am(t1; t2) be the tra�c that arrives in the interval [t1; t2) from the outside

to any node on the ring and has to be transmitted through node m in order to reach
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its destination. That is,

Am(t1; t2) =
X
i2M

iX
j=m�1

Aij(t1; t2): (4)

From (1) we conclude that

Am(t1; t2) � �m(t2 � t1) + �:

Since the queue of nodemi; 1 � i � I; is nonempty in the interval [T�
Pi
j=1 �j ; T�Pi�1

j=1 �j) and the policy is work-conserving, node mi transmits at the link transmis-

sion capacity in this interval and therefore,

dmi

�
T �

Pi�1
j=1 �j

�
= dmi

�
T �

Pi
j=1 �j

�
+Ami

�
T �

Pi
j=1 �j ; T �

Pi�1
j=1 �j

�
� �i

� dmi

�
T �

Pi
j=1 �j

�
+ ��i + � � �i;

(5)

where we adopt the standard convention that
Pi
j = 0 when i < j:

Note next that the ring topology implies the following relation for the node

degrees

di(t) � di	1(t) + ei	1(t); if Qi(t) = 0: (6)

Assume now that I � 2: By (6) and the de�nition of the indices mi we have that

dmi�1

0@T � i�1X
j=1

�j

1A � dmi

0@T � i�1X
j=1

�j

1A+ �mi ; 2 � i � I: (7)

From (5) and (7) we conclude that

dmi�1

0@T � i�1X
j=1

�j

1A � dmi

0@T � iX
j=1

�j

1A� (1� �)�i + � + �mi ; 2 � i � I: (8)
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Summing the inequalities in (8) for i = 2; : : : ; I together with the inequality in (5)

corresponding to i = 1; canceling identical terms and taking into account the fact

that
PI
j=1 �j = � , we get

dm1(T ) � dmI (T � �)� (1� �)� + I� + �: (9)

From (5) we see that (9) holds for I = 1 as well. Replacing the value of � and

recalling that I �M , we �nally conclude

dmI (T � �) � dm1(T ) + � + � +M� � I� � �
� dm1(T ) + �:

If T � 2�; we can repeat the same argument at time T � �: In general, repeating the

previous procedure we conclude that there are node indices ln; 1 � n �
�
T
�

�
+ 1;

such that l1 = m1 and

dln+1(T � n�) � dln(T � (n� 1)�) + �:

Therefore, for n =
�
T
�

�
; we have that

dln+1

�
T �

�
T

�

�
�

�
� dm1(T ) +

�
T

�

�
� � B +

�
T

�

�
�: (10)

Since t can be chosen arbitrarily large and T � t, we conclude that there is a node

whose degree can become arbitrarily large in the interval [0; �): This is impossi-

ble however, since the maximum degree of any node in this interval is less than

max fdi(0) : i 2Mg+ �� + � + �: 2

The necessity for stability of the condition that the load of each link is less than

one, follows from the following fact. If maxf�i : i 2 Mg = 1; then there are tra�c

patterns for which no asymptotic bound, independent of the initial conditions can

be found. Consider for example a single queue where � = 1 and consider the input
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stream A(t1; t2) = t2 � t1: Clearly, the queue size in this case will be equal to the

initial conditions. This example can be easily extended to any ring network. If

maxf�i : i 2 Mg > 1; then there are tra�c patterns such that the backlog on the

ring cannot be bounded under any initial conditions. For example, consider the case

Aij(t1; t2) = �ij(t2 � t1) and let m be a node such that �m > 1: Since in this case

Am(t1; t2) = �m(t2 � t1); it is clear that the backlog of the tra�c that has to cross

node m will increase inde�nitely.

4 Remarks-Discussion

There are several interesting consequences of the analysis in the proof of theorem

1. One of them is a bound on the elapsed time until the backlog will cross below a

certain threshold. Let � > 0; and de�ne T `� as the last time after which the node

degrees will never exceed the threshold

B� =
M� +M� +M2�

1� � + �:

According to theorem 1 this time is well de�ned. Using a slight modi�cation of the

proof of this theorem, it can be shown that

T `� �
�
d(0) + ��� + � + � �B�

�
+ 1

�+
��; (11)

where a+ := max(a; 0); �� = (B� � �)=M and d(0) = max fdi(0) : i 2Mg : Denote

the right-hand side of equation (11) by U�. Indeed, if T `� > U�; then for some

T � U� we should have dm(T ) > B�: Following the same argument as in the proof

of theorem 1 we conclude from (10) that dln+1
�
T �

�
T
�

�
�
�
> d(0) + ��� + � + �;

which is impossible. Note that for M � 2; if d(0) = 0; then U� = 0; and therefore

the bound in theorem 1 is never exceeded.
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The bound on T l� readily gives an upper bound for the node degrees that holds

at all times and not only asymptotically. For general initial condition we have

di(t) � max
n
d(0) + U `��+ �; B�

o
:

The results are easily generalizable when the ring has store-and-forward capa-

bilities instead of cut-through. In this case, a node cannot process a packet until it

is completely received. Let L be the maximum packet length. Minor modi�cations

of the proof of the theorem can be used to show that the system is stable in this

case as well and the corresponding bound is now

M� +M2L+M2�

1� � + �:

It is not clear whether the bound of theorem 1 is tight within the class of work

conserving policies. Nevertheless it provides a basis for comparison. When there

is no propagation delay, the bound of theorem 1 becomes M2�=(1 � �). For the

adaptive quota policy considered in [9], the bound on the asymptotic backlog is

2(� + 1)=(1 � �). Hence the latter policy performs better than the worst possible

performance of a work conserving policy by a factor of the order of the square of

the number of nodes in the network.
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