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1 Introduction

In recent years, the dramatic increase in transmission speeds has drastically
altered many of the operating assumptions of communication networks. In the
local area (LAN) environment, the effort towards defining new approaches that
take better advantage of the available technology has resulted in a number of
new standards and architecture proposals [1, 2, 6, 5] and led to a renewed interest
in rings networks that employ spatial reuse [6, 5, 10] as an attractive alternative
for new high speed LANs. Spatial reuse, also termed destination release, has
the potential to significantly improve network throughput by allowing multiple
simultaneous transmissions on the LAN as long as they take place on different
links. The significance of this advantage has been recognized, and proposals
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have even been made to upgrade some of the early high speed LAN standards
so that they can support this feature, e.g., erasure nodes in DQDB, etc. [14, 11].
When applied to ring networks, spatial reuse does increase throughput but it

also introduces the possibility of starvation for nodes on the ring. Specifically, it
is possible that certain nodes be denied access to the ring for extended periods
of time, while others enjoy uninterrupted transmissions. This results in an
unfair allocation of ring bandwidth between the nodes that are sharing the
same ring. It is, therefore, necessary to provide mechanisms that will enforce a
fair allocation of network resources while preserving their efficient sharing.
The importance of this problem has been recognized, not only in the context

of LANs but also for wide area networks, e.g., see [8, 13]. Considerable work
has been done to address this issue in rings that employ spatial reuse and sev-
eral algorithms have been proposed that attempt to preserve fairness without
significantly impacting ring throughput [6, 15, 5]. It is beyond the scope of this
paper to compare the respective merits of all these algorithms. Rather, our
focus is on understanding and sizing the loss of network throughput incurred
when attempting to guarantee fairness. This can then be applied to the analysis
of existing policies and the design of new and improved ones. Since the focus in
this paper is on node throughputs, we assume that the nodes are full with pack-
ets always waiting for transmission. The study of the access queue at a node as
a function of the nodal arrival processes and destinations distributions, clearly
a topic of interest, is beyond the scope of this paper. We note, however, that
our model also provides insight to the operation of systems with finite arrival
rates under appropriate time scales. Indeed, even in such systems, there may
be relatively long time intervals of congestion, during which a large number of
nodes have nonempty queues, although in the long run the queues will become
empty again. During those intervals of congestion, it is important to assure the
proper operation of the system and it is on this aspect that the current paper
concentrates on.
Our objective is to characterize the node throughputs achievable by general

transmission policies in ring networks with spatial reuse and then to evaluate
the throughput trade-off for a class of policies that has been proposed in the
literature in order to avoid starvation. Specifically, we study a policy that is
based on the idea of allocating transmission quotas to the nodes, see [6, 5]. Each
node is guaranteed transmission of his quota within a specified interval. We
show that by appropriately allocating the quotas, policies that satisfy general
optimality criteria-in particular criteria related to fairness -can be designed. We
also study the node throughputs as either the quotas or the size of the network
increase. It is found that for a fixed number of nodes, as the quotas increase
proportionally, the node throughputs approach the optimal values exponentially
fast when there is only one bottleneck node in the ring. When more than
one bottleneck nodes exist, the convergence speed is O(ν−1/2), where ν is the
node quota . When the number of nodes increases, for a wide class of message
destination probabilities the optimal node throughput is achieved even when
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the quota sizes remain constant.
The rest of the paper is organized as follows. Section 2 precisely defines the

ring model and the relevant notations. The throughput space of the ring is then
characterized in Section 3. Section 4 contains the results on the asymptotic
behavior of the policy as either the quotas or the number of nodes increase.

2 System Model

We first introduce some notation. The symbols ª, ⊕ refer respectively to sub-
traction and addition modulo M , the number of nodes in the ring. If the index
k refers to nodes we denote

Pm
k=i xk := xi+xi⊕1+ . . .+xmª1+xm. We define

M = {0, . . . ,M − 1} and for a sequence {X(k)}∞k=1, we denote X := X(1).

System Model. We consider a unidirectional ring with M nodes. The nodes
are numbered starting from zero, so that the node next (downstream) to node
i in the direction of message transmission is node i⊕ 1. The round trip delay of
the ring is 0. The last assumption is made in order to simplify the discussion.
As we will see in Section 4 our methodology can also be applied to models with
nonzero round trip delays such as the one studied in [12]. The system is slotted,
that is, time is divided in slots of length 1 and the nodes can transmit messages
at the beginning of each slot. Slot T corresponds to the time interval [T, T +1).
We assume that the length of each message is one slot. There is an infinite
queue of messages in each node and the destination of the kth message in the
queue of node i is denoted by Di(k). The sequence {Di(k)}∞k=1 consists of i.i.d.
random variables independent of the destination sequences in the other nodes.
We set qij := Pr(Di(k) = j) (note that we do not exclude the possibility that
qii > 0, that is, the message has to travel around the ring - broadcast message).
Multiple messages can be transmitted at the same time on the ring. Assume
that at the beginning of a slot, node iª 1 transmits a message with destination
node j. If j = i, node i can transmit one of its messages in the same time slot,
while it receives the message from node i ª 1. If j 6= i, then, in the same slot,
node i can either retransmit the upstream message or it can send one of its
own messages and store the upstream message for later transmission. Although
restrictions are imposed in practice on the number of upstream messages that a
node can hold, we consider the operation in this generality initially, in order to
describe the throughput space of the system under general scheduling policies
(see Section 3).
We now specify the class of admissible message transmission policies. Let

Sij(T ) be the number of messages sent up to time T, T ≥ 1, by node i with
destination node j and Si(T ) :=

PM−1
j=0 Sij(T ). Let also Rij(T ) be the number

of messages received by node j with origin node i and Ri(T ) :=
PM−1

j=0 Rij(T ).
We denote by Π the class of policies that satisfy the following properties.
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1. The long term transmission rate of Sij(T ), Vij := limT→∞ Sij(T )/T , exists
for all i, j. Note that we do not require that the limit be the same for all
sample paths. That is, Vij can be a random variable.

2. The long term reception rate (throughput) of Rij(T ) exists and is equal
to the transmission rate Vij .

3. The long term proportion of messages originated at node i with destination
node j is equal to the proportion of messages with destination j that are in
the queue of node i when the system starts. That is, if limT→∞ Si(T ) =∞,
then

lim
T→∞

Sij(T )

Si(T )
= qij .

These assumptions are mainly technical and do not impose any significant
restrictions on the class of practical transmission policies. For the system under
consideration, however, additional constraints on the admissible policies are
imposed. First, the buffer space available at a node for the storage of messages
originated in other nodes is limited to a single message. This buffer space is
referred to as the “ring buffer.” Second, each node provides priority to the
messages originated in other stations. Due to these two requirements, a single
ring buffer assures the delivery of all messages without the possibility of buffer
overflow. It this way, the use of expensive fast buffers is avoided and the fast
delivery of messages entering the network is guaranteed. A ring that employs
a policy π ∈ Π that has the above two additional properties will be called a
“buffer insertion ring”. For fairness reasons a third constraint is often imposed
on the admissible policies. Specifically, it is required that a policy guarantees
a finite upper bound on the “channel access time”, that is, the time elapsed
between two successive transmissions of messages from the same node. The
class of policies from Π which have the three additional properties described
above will be denoted by Π0.

3 Throughput Space

Let Vi =
PM−1

j=0 Vij be the throughput of node i under a policy π ∈ Π. We are
interested in finding the set of values that the vector V := {V0, . . . , VM−1} can
take when π is employed. We call this set of values the “throughput space” of
the ring and denote it by V .
Assume first that Vi > 0, i ∈M. Since π ∈ Π, this implies that limT→∞ Si(T ) =

limT→∞Ri(T ) = ∞. Let Lim(T ) be the number of messages with origin node
i that passed through node m up to time T ( Lii(T ) denotes the number of
messages originated by node i up to time T ). Clearly,

i⊕MX
j=m⊕1

Rij(T ) ≤ Lim(T ),
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and since
P

i∈M Lim(T ) ≤ T , we have that

X
i∈M

i⊕MX
j=m⊕1

Rij(T )

Ri(T )

Ri(T )

T
≤ 1. (1)

The properties of π imply that limT→∞Rij(T )/Ri(T ) = limT→∞ Sij(T )/Si(T ) =
qij and therefore, using (1) we have thatX

i∈M
aimVi ≤ 1, m ∈M, (2)

where aim =
Pi⊕M

j=m⊕1 qij ; aim is the probability that a message generated by
node i is destined to a node that is downstream from node m, in particular,
aii = 1. It is easy to see that (2) continues to hold when Vi = 0 for some nodes.
From the above discussion we see that

V ⊂W := {v ∈ IRM : vm ≥ 0,
M−1X
i=0

aimvi ≤ 1, m ∈M}. (3)

It can also be shown (see [7]) that Wo ⊂ V, where Wo is the interior of the set
W.

4 Study of a Policy in Π0

In the rest of this paper we will study the following policy.

(π∗1) Each node has a ring buffer for storing a single message originated in other
nodes. In addition, with node m ∈M there is an associated preassigned
integer number νm ≥ 0 called “quota” and a variable Qm(T ) which is
initialized to νm, Qm(1) = νm. At time T node m performs the following
actions.

1. If there is a message in its ring buffer, the node transmits this mes-
sage. A message transmitted by node mª 1 (if any) in the time slot
[T, T + 1), is stored in the ring buffer of node m.

2. Otherwise,

(a) if Qm(T ) > 0, the node transmits the first message in its queue
and sets

Qm(T ) := Qm(T )− 1.
A message transmitted by node m ª 1 (if any) in the time slot
[T, T + 1), is stored in the ring buffer of node m.
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(b) if Qm(T ) = 0 the node does not transmit any of the messages in
its queue. If node m ª 1 is transmitting a message with desti-
nation a node other than m, node m is retransmitting the same
message in the same slot (therefore, no message is stored in the
ring buffer of node m in this case).

At the time instant T at which Qm(T ) = 0 for all m ∈M and the ring
buffers of all nodes are empty (i.e., all the node quotas have been delivered
to their destination), we reset Qm(T ) = νm. In this case we say that node
m is “allocated new quota”.

Policy π∗1 is a synchronous version of the algorithm proposed in [5]. The
main difference is that in the distributed algorithm of [5], node m resets its
quota whenever it receives a circulating token, while under π∗1 all nodes reset
Qi(T ) at the same time. The modification is introduced here to simplify the
analysis. Also, π∗1 has similarities to the policy considered in [12], which models
the operation of the Orwell protocol [6]. The main difference is that in [12]
the round trip delay is considered to be one slot, while in our model the round
trip delay is zero. Although there are also differences on the order in which
the nodes are given permission to transmit on the ring, as will be explained
shortly (see the remark after Proposition 1), our results can be directly applied
to the model in [12]. Finally, we note that the distributed implementation of
policy π∗1 requires a mechanism that informs the nodes when the quotas of all
the nodes on the ring have reached their destination. One such mechanism is
provided in [6] using the TRIAL and RESET slots. The implementation of this
mechanism will increase by two slots the “evacuation time” (for the definition
see two paragraphs below) of the ring and the results of this paper can be easily
adapted to incorporate this increase.
The policy described above uses quotas that are integer numbers. In the

following we will be interested in policies that allocate quotas according to pre-
determined ratios. Since any ratios can be expressed either exactly or arbitrarily
close with integer numbers, integer quotas are sufficient for most applications.
However, if desired, π∗1 can be easily modified to accommodate any ratios (e.g.√
2 :
√
3). In this case νm is interpreted as average quota and the policy is im-

plemented as follows. The kth quota allocated to node m is a random variable,
νm(k), that takes the values bνmc and bνmc+1 with probabilities 1−νm+bνmc
and νm − bνmc respectively. The random variables νm(k), k = 1, . . . are i.i.d
and independent of the rest of the processes in the system. It is easy to see that
Eνm(k) = νm. Note that when integer quotas are allocated, νm(k) ≡ νm, that
is, the modified policy reduces to π∗1 . For the sake of generality, we will study
the modified policy in the following and we will also denote it by π∗1 .
From the description of the algorithm we see that under π∗1 the system

operates in cycles. At the beginning of cycle k, node m ∈M has quota νm(k)
and the end of the cycle, the quotas of all nodes are zero and their ring buffers
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contain no messages. Formally let B̃m(T ) be the number of messages in the ring
buffer of node m at time T . Let also T0 = 1 and define for k ≥ 0,

Tk+1 = min{T > Tk : Qm(T ) = 0,

B̃m(T ) = 0, m ∈M},
Qm(Tk+1) = νm(k + 1), m ∈M.

Provided that there are no messages in the ring buffers at time T = 1, the se-
quence {Tk+1−Tk}∞k=0 consists of i.i.d random variables. Using the terminology
in [12] we will call the random variable Te := T1 − T0 the “evacuation time” of
the ring. As we will see, the evacuation time is crucial in determining the per-
formance of π∗1 in terms of node throughput. We derive next an expression for
Te. Let Kij be the number of messages originated from node i with destination
node j during Te. Let also Nm be the number of messages that are originated
or have to be retransmitted by node m during Te. Clearly,X

j∈M
Kij = νi

and

Nm =
X
i∈M

iX
j=m⊕1

Kij . (4)

Since at least one node is transmitting in each slot in the interval [1, Te+1) and
the quotas are finite, Te is also finite. Also, since a node can transmit at most
one message in each slot, we have

Te ≥ Ue := max
m∈M

Nm. (5)

The next proposition shows that equality holds in (5).

Proposition 1 Provided that νi > 0 for some i ∈M,

Te = max
m∈M

Nm.

Proof. We use induction on the number of nodes, M . For M = 1, the
proposition is clearly true. Assume its validity for M and consider a ring with
M + 1 nodes. Let Ta + 1 be the first time at which we have Qi(Ta + 1) =
0, B̃i(Ta + 1) = 0 for at least one node i ∈ M (note that if νj = 0 for some
j ∈M, then Ta = 0). Clearly, Ta ≤ Te. Let also A be the set of nodes i ∈M
with the property Qi(Ta + 1) = 0, B̃i(Ta + 1) = 0. By the definition of π∗1 ,
every node inM is busy in the interval [1, Ta + 1). Therefore, If A =M then
Ta = Te = Nm, m ∈M and the proposition is true. Assume now that A is a
strict subset ofM and consider the operation of the ring after time Ta+1. The
actions taken by the nodes inM−A are the same as the actions taken by the
corresponding nodes in a ring where the following modifications are made.
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1. If B̃i(Ta + 1) = 1, the message in the ring buffer of node i in the original
ring is moved to the head of the queue of node i in the modified ring. The
rest of the messages in node i in the modified ring are identical to the
messages in the queue of node i at time Ta + 1 in the original ring.

2. The quota of node i ∈M−A is ν̄i := Qi(Ta + 1) + B̃i(Ta + 1).

3. The ring buffer of node i ∈M−A is empty.

4. If a node i ∈ M − A sends a message to a node j ∈ A, in the modi-
fied system the same message is sent to the first node in M − A that is
downstream from j.

Denote by T e, Nm, the quantities corresponding to Te, Nm, in the modified
ring. In both rings, in the interval [Ta + 1, Te + 1), the nodes in M − A are
transmitting exactly the same messages at the same time. Therefore, the cycles
for both rings will end at the same time and

T e = Te − Ta

From the definition of the modified ring and the fact that all nodes in the original
ring were busy in the interval [1, Ta + 1), it follows that

Nm = Nm − Ta, m ∈M−A. (6)

The modified ring contains at mostM nodes and from the induction hypothesis
and (6) we have that

T e = max
m∈M−A

Nm = max
m∈M−A

Nm − Ta.

Therefore,
Te = T e + Ta = max

m∈M−A
Nm ≤ Ue,

which together with (5) shows the validity of the proposition for M + 1. 2

Remark. In the model considered in [12], assume that the slot starts from a
specific point O on the ring and let τe be the first time the slot reaches O and
all nodes have completed their quotas. Following essentially the same approach,
it can be shown that τe = maxm∈MNm+1 and therefore, the evacuation time,bTe, of the ring studied in [12] can be expressed as

bTe = max
m∈M

Nm + 1− Y,

where 0 ≤ Y ≤ 1, is a random variable that expresses the time it takes for the
slot to travel from the node that last finished its quota to the point O. Since
the asymptotic properties of bTe depend again on maxm∈MNm, our analysis can
be applied to the model in [12] as well.
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Since Te is bounded and ETe ≤
P

i∈M(νi + 1) < ∞, using regenerative
arguments it is easy to establish that π∗1 ∈ Π0 and that the throughput of node
i ∈M is

vi =
Eνi
ETe

=
νi
ETe

. (7)

In the next section we will investigate the asymptotic properties of this
algorithm when either the quotas or the number of nodes becomes large.

4.1 Limiting Behavior of the Algorithm

4.1.1 Node Throughputs for Large Quotas

We consider first the asymptotic behavior of vi, i ∈M, when the quotas increase
proportionally. Let real numbers ri ≥ 0, i ∈M, be given. To avoid the trivial
case we assume that ri > 0 for at least one i ∈M. We set νi = νri, i ∈M, ν ≥
1. Whenever needed, to explicitly denote the dependence of a quantity on ν, say
quantity X, we write X(ν). We also denote by 1A the indicator of the event A.
The next proposition provides the node throughputs when the quotas become
large while maintaining the proportions ri, i ∈M.

Proposition 2 For all i ∈M,

lim
ν→∞ vi(ν) =

ri

maxm∈M
nP

j∈M rjajm

o .
Proof. Recalling the definition of Di(k) from Section 2, we can write Kij =Pνi

k=1 1{Di(k)=j}. Using the independence of Di(k), k = 1, . . . , we have that

riqij = ri lim
ν→∞

Pbνric
k=1 1{Di(k)=j}

νri

≤ lim
ν→∞

Kij(ν)

ν

≤ ri lim
ν→∞

Pbνric+1
k=1 1{Di(k)=j}

νri
= riqij , a.e. (8)

Therefore, taking into account (4) and Proposition 1 we have that

lim
ν→∞

Te(ν)

ν
= lim

ν→∞ maxm∈M

½
Nm(ν)

ν

¾

= max
m∈M

X
j∈M

rjajm

 , a.e., (9)
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where aim are as defined in (2). Since

0 ≤ Te(ν)

ν
≤
X
i∈M

νi
ν
≤
X
i∈M

ri +M,

the process Te(ν)/ν, ν ≥ 1 is uniformly integrable, and we conclude from (9)
that

lim
ν→∞

ETe(ν)

ν
= max

m∈M

X
j∈M

rjajm

 . (10)

Using finally (7) we have that

lim
ν→∞ vi(ν) = lim

ν→∞
νri

ETe(ν)
=

ri

maxm∈M
nP

j∈M rjajm

o .
2

Let us now see how Proposition 2 can be used in the design of ring access
policies. A design objective for such policies is usually associated with an op-
timization problem in W. For example, in ring networks with spatial reuse,
fairness is the main issue. The simplest optimization problem associated with
this criterion is to maximize the minimum node throughput in the network

max
v∈M

min
m∈M

vm. (11)

When preferential treatment of the nodes is desirable, the slightly more general
problem

max
v∈M

min
m∈M

vm
gm

, gm > 0, m ∈M, (12)

is appropriate. It is not difficult to see that the vector with coordinates

v∗i =
gi

maxm∈M{
P

j∈M ajmgj} , i ∈M, (13)

solves the problem in (12). A stronger optimization problem related to fairness
and widely used in the literature is to find the max-min optimal vector in W
(see [3, Section 6.5.2] for a description of the fairness properties of max-min
optimal vectors). The max-min optimal vector in W can be easily determined
by slightly modifying the algorithm in [3]. Both for problem (11) and the max-
min optimization, it is also easy to solve the more general problem obtained by
replacing vm with a reward fm(vm), where fm(·) is a non-decreasing function.
Depending on the application other criteria may be desirable. However, one
main characteristic of most of these problems (including those mentioned before)
is that the resulting optimal point v∗ lies on the “upper” boundary of W, that
is, for some k ∈M, the equality

P
j∈M ajkv

∗
j = 1 holds. Given such a vector we

can pick appropriate quotas so that π∗1 provides node throughputs arbitrarily
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close to v∗ = {v∗0 , . . . , v∗M−1}. To see this, let v∗ = min{v∗i : v∗i > 0, i ∈M}
and define r∗i = v∗i /v

∗, i ∈M. Then, since
P

j∈M ajmr
∗
j v
∗ ≤ 1, m ∈M andP

j∈M ajkr
∗
j v
∗ = 1, we have that

v∗ =
1

maxm∈M
nP

j∈M r∗jajm
o

and therefore,

v∗i =
r∗i

maxm∈M
nP

j∈M r∗jajm
o . (14)

According to Proposition 2 if we pick ri = r∗i , as ν becomes large, the vector of
node throughputs induced by π∗1 converges to the desired vector v∗. Therefore,
once the optimal vector v∗ is determined, it is easy to design the desired policy.
For problem (12) as well as the max-min optimization problem, v∗ can be com-
puted very simply, while for other optimization problems, v∗ can be computed
by standard numerical procedures. The main disadvantage with this approach
is that for the determination of ri, knowledge of the statistical parameters qij
that determine the performance space is required. As such, the approach can be
useful in environments in which these parameters do not change fast. Observe,
however, that for problem (12) no such knowledge of statistical parameters is re-
quired. Indeed, in this case we can simply pick ri = gi, i ∈M. Once ri, i ∈M,
have been determined, the desired optimal point can be approached arbitrarily
close by increasing ν. In the next two sections we will examine the dependence
of the node throughputs on the quota.

Remark. In [8], it was shown that when sessions are established, which corre-
sponds to the case qij = 0 or 1 in our framework, the round robin scheduling
policy is max-min optimal. However, besides the fact that this policy cannot be
implemented in buffer insertion rings, if qij can take values other than 0 or 1,
it can be seen from simple examples that the round robin policy does not solve
even the weaker problem (11).

4.1.2 Bounds on the Rate of Convergence for Large Quota

In this section, we provide bounds on the rate of convergence to the optimal
point under policy π∗1 , as the quotas increase proportionally. Since larger quotas
imply larger channel access times, it is important to know whether the node
throughput approaches the optimal throughput quickly as the quotas increase.
The main result of this section is Theorem 1 which states that the rate of
convergence is exponentially fast when there is one bottleneck node on the
ring and of order O(ν1/2) when the are at least two bottleneck nodes. Before
considering the technical details, we provide an outline of the basic arguments
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that lead to this conclusion. Let m0 be one of the bottleneck nodes, that is,

X
j∈M

rjajm0
= max

m∈M

X
j∈M

rjajm


Observe from (4) that

ENm = ν
X
j∈M

rjajm (15)

and therefore, we can write for the limit values in Proposition 2 for i ∈M,

v∗i :=
ri

maxm∈M
nP

j∈M rjajm

o = νri
maxm∈M{ENm} .

On the other hand, the throughput of the system when νi = riν is

vi(ν) =
riν

E (maxm∈M{Nm}) .

Therefore, the loss in throughput is due to the fact

E

µ
max
m∈M

{Nm}
¶
≥ max

m∈M
{ENm},

i.e., the cycles are elongated since the message destinations are random. How-
ever, when the quotas are becoming large the law of large numbers takes effect
and as a result, the maximum of Nm, m ∈M, is attained at one of the bot-
tleneck nodes most of the time. If there is only one bottleneck node on the
ring the maximum will almost always be located at that node, and the effect
of randomness will disappear quickly. However, when at least two bottleneck
nodes exist, the effect of randomness tends to persist for larger quotas since the
maximum may be attained at different bottleneck nodes at different times.
For simplicity in the exposition, we assume in this section that both ν and

ri, i ∈M, are positive integers and therefore, no randomization of the allocated
quota is needed. We also assume without loss of generality that node 0 is a
bottleneck. Let Hjm(l) =

Pm
k=1

¡
E1{Dj(l)=k} − 1{Dj(l)=k}

¢
. Let also Ijm(x) =

supθ∈IR
n
θx− logE

³
eθHjm

´o
be the rate function of Hjm. Denote byM0 the

set of bottleneck nodes andMc
0 =M−M0

Theorem 1 When ν and ri, i ∈M are positive integers,

0 ≤ v∗i − vi(ν)

v∗i

≤ v∗i
ri

 1

ν1/2

X
m∈M0−{0}

X
j∈M

r
1/2
j (EH

2

jm)
1/2


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+
v∗i
ri

 X
m∈Mc

0

X
j∈M

rjme−rjνIjm(γm/(rjM))

 .

Proof. According to Proposition 2 the maximum throughput achievable by
node i is given by

v∗i =
ri

maxm∈M{
P

j∈M rjajm} .

The evacuation time can be written as follows.

Te = N0 + max
m∈M

{Nm −N0}. (16)

Observe that since node 0 is a bottleneck,

EN0/ν = max
m∈M

{
X
j∈M

rjajm} := ri/v
∗
i .

Setting ∆m = Nm −N0, we have for i ∈M.

0 ≤ v∗i − vi(ν)

v∗i
= 1− ri

v∗i (EN0/ν) + v∗iE (maxm∈M{∆m/ν})
=

v∗iE (maxm∈M{∆m/ν})
ri + v∗iE (maxm∈M{∆m/ν})

≤ v∗i
ri
E

µ
max
m∈M

{∆m/ν}
¶
. (17)

From (17) we see that to have bounds on the rate of convergence of the through-
put of node i to the maximal throughput v∗i , it is sufficient to develop bounds
on the expectation of maxm∈M{∆m/ν}. Let Fm be the number of messages
with destination node m that are transmitted during a cycle, that is, Fm :=P

j∈M
Pνrj

l=1 1{Dj(l)=m}. Then, by definition

Nm⊕1 = Nm − Fm⊕1 + νm⊕1, m ∈M

and therefore for m ≥ 1,

∆m =
mX
k=1

νk −
mX
k=1

Fk. (18)

Let γm :=
P

j∈M rjaj0 −
P

j∈M rjajm ≥ 0, m ∈M. Taking into account (15)
we have

E∆m = ENm −EN0 = −νγm

13



and therefore, we can write∆m as follows (note that νk = νk since νk is integer),

∆m = ∆m −E∆m − νγm

=
mX
k=1

(νk − νk)−
mX
k=1

(Fk −EFk)− νγm

=
mX
k=1

(EFk − Fk)− νγm

=
X
j∈M

Ã rjνX
l=1

Hjm(l)− rjν
γm
rjM

!
. (19)

Denoting x+ = max{0, x}, and observing that ∆0 = 0 and γm = 0, m ∈M0,
we have

E

µ
max
m∈M

½
∆m

ν

¾¶
≤ E

µ
max

m∈M0−{0}

½
∆+m
ν

¾¶
(20)

+E

µ
max
m∈Mc

0

½
∆+m
ν

¾¶

≤ E

1
ν

X
m∈M0−{0}

|∆m|
 (21)

+E

1
ν

X
m∈Mc

0

∆+m


≤

X
m∈M0−{0}

X
j∈M

rjE

¯̄̄̄Prjν
l=1Hjm(l)

rjν

¯̄̄̄

+
X

m∈Mc
0

X
j∈M

rjE
³ bHjm

´+
, (22)

where bHjm :=

Prjν
l=1Hjm(l)

rjν
− γm

rjM
.

Observe that for fixed j,m,∈M, the variables Hjm(l), l = 1, . . . are i.i.d. with
zero mean and therefore,

E

¯̄̄̄Prjν
l=1Hjm(l)

rjν

¯̄̄̄
≤

Ã
E

µPrjν
l=1Hjm(l)

rjν

¶2!1/2

=

³
EH

2

jm

´1/2
(rjν)1/2

. (23)

14



Since bHjm ≤ 1

rjν

rjνX
l=1

mX
k=1

E1{Dj(l)=k} ≤ m,

we have,

E
³ bH+

jm

´
=

Z
{ Ĥjm > 0 }

bHjmdP

≤ mPr

µPrjν
l=1Hjm(l)

rjν
>

γm
rjM

¶
. (24)

(25)

Since for fixed j,m,∈ M, the random variables Hjm(l), l = 1, . . . are i.i.d.,
using the Chernoff bound [4] we have

Pr

µPrjν
l=1Hjm(l)

rjν
>

γm
rjM

¶
≤ e−rjνIjm(γm/(rjM)). (26)

The theorem follows from (17), (22), (23), (25) and (26). 2

Since γm > 0, m ∈Mc
0, andHjm is bounded, it can be seen that Ijm(γm/(riM)) >

0. Therefore, whenM0 = {0}, that is when there is only one bottleneck node
in the ring, the convergence is exponentially fast. Otherwise, the upper bound
in Theorem 1 decreases as the square root of ν. The following example shows
that the bound on the rate cannot be improved in general when there is more
than one bottleneck node in the ring.

Example 1 Consider a ring with two nodes, q01 = q10 = q, 1 > q > 0, and
r0 = r1 = 1. In this case, both nodes are bottleneck nodes. From (19) we have,

∆1 =
νX
l=1

H01(l) +H11(l) =
νX
l=1

H1(l),

where H1(l) = H01(l) + H11(l). Simple calculations show that
³
EH

2

1

´1/2
=

(2q(1− q)))
1/2

=: σ. Now,

max{0,∆1/ν} = σ

ν1/2
max

µ
0,

Pν
l=1H1(l)

σν1/2

¶
.

By the Central Limit Theorem,

S(ν) := (σν1/2)−1
Ã

νX
l=1

H1(l)

!

15



converges in distribution to a normally distributed random variable, W , with
zero mean and variance 1. Since the function f(x) = min {K,max(0, x)} , K > 0
is continuous and bounded, we have that limν→∞Ef(S(ν)) = Ef(W ) > 0.
Since max{0, S(ν)} ≥ f(S(ν)), for ν large enough,

E (max {0,∆1/ν}) = σ

ν
1
2

E (max{0, S(ν)}) ≥ σ

ν1/2
Ef(W )

2
.

We conclude that for ν large enough and i = 0, 1,

v∗i − vi(ν)

v∗i
=

v∗iE (max {0,∆1/ν})
ri + v∗iE (max {0,∆1/ν})

≥ C

ν1/2
, C > 0.

Remark. To simplify the discussion we assumed that ν and ri, i ∈M, are
positive integers. Of course, the case ri = 0 for some i ∈M is trivial, since in
this case v∗i = vi(ν) = 0. In the general case, that is, when ν and ri, i ∈M,
are nonnegative real numbers, the exposition is more complicated, however, the
essential steps are the same. The main difference is that in the second equation
in (19), the term

Pm
k=1 νk − νk may not be zero. This term is due solely to

the discrete nature of the messages. The main effect is that when there is more
than one bottleneck node on the ring, an additional term appears in the upper
bound in Theorem 1 that is of order O(1/ν). Therefore, this term does not alter
the asymptotic behavior of the policy.
From the previous discussion we see that the quotas needed to reach within

a small percentage of the optimal node throughput can be relatively large if
there is more than one bottleneck node in the ring. However there is another
factor, namely the number of nodes on the ring, M , that affects favorably the
quota size. Note that the maximum channel access time is upper bounded
by the sum of the quota allocated to the nodes. Therefore, for rings with
small number of nodes, a proportional increase of the allocated quotas may be
acceptable. However, for rings with large number of nodes, the same increase
will result in much longer channel access times in the worst case. However, as
we will see in the next section, for rings with large number of nodes increasing
the allocated quotas may be unnecessary, since for a wide family of message
destination probabilities, small quotas can provide node throughputs close to
the optimal.

4.1.3 Limiting Behavior for Large Number of Nodes

We now consider the situation in which the number of nodes,M , becomes large.
As in the previous section, when necessary, we use the notation X(M) to make
the dependence of a quantity X on M explicit. It was found in [12] that when

16



νi = 1, i ∈M and qij = 1/M, i, j ∈M, then limM→∞M/ETe(M) = 2. For
these parameters the maximum throughput of node i is

vui (M) =
1PM−1

i=0
M−i
M

=
2

M + 1
,

independent of i. We conclude that

lim
M→∞

vi(M)

vui (M)
= lim

M→∞
M + 1

ETe(M)2
= 1. (27)

Therefore, as the number of nodes increases, the throughput of every node
approaches the maximal throughput even with quotas of one slot. We will
investigate this property further under general message destination probabilities
and arbitrary but fixed quotas.
According to Proposition 2, given ri, i ∈M, the maximal throughput for

node i is
v∗i =

ri

maxm∈M
nPM−1

j=0 rjajm

o .
In Section 4.1.1 we showed that the throughput of node i can be arbitrarily
close to v∗i , however, this can be achieved by increasing the quotas (νi = riν)
of all nodes proportionally. We will show next that for a wide class of message
destination probabilities, and as the number of nodes increases, there is no need
to increase the quotas in order to approach the optimal node throughputs. We
provide first an example that shows that the result cannot hold under arbitrary
message destination probabilities.

Example 2 Consider a ring with M = 3K, K > 1, νi = 1, and for m =
0, . . . ,K−1, q3m,3m⊕1 = q, q3m,3m⊕2 = 1−q, q3m⊕1,3m⊕2 = q3m⊕2,3m⊕3 = 1. In
this case the ring containsK identical non-interfering sub-rings. The evacuation
time takes only the values 1, 2. Since Te = 1 if and only if all nodes with indices
3m, m = 0, . . . ,K − 1, transmit to their neighbors, we have ETe = 2 − qK

and therefore, limM→∞ vi(M) = limK→∞(2− qK)−1 = 1/2. The maximal node
throughputs under the specified quotas, are v∗i (M) = 1/(2 − q), i ∈ M, and
since 0 ≤ q < 1, we see that in this case the node throughput can be reduced by
50 percent relative to the optimal node throughput if the quota remain small.

Assume that we are given a sequence of real numbers ri, i = 0, 1, . . . , such
that

sup
i
ri <∞.

When the number of nodes is M , let policy π∗1 operate with quota νi = ri, i ∈
M. We will identify a class of message destination probabilities, qij(M), i, j ∈

17



M, M = 1, 2, · · · , for which policy π∗1 induces node throughputs arbitrarily
close to the maximal as the number of nodes increases. As in the previous
section, the issue is to identify conditions under which E (maxm∈MNm(M)) ≈
maxm∈MENm(M). While the strong law of large numbers was in effect in
that section, as will be seen in the following, in the current situation the main
reason for the above approximation is that under the appropriate condition
on the message destination probabilities, the variability of Nm(M) relative to
maxm∈MENm(M) is small.

Theorem 2 Let supi ri <∞ and assume that when the number of nodes in the
ring is M , policy π∗1 operates with quota νi = ri, i ∈M. If for some δ > 0,

lim
M→∞

Mδ

maxm∈M
nPM−1

i=0 riaim(M)
o = 0,

then

lim
M→∞

vi(M)

v∗i (M)
= 1.

A few remarks before proceeding with the proof of this theorem. When qij =

1/M, i ∈ M and ri(M) = 1, then maxm∈M
³PM−1

i=0 aim(M)
´
= (M + 1)/2

and Theorem 2 holds. This result was shown in [12] using different methods.
The question arises whether the condition on the destination probabilities in
Theorem 2 can be weakened. The next example shows that the numerator
Mδ cannot be replaced with (lnM)β, β < 1. Therefore, the condition in the
theorem is close to being necessary.

Example 3 Let IN0 denote the set of nonnegative integers, α > 0 and define
KM = max{k ∈ IN0 : k1+α2k ≤ M}, LM =

¥
Kα
M2

KM
¦
. Pick M large enough

so that KM ≥ 2. Let νi = 1 and consider a ring with the following message
destination probabilities.

q(m−1)KM+i,mKM
= q(m−1)KM+i,(m−1)KM+i+1

=
1

2
,m = 1, . . . , LM , i = 0, . . . ,KM − 2,

qmKM−1,mKM = 1,m = 1, . . . , LM ,

qi−1,i = 1, i = LMKM , . . . ,M.

The ring contains LM identical non-interfering sub-rings and it is easy to see
that

max
m∈M

Nm = max
1≤m≤LM

NIm , m = 1, . . . , LM ,

18



where Im = mKM − 1. Setting Ymi = 1{D(m−1)KM+i=mKM}, m = 1, . . . , LM ,

i = 0, . . . ,KM − 2, we can write

NIm = 1 +

KM−2X
i=0

Yim.

Clearly, the random variables Yim, m = 1, . . . , LM , i = 0, . . . ,KM −2, are i.i.d.
and

max
m∈M

(
M−1X
i=0

aim(M)

)
= ENI1(M) = 1 +

KM − 1
2

which implies that

lim
M→∞

lnMPM−1
i=0 aim(M)

= 2 lim
M→∞

lnM

KM
= 2 ln 2.

Define now
Zm = KM1{NIm=KM}, m = 1 . . . LM .

Since max1≤m≤LM Zm = 0 if and only if NIm < KM , m = 1, . . . , LM , it is easy
to see that

E

µ
max

0≤m≤LM
Zm

¶
= KM

¡
1− (1− 21−KM )LM

¢
,

Since Zm ≤ NIm and limM→∞(1− 21−KM )LM = 0 we conclude that

lim
M→∞

vi(M)

v∗i (M)
= lim

M→∞
1 + KM−1

2

E (max1≤m≤LM NIm)

≤ lim
M→∞

1 + KM−1
2

E (max1≤m≤LM Zm)
=
1

2
.

The proof of Theorem 2 is based on two lemmas and the next theorem due
to Rosenthal [9, Theorem2.12].

Theorem 3 [Rosenthal] If {Yk,Fk, 0 ≤ k ≤ M − 1} is a martingale and 2 ≤
ρ <∞, then there is a constant C depending only on ρ such that

E |YM−1|ρ ≤ CE

ÃM−1X
i=1

E
¡
X2
i |Fi−1

¢
+EX2

0

!ρ/2


+C
M−1X
i=0

E|Xi|ρ,

where X0 = Y0, Xi = Yi − Yi−1, i ≥ 1.
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Let Gim =
Pi

j=m⊕1 (Kij −EKij) and let m0(M) be one of the bottleneck
nodes when the number of nodes is M . For the rest of this section we assume
without loss of generality that m0(M) = 0.

Lemma 1 For ρ ≥ 2 and for m ∈M there is a constant Cm that depends only
on ρ such thatÃ

E

¯̄̄̄
¯
M−1X
i=0

Gim

¯̄̄̄
¯
ρ! 1

ρ

≤ Cm

ÃM−1X
i=0

riaim

! 1
2

(2R)
1
2 +M

1
ρR

 ,

where R := supi ri + 1.

Proof. Observe that for fixed m the random variables Gim, i ∈ M, are
independent (not identically distributed in general) with zero mean. Therefore,

for fixedm ∈M, the process Yk :=
Pk

i=0Gim, k = 0, . . . ,M−1 is a martingale.
We will apply Theorem 3 with Yk =

Pk
i=0Gim and Fi = Fim, where Fim

is the σ-field generated by the random variables Gkm, k = 0, . . . , i. Since for
fixed m the random variables Gim, i ∈M, are independent,

E(G2im|Fi−1,m) = EG2im ≤ E


 iX
j=m⊕1

Kij

2


= E


 νiX

l=1

iX
j=m⊕1

1{Di(l)=j}

2


≤ E

νi νiX
l=1

 iX
j=m⊕1

1{Di(l)=j}

2


Observe now that

iX
j=m⊕1

1{Di(l)=j} = 1Bim(l), Bim(l) = ∪ij=m⊕1{Di(l) = j}.

Since E1Bim(l) = aim and the random variable νi is independent of 1Bim(l), l =
1, . . . , we conclude that

E(G2im|Fi−1,m) ≤ E

Ã
νi

νiX
l=1

1Bim(l)

!
= aimEν

2
i (28)
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If ri ≤ 1, then by definition νi takes the values 0 or 1 and therefore, Eν2i =
Eνi = ri. If ri > 1, then again by definition, Eν2i ≤ (bric + 1)2. Therefore,
taking into account (28), we have for general ri,

E(G2im|Fi−1,m) ≤ 2(ri + 1)riaim ≤ 2Rriaim. (29)

Since |Gim| ≤ bric+ 1 ≤ R we have,

M−1X
i=0

E|Gim|ρ ≤MRρ. (30)

From Theorem 3, (29) and (30) we conclude that for ρ ≥ 2 and for m ∈ M
there is a constant Cm that depends only on ρ such that

Ã
E

¯̄̄̄
¯
M−1X
i=0

Gim

¯̄̄̄
¯
ρ! 1

ρ

≤ Cm

ÃM−1X
i=0

2Rriaim

! ρ
2

+MRρ


1
ρ

≤ Cm

Ã
M−1X
i=0

riaim

! 1
2

(2R)
1
2

+CmM
1
ρR

2

Let e∆m := Nm − EN0. We are now in a position to prove the following
lemma.

Lemma 2 For any δ̄ > 0, there is a constant bC that depends only on δ̄ and R,
such that

0 ≤ E

µ
max
m∈M

e∆m

¶

≤ 1 + bC
Ãmax

m∈M

(
M−1X
i=0

riaim

)! 1
2

M δ̄ +M δ̄

 .

Proof. LetGm =
P

i∈MGim, and consider the event Fk = {maxm∈M |Gm| ≥
k}. We can express Fk as the union of the disjoint events Fkn = {|Gn| ≥
k, |Gj | < k, j = 0, . . . , n − 1}, n = 0, . . . ,M − 1. Since |Gn| ≥ k on the set
Fkn, using Holder’s inequality and Lemma 1, we have for ρ ≥ 2,

kPr(Fk) ≤
M−1X
n=0

E(|Gn|1Fkn)
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≤
M−1X
n=0

(E|Gn|ρ)1/ρ(Pr(Fkn))
ρ−1
ρ

≤ CΦ
M−1X
n=0

Pr(Fkn)
ρ−1
ρ , (31)

where C = maxm∈M Cm and

Φ =

Ã
max
m∈M

(
M−1X
i=0

riaim

)! 1
2

(2R)
1
2 +M

1
ρR.

Using the inequality

M−1X
i=0

β
1
α
i ≤M (α−1)/α

Ã
M−1X
i=0

βi

!1/α
, βi ≥ 0, α ≥ 1,

we have

M−1X
n=0

(Pr(Fkn))
ρ−1
ρ ≤ M1/ρ

Ã
M−1X
n=0

Pr(Fkn)

!1−1/ρ
= M1/ρ Pr(Fk)

1−1/ρ. (32)

From (31) and (32) it follows that

Pr(Fk) ≤ Pr(Fk)
1
ρ

≤ CΦM
1
ρ

k
. (33)

Since |Gm| ≤MR, using the inequality

E|X| ≤ 1 +
∞X
k=1

Pr(|X| ≥ k),

and taking into account (33) we find that

E

µ
max
m∈M

|Gm|
¶
≤ 1 +

MRX
k=1

Pr(Fk)

≤ 1 + CΦM
1
ρ

MRX
k=1

1

k

≤ 1 + CΦM
1
ρ (1 + ln(MR)).
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Since EN0 ≥ ENm, m ∈M, recalling (4) we have thate∆m ≤ Nm −ENm =
X

i ∈M
Gim = Gm. (34)

Using (34) and the fact that E
³
maxm∈M e∆m

´
≥ E e∆0 = 0, we have for ρ ≥ 2,

0 ≤ E

µ
max
m∈M

∆̃m

¶
≤ E

µ
max
m∈M

|Gm|
¶

≤ 1 + CΦM
1
ρ (1 + ln(MR)).

For 0 < δ̄ ≤ 2, the lemma follows by picking ρ = 4/δ̄ and

Ĉ = Cmax
n
(2R)1/2, R

o
sup
M≥1

½
1 + ln(MR)

M δ̄/2

¾
.

For δ̄ > 2, we can simply pick the constant Ĉ that corresponds to δ̄ = 2. 2

Proof of Theorem 2. Write Te = EN0 + maxm∈M e∆m. Since node 0 is a
bottleneck node,

v∗i (M) =
ri

(
PM−1

j=0 rjaj0(M))
=

ri
EN0(M)

and therefore, the ratio of the throughput of node i ∈ M to the maximal
throughput achievable under the specified ri is

vi(M)

v∗i (M)
=

EN0(M)

ETe(M)
=

EN0(M)

EN0(M) +E
³
maxm∈M{e∆m(M)}

´ . (35)

We see from (35) that

lim
M→∞

vi(M)

v∗i (M)
= 1 iff lim

M→∞

E
³
maxm∈M{e∆m(M)}

´
EN0(M)

= 0 (36)

and therefore, it suffices to show that E
³
maxm∈M{e∆m(M)}

´
becomes arbi-

trarily small relative to EN0(M) as M increases. In Lemma 2 pick δ̄ = δ/2.

Recalling that EN0(M) = maxm∈M
nPM−1

i=0 riaim(M)
o
, we then have,

0 ≤ lim
M→∞

E
³
maxm∈M e∆m(M)

´
EN0(M)

≤ lim
M→∞

µ
Mδ

EN0(M)

1

Mδ

¶
+ lim

M→∞
Ĉ

µ
Mδ/2

(EN0(M))1/2
Mδ

EN0(M)

1

M
δ
2

¶
= 0
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and the right hand side in (36) is true. 2

5 Conclusions

We studied a slotted ring in which simultaneous transmissions of messages by
different stations is allowed. Under the assumption that the stations have infi-
nite access queues, we described the space of achievable node throughputs under
general transmission policies. Next, we studied a policy that is based on the
idea of allocating transmission quotas to the nodes as described in [6] and [5].
While we considered a synchronous version of the policy, there is a simple re-
lation between the node throughputs of the policy studied in this paper and
the system studied in [12] which models the ring in [6]. This relation permits
us to apply our results to that system as well. We conjecture that our results
also hold for the asynchronous version of the policy proposed in [5]. We do
not have a proof in this case, however, the following heuristic argument can be
given to support the conjecture. In the asynchronous version, a node may start
transmission of its new quota before the upstream nodes complete the trans-
mission of their quotas from the previous cycle. On the other hand, when the
same node finishes its new quota, it cannot start new transmissions until all the
upstream nodes complete the transmission of their quotas from the previous
cycle. Therefore, we expect that the net effect is as if the quotas of all nodes
have been increased proportionally, but not more than twice the original quota.
In fact, it is easy to establish that for given ri, i ∈M, the node throughputs
induced by the asynchronous version are proportional to ri, as is the case with
the policy studied in this paper.
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Télécommunications, Paris, France, in 1983, and his M.S. and Ph.D. from the
California Institute of Technology, both in Electrical Engineering, in 1984 and
1986 respectively. Since August 1986 he has been with IBM at the Thomas J.
Watson Research Center, Yorktown Heights, New York, where he now manages
the Network System Design group in the Advanced Networking Laboratory de-
partment. His current activities include analysis and architecture of high-speed
networks and their use by applications. His research interests are in the area
performance analysis and modeling of high-speed networks, with emphasis on
congestion control, bandwidth management, and dynamic routing.
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