
A SCHEDULING POLICY WITH MAXIMAL STABILITY REGION FOR
RING NETWORKS WITH SPATIAL REUSE

Leonidas Georgiadis Wojciech Szpankowski∗ Leandros Tassiulas †

IBM T. J. Watson Research Ctr. Dept. Computer Science Dept. Electrical Engn.
P.O. Box 704 Purdue University Polytechnic University
Yorktown Heights, NY 10598 Computer Science Build. 6 Metrotech Center
U.S.A W. Lafayette, IN 47907 Brooklyn, NY 11201

U.S.A. U.S.A.

Abstract

A slotted ring that allows simultaneous transmissions of messages by different users is
considered. Such a ring network is commonly called ring with spatial reuse. It can achieve
significantly higher throughput than standard token rings but it also raises the issue of
fairness since some nodes may be prevented from accessing the ring for long time intervals.
Policies that operate in cycles and guarantee that a certain number (quota) of packets will
be transmitted by every node in every cycle have been considered before to deal with the
fairness issue. In this paper we address the problem of designing a policy that results in a
stable system whenever the end-to-end arrival rates are within the stability region of the
ring with spatial reuse (the stability region of the ring is defined as the set of end-to-end
arrival rates for which there is a policy that makes the ring stable). We provide such
a policy, which does not require knowledge of end-to-end arrival rates. The policy is an
adaptive version of the quota policies and can be implemented with the same distributed
mechanism. We use the Lyapunov test function technique together with methods from the
theory of regenerative processes to derive our main results.
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1 Introduction

We consider a ring with spatial reuse, i.e., a ring in which multiple simultaneous transmis-

sions are allowed as long as they take place over different links (cf. Cidon and Ofek [4],

Falconer and Adams [7], Georgiadis et al. [8]). Time is divided in slots and each slot is

equal to the smallest transmission unit, called packet. We assume zero propagation delay.

A node can transmit a packet at the outgoing link at the same time that it receives another

packet at the incoming link. A node receiving a packet with destination another node on

the ring, may retransmit the packet in the outgoing link in the same slot, i.e., the ring has

cut-through capabilities.

Falconer and Adams [7] and Cidon and Ofek [4] have proposed the following policy for

the operation of the ring. Each node is assigned a number called “quota”. The policy

operates in cycles. A node is allowed to transmit during a cycle as long as the number

of transmitted packets does not exceed its assigned quota. An analysis of the throughput

characteristics of this policy when all nodes have nonempty queues is provided by Georgiadis

et al. [8]. The quota policy ensures the fair access to the ring when the packet arrival rates

to the nodes fluctuate and may even cause the system to operate in an unstable regime.

Since the quotas are fixed, however, this policy does not have maximal stability region

(Georgiadis et al. [9]). That is, there are end-to-end arrival rates for which the system

becomes unstable under the quota policy, while it can be stabilized if other policies are

employed.

In this paper we address the problem of designing a policy for the ring with spatial

reuse, that has maximal stability region. This type of policies is useful in situations where

it can be guaranteed by some higher level process, e.g. reservations, that the traffic streams

at the various nodes are well behaved and do not saturate the system. We provide a policy

with maximal stability region, which is an adaptive version of the quota policy. The policy

is distributed and does not require that the nodes have knowledge of the end-to-end arrival

rates or of the states of the other nodes on the ring. During the operation of the system,

each node readjusts its quota based only on the size of its queue. We denote such a policy

as Π. Specifically, the proposed policy operates in cycles. At the beginning of a cycle each

node allocates itself “quota” equal to the number of packets at its buffer. During a cycle a

node can transmit no more messages than the quota allocated to it. A cycle ends when all
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the quotas of all nodes are delivered to their destination. The proposed policy requires a

distributed mechanism by which every node realizes that the quotas of all nodes have been

delivered to their destination and thus a cycle ends. Such a mechanism is provided in the

paper by Falconer and Adams [7].

Related work on the stability of the ring has been done by Bambos and Nquyen [2]. The

system is studied for stationary arrival processes and a policy is proposed that equalizes the

arrival and departure rates as long as the arrival rates belong to the stability region. We

study the ring with i.i.d. arrivals, markov modulated arrivals, and arrivals with deterministic

burstiness bounds. The policy proposed in this paper is considerably simpler to implement

than the policy proposed by Bambos and Nquyen [2] and guarantees existence of the lth

moment of the queue lengths when the (l+ 1) moment of the number of packets arrived in

a slot exists, while for deterministic arrivals it guarantees bounded backlogs.

Another policy that has attracted attention is the the so called “greedy” policy under

which a nonempty node is instructed to transmit whenever it finds an available slot. Suffi-

cient conditions for stability of the greedy policy are provided in Cruz [6] and Yaron and Sidi

[12]. These conditions, however, are for special traffic destinations and are stronger than

necessary. For arrivals with deterministic burstiness bounds and general destinations, it has

been shown recently by Tassiulas and Georgiadis [11], that any work conserving policy, in

particular the greedy policy, has maximal stability region. In a recent study, Coffman et al.

[5] proved stability of the greedy policy under stochastic arrivals, but for symmetric rings

and for specific destination distributions, and provided asymptotic results on the queue

lengths as the number of nodes increases. However, the stability of the greedy policy for

stochastic arrivals with general destinations remains still an open problem.

The paper is organized as follows. In the next section we present our main results and

their consequences. In particular, we establish the stability region for the adaptive policy,

and show that it is maximal. In Section 3 we present the proof of the main result. In

Section 4 we show that the main results remain valid for models that involve correlated

arrivals.
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2 The system model the policy and the main result

The network consists of a number of nodes arranged in a circle. Each node i receives

exogenous traffic with destination potentially any other node j of the ring. The packets are

queued in the nodes until transmission. All the transmissions follow the unique direction of

the ring. The packet transmission time is constant and the transmissions of all nodes are

synchronized. The time is slotted. A packet transmitted by node i is transferred within one

slot to its destination node j unless there is some node k preceding j in the transmission

direction of the ring, which is transmitting another packet in the same slot. In the latter

case, node k stores node’s i packet for later transmission. Therefore, the parts of the

ring traversed by different packets at the same slot, are non-overlapping. The decisions

of whether a node will or will not transmit in each slot, as well as the service discipline

among the different traffic streams in the node is determined by the transmission policy.

The following policy is proposed here.

Transmission policy Π

The policy operates in cycles and is based on the idea of allocating quotas to the nodes.

Let τk be the beginning of the kth cycle and set τ1 = 1. At time τk each node allocates

itself “quota” νi(k) = Qi(τk), where Qi(t) is the queue size of node i at time t. Node i can

transmit up to νi(k) packets during cycle k according to any fixed nonidling policy, i.e., the

only restriction that is imposed on the transmissions is that the node transmits a packet

in its outgoing link whenever either its queue is nonempty, or a message is received in the

same slot in its incoming link with destination another node on the ring. Cycle k ends when

all the quotas of all nodes are delivered to their destination.

Remarks:

1. The most important nonidling transmission policy for applications, is the policy where

a node always gives nonpreemptive priority to the packets that arrive at the incoming

link with destination another node. This way, only a single buffer capable of holding a

maximum packet size message is needed to hold the traffic that arrives at the incoming

link of a node. For details see the paper by Cidon and Ofek [4].

2. The proposed policy requires a distributed mechanism by which every node realizes
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that the quotas of all nodes are delivered to their destinations. Such a mechanism,

which can be easily adapted to the model considered in this paper, is provided in

the paper by Falconer and Adams [7]. The implementation of this mechanism will

increase the cycle length by two slots and does not alter the stability region of the

policy. For simplicity in the exposition we do not consider the extra slots needed to

implement this mechanism.

We introduce some notation before we proceed. Let M be the number of nodes and

set M = {1, . . . ,M}. The operations i ⊕ j and i ª j denote respectively, addition and

subtraction modulo M , with the convention that index 0 refers to node M . Furthermore,

when i, j refer to node indices we denote
Pj

k=i xk := xi+xi⊕1+ . . .+xjª1+xj . We assume

that the nodes are arranged on the ring according to their index so that the outgoing link

to node i is the incoming link for node i ⊕ 1. Node i may receive external traffic with

destination any other node j in the system. Let Rij(t) be the number of packets that arrive

at node i from the outside with destination node j at time t. If i = j, then it is assumed

that the packet has to cross all the nodes on the ring until it is received by the originating

node, i.

Throughout this section we adopt the following assumption.

(A) The vector process {R(t)}∞t=1, where R(t) = {Rij(t), i, j ∈M}, consists of i.i.d. vec-
tors. We denote Rij := Rij(1). Note that do not make any independence assumptions

for the work arriving in various nodes at the same slot. To avoid technical difficulties

we will also assume that Pr(Rij(t) = 0, i, j ∈M) > 0.

In section 4 we will see that the above assumption can be relaxed in certain ways without

affecting significantly the validity of our results. In order to formulate our main results in

a compact form, we need some additional notation. Let

ρij := lim
n→∞

Pn
t=1Rij(t)

n
= ERij

be the (end-to-end) arrival rate of packets that arrive to node i with destination node j. We

also define αim :=
Pi

j=m⊕1 ρij and rm =
P

i∈M αim. Note that αim is the average number

of packets per slot that are generated by node i and have to cross node m in order to reach
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their destination. Therefore, rm is the average number of packets that cross node m during

a slot. Finally, we set r = max{rm : m ∈M}.

Since at most one packet can be transmitted in a slot by node m, the condition rm ≤
1, m ∈M, is necessary for stability. Therefore, the stability region of any policy is a subset

of the region

R = {ρ = (ρij)Mi,j=1 : r = max
1≤m≤M

rm ≤ 1}

In this paper we show that as long as the end-to-end arrival rates belong to

Ro = {ρ : r = max
1≤m≤M

rm < 1},

policy Π stabilizes the network in a strong sense. Specifically we show that (i) the queue

length Qi(t) possesses a limiting distribution; (ii) its lth moment EQ
l
i(t) as t → ∞ exists

provided that ERl+1
ij < ∞; (iii) the queue length Qi(t) as t → ∞ has an exponential tail

(i.e., large backlogs are very unlikely), provided that the same is true for Rij . We summarize

our main results in the following theorem. Its proof is presented in the next section.

Theorem 1 (i) Under policy Π, the process of queue lengths {Qi(t), i ∈M}∞t=1 converges

in distribution to a random vector { eQi, i ∈M} having a honest distribution, if r < 1.

(ii) If r < 1 and ERl+1
ij <∞ for some l ≥ 1 and all i, j ∈M, then

lim
t→∞

EQl
i(t) = E eQl

i <∞ (1)

(iii) If r < 1 and for ϑ > 0 the moment generating function of Rij exists, that is, E exp(ϑRij) <

∞ for all i, j ∈M, then there exists ϑ0 > 0 such that

E exp(ϑ0 eQi) <∞ (2)

for every i ∈M.

Remark.

As a direct consequence of Theorem 1 and Chebyshev’s Inequality, we can estimate the

tail of the queue length distribution. In particular, under the hypothesis of Theorem 1(ii),
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the tail of the queue length distribution decays polynomially fast, that is, for some constant

C > 0

Pr{ eQi > k} ≤ C

kl
.

While, under the hypothesis of Theorem 1(iii), the queue length eQi has an exponential tail,

that is,

Pr{ eQi > k} ≤ Ce−ϑk

for some C > 0, ϑ > 0 and for all k ≥ 0.

Another consequence of Theorem 1 is a coupling property that holds between the queue

length process and a stationary version of it. The queue length process in our system is

regenerative and from Theorem 1 it has a stationary distribution; hence a stationary version

of it exists and let this be {Qs
i (t), i ∈M}∞t=−∞. Let {Qi(t), i ∈M}∞t=0 be the queue length

process when the system starts from an arbitrary state and the time instant t = 0 is the

beginning of a scheduling cycle.

Corollary 1 There is a process Q̂(t) with the same probability law as Q(t) for which the

following coupling relationship holds

lim
t0→∞

P (Q̂(t) = Qs(t),∀t ≥ t0) = 1.

Proof: Let {τ sn}∞n=1 be the regeneration points of the stationary process which are greater
than zero. Let {τn}∞n=1 be the regeneration points of the system starting at time 0 and

operating independently of the stationary process. Consider the random time defined as

σ = min{n : τn = τ sm, for some m}.

By slightly modifying the coupling theorem for continuous time renewal processes in As-

mussen [1], pp.144, and using the fact that the discrete-time renewal processes {τ sn}∞n=1,
{τn}∞n=1 are aperiodic, it follows that σ is finite almost surely. Let

Q̂(t) =

(
Q(t), t ≤ τσ
Qs(t), t > τσ.
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It is easy to see that the process {Q̂i(t), i ∈M}∞t=1 has the same probability law as Q(t),
while by construction and because of the fact that σ is almost surely finite

lim
t0→∞

P (Q̂(t) = Qs(t),∀t ≥ t0) = 1.

Hence the corollary follows.

3 Stability Analysis

Let Qij(t) be the number of packets at node i with destination node j, including both

external packets and packets received from the incoming link to node i. Clearly, Qi(t) =P
j∈MQij(t). Let also Q(t) := {Qij(t) : i, j ∈M}. From the operation of the policy and

assumption (A) we conclude that the process {Q(τn)}∞n=1 is an imbedded Markov chain.
We first obtain some properties of the imbedded Markov chain Q(τn) and based on those

we prove that the process Q(t) is stable in the sense defined in Theorem 1.

Analysis of the Embedded Markov Chain

We prove that under the condition of Theorem 1 the process {Q(τn)}∞n=1 converges

weakly to a honest random vector Q̂. Since by assumption Pr(Rij(t) = 0, i, j ∈M) > 0, it

can be seen that the imbedded Markov chain has only one irreducibility set and if restricted

to this set, the chain is aperiodic. To prove ergodicity of the imbedded Markov chain Q(τn)

we use the Lyapunov function method. Specifically, we use the following result of Meyn and

Tweedie [10] , which we present in a form appropriate for the problem under consideration.

Theorem 2 Suppose that {Xn}∞n=1 is an aperiodic and irreducible Markov chain with
countable state space S. Let f(x) be a non-negative real function on the state space. If

A is a finite set such that f(x) ≥ � > 0, x ∈ Ac,

E(f(X2)|X1 = x) <∞, x ∈ A (3)

and for some δ > 0,

E(f(X2)|X1 = x) < (1− δ)f(x), x ∈ Ac, (4)
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then the Markov chain is ergodic and

Ef(X̂) <∞,

where X̂ has the steady state distribution of the Markov chain {Xn}∞n=1.

In order to apply the above result, one must find a suitable function f(·) of Q(τn) such
that (3) and (4) hold. As we will see in the following, such a function is the maximum of

the node degrees. The degree of node i at time t, Ni(t), is defined as the total number of

packets on the ring at time t that have to cross node i in order to reach their destination.

Let N(t) := max{Ni(t) : i ∈M}. The following result of Georgiadis et al. [8] is essential
to our analysis.

Theorem 3 For any of the policies Π defined above, the cycle length Tk := τk+1 − τk

satisfies

Tk = max{1, N(τk)} (5)

for all k ≥ 1.

Proof: We give here a more straightforward proof of this result than the one appeared in

Georgiadis et al. [8]. It is based on the following observation: Provided that new arrivals

after time τk are not included in the calculation of node degrees

N(t)−N(t+ 1) = 1 if N(t) > 0, τk < t < τk+1 (6)

Since the time at which the quota of all nodes are delivered to their destination is the

first time after τk at which N(t) = 0, provided that new arrivals are not included in the

calculation of node degrees, the theorem will follow directly from (6). Note that since there

are no arrivals in the ring, (6) is equivalent to the following.

Ni(t)−Ni(t+ 1) = 1 if Ni(t) = N(t) > 0, i = 1, ..,M (7)

If node i is nonempty at t, then (7) is obvious. Assume now that node i is empty at t and

satisfies Ni(t) = N(t). Let j be the first nonempty node “upstream” from node i, i.e., in

the opposite direction of the ring transmission direction. The packet transmitted by j at

time t has to cross node i, since otherwise the degree on node j will be strictly larger than
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the degree of node i which contradicts the fact that Ni(t) = N(t). This implies that node i

will transmit in its outgoing link at time t the packet sent by node j. Since no new arrivals

are assumed, the degree of node i decreases by 1.

Clearly, the node degree N(t) is a function of the queue lengthQ(τn). To apply Theorem

2 we either define fl(Q(τn)) = N l(τn) or f(Q(τn)) = exp(ϑN(τn)) for some ϑ > 0, and we

then prove (cf. Corollary 2) that (4) of Theorem 2 holds for this choice of functions. For

this, we need the following two lemmas which are consequences of Theorem 3. To preserve

the clarity of the main line of the argument, the proofs of these lemmas are given in the

appendix.

Lemma 1 If for some l ≥ 1 we have ERl
ij <∞ for all i, j ∈M, then

lim
n→∞

E

ÃÃ
N(τ2)

T1

¶l ¯̄̄̄¯T1 = n

!
= max

n
rlm : m ∈M

o
.

Lemma 2 If r < 1 and E exp(ϑRij) < ∞ for some ϑ > 0 and all i, j ∈ M, then there

exists ϑ0 > 0 such that

lim
n→∞

E

µµ
exp(ϑ0N(τ2))

exp(ϑ0T1)

¶¯̄̄̄
T1 = n

¶
= 0.

From Lemmas 1 and 2 we easily conclude our next result that actually establishes (4)

of Theorem 2.

Corollary 2 (i) If r < 1 and ERl
ij <∞ for all i, j ∈M and some l ≥ 1, then there exist

δ > 0 and B > 0 such that

E(N l(τ2)|N(τ1) = n) ≤ (1− δ)nl n ≥ B .

(ii) If r < 1 and E exp(ϑRij) <∞ for some ϑ > 0 and all i, j ∈M, then there exists ϑ0 > 0

such that

E
¡
exp(ϑ0N(τ2))|N(τ1) = n

¢
≤ (1− δ) exp(ϑ0n) n ≥ B .
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Proof. Since rm ≤ r < 1, we have that max{rlm : m ∈M} ≤ r < 1− δ, δ > 0. Using this

observation, part (i) of the Corollary 2 follows directly from from (5) and Lemma 1. Part

(ii) follows directly from (5) and Lemma 2.

Some further notation should be introduced in order to state the properties of the

imbedded Markov chain, to be used in the proof of Theorem 1. Let Q(τ1) = 0, and we

define two stopping times, namely: θk and Tk. For the former we set θ1 = 1, and then

θk+1 := inf {n > θk : Q(τn) = 0} . (8)

For the latter we set T0 = 1 and

Tk+1 = min{τl : τl > Tk such that Q(τl) = 0} . (9)

Note that Tk = τθk . It will follow from Theorem 4 proved below that the times Tj are
well defined for all k since the system will empty infinitely often almost surely. Let also

dk = θk+1 − θk, and Dk = Tk+1 − Tk. Clearly, dk and Tk for k = 1, . . . , are i.i.d. Now, we

are ready to prove some basic properties for the imbedded Markov chain Q(τn).

Theorem 4 (i) If r < 1 then the Markov chain {Q(τn)}∞n=1 is ergodic and

E
θ2−1X
n=1

N(τn) <∞ . (10)

(ii) If r < 1 and for l ≥ 2 we have ERl
ij <∞ for all i, j, ∈M, then

E
θ2−1X
n=1

N l(τn) <∞ , (11)

(iii) If r < 1 and for some ϑ > 0 we have E exp(ϑRij) < ∞ for all i, j ∈ M, then there

exists ϑ0 > 0 such that

E
θ2−1X
n=1

exp(ϑ0N(τn)) <∞ . (12)

Proof. Define fl(Q(τn)) = N l(τn), l ≥ 1 and let B ≥ 1. Clearly, the set A := {Q :

fl(Q) < B} is finite. Also, if Q(τ1) ∈ A, then since by (5) T1 = N(τ1)+1 < B(1/l)+1, using

10



arguments similar to those used in the proof of Lemma 1 it can be easily seen that

E
³
N l(τ2)|Q(τ1) = Q ∈ A

´
<∞,

provided that ERl
ij < ∞. From the above discussion, Corollary 2 and Theorem 2 we

conclude that {Q(τn)}∞n=1 is ergodic, and provided that ERl
ij < ∞, i, j ∈ M for some

l ≥ 1,

EN̂ l <∞,

where N̂ l = fl(Q̂), and Q̂ has the steady state distribution of {Q(τn)}∞n=1. Now observe
that the sequence {N(τn)}∞n=1 is regenerative with respect to the renewal sequence {θn}∞n=1.
Since the ergodicity of {Q(τn)} implies Ed1 <∞, from the regenerative theorem, Asmussen
[1, Corollary 1.4] and the fact that N(t) is non-negative, we have that

E
Pθ2−1

n=1 N l(τn)

Ed1
= EN̂ l <∞.

for every l ≥ 1.

For part (iii), the proof is along the same lines with f(Q(τn)) = exp(ϑN(τn)).

Proof of Theorem 1

Assume that Q(1) = 0. Consider the times Tk, k = 0, 1, .. defined in (9). The process
{Q(t)}∞t=1 is regenerative with respect to the renewal process {Tn}∞n=1. From (5) and The-

orem 4 we have

ED1 =
θ2−1X
n=1

Tn ≤ 1 +E
θ2−1X
n=1

N(τn) <∞.

Since the assumption Pr(Rij(t) = 0, i, j ∈M) > 0 implies thatDk is aperiodic, applying

the regenerative theorem we conclude that {Q(t)}∞t=1 converges in distribution to a honest

random variable eQ, thus establishing part (i) of the theorem.
Let now F (·) be a nonnegative nondecreasing function (i.e., in our case either F (x) = xl

or F (x) = exp(ϑx)). Using the non-negativity of Qi(t), N(t), problem 1.4, chapter 5 in
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Asmussen [1]), we conclude that

lim
t→∞

E [F (Qi(t))] = E
h
F ( eQi)

i
≤ E

h
F ( eN)i = E

PT1−1
t=1 F (N(t))

ED1
. (13)

Parts (ii) and (iii) of Theorem 1 will follow from (13) if we show that

E
T1−1X
t=1

F (N(t)) <∞,

under the specified conditions. Observe that we can write

T1−1X
t=1

N l(t) ≤
θ2−1X
k=1

Tk [N(τk) +A(τk+1)−A(τk)]
l ,

≤ 2l−1
θ2−1X
k=1

Tk
³
N l(τk) + (A(τk+1)−A(τk))

l
´
,

and, in view of (25),

T1−1X
t=1

exp(ϑN(t)) ≤
θ2−1X
k=1

Tk [exp(2ϑN(t)) + exp(2ϑ(A(τk+1 −A(τk)))] . (14)

So, it suffices to show that

E
θ2−1X
k=1

TkF (N(τk)) < ∞ (15)

and

E
θ2−1X
k=1

TkF (A(τk+1)−A(τk)) < ∞. (16)

where either F (x) = xl or F (x) = exp(2ϑx).

Since by (5) Tk = N(τk) whenever N(τk) ≥ 1, we have

E

⎛⎝θ2−1X
k=1

TkN
l(τk)

⎞⎠ ≤ 1 +E
θ2−1X
k=1

(N(τk))
l+1, (17)

and

E

⎛⎝θ2−1X
k=1

Tk exp(2ϑN(τk))

⎞⎠ ≤ C(ϑ)E
θ2−1X
k=1

exp(3ϑN(τk)) , (18)
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where in the latter inequality we use the fact that Tk ≤ C(ϑ) exp(ϑTk), for some constant

C(ϑ). Based on (17) and (18) it is easy to see from Theorem 4 that (15) holds for both

choices of the function F (x)) and appropriate choice of ϑ0.

We now concentrate on proving (16) for F (x) = xl. Let Gk denote the sigma-field gen-
erated by Q(τk), k = 1, 2, · · · and observe that θ2 is a Gk-stopping time. Using successively
the facts that {θ ≥ k+1} ∈ Gk, the process {Q(τk)}∞k=1 is Markov and Tk = max(1, N(τk))
is Gk-measurable, we get

E
θ2−1X
k=1

Tk(A(τk+1)−A(τk))
l =

∞X
k=1

E
h
Tk(A(τk+1)−A(τk))

l1{θ2−1≥k}
i

=
∞X
k=1

E
h
E
h
Tk(A(τk+1)−A(τk))

l | Gk
i
1{θ2≥k+1}

i

=
∞X
k=1

E
h
E
h
Tk(A(τk+1)−A(τk))

l | Q(τk)
i
1{θ2≥k+1}

i

=
∞X
k=1

E
h
E
h
(A(τk+1)−A(τk))

l| Q(τk)
i
Tk1{θ2≥k+1}

i
(19)

Arguments similar to those used in the proof of Lemma 1, show that

(A(τk+1)−A(τk))
l ≤ C1

X
i,j∈M

⎛⎝τk+1X
t=τk

Rij(t)

⎞⎠l

,

where C1 depends only on M and l. Therefore,

E
h
(A(τk+1)−A(τk))

l
¯̄̄
Q(τk)

i
≤ C1

X
i,j∈M

E

⎡⎢⎣
⎛⎝τk+1X
t=τk

Rij(t)

⎞⎠l
¯̄̄̄
¯̄̄ Q(τk)

⎤⎥⎦ .
Since by assumption (A.1) Rij(t), t = 1, 2, · · · are i.i.d and ERl

ij <∞, using corollary 10.3.2

in Chow-Teicher [3], we conclude that for l ≥ 2,

E

⎡⎢⎣
⎛⎝τk+1X
t=τk

Rij(t)

⎞⎠l
¯̄̄̄
¯̄̄ Q(τk)

⎤⎥⎦ ≤ C2T
l
k,

where C2 depends only on M, l and ERl
ij . Clearly, the same inequality is true for l = 1.

13



Using these estimates in (19), we finally have,

E
θ2−1X
k=1

Tk[A(τk+1)−A(τk)]
l ≤ CE

Ã ∞X
k=1

T l+1
k 1{θ2≥k+1}

!

= CE

⎛⎝θ2−1X
k=1

T l+1
k

⎞⎠

≤ CE

⎛⎝1 + θ2−1X
k=1

(N(τk))
l+1

⎞⎠
< ∞, (20)

where the last inequality follows from Theorem 4.

Now we focus on proving (16) for F (x) = exp(ϑx). We can use the same arguments as

before together with (25) to obtain

E
θ2−1X
k=1

Tk exp(ϑ(A(τk+1)−A(τk))) ≤ C1E
θ2−1X
k=1

exp

⎛⎝ϑM τk+1X
t=τk

Rij(t)

⎞⎠

≤ C2

θ2−1X
k=1

E exp(ϑ0Tk)

≤ C2

θ2−1X
k=1

E exp(ϑ0N(τk)) + C2 exp(ϑ
0)

< ∞.

This completes the proof of the lemma, and also our main result Theorem 1.

4 Correlated arrival models

In the previous sections we assumed that packet arrivals are independent from slot to slot.

In this section we show that the stability properties of the adaptive policy Π are maintained

for other arrival models as well. Specifically we consider arrivals with bounded burstiness

and Markov modulated arrivals.

In the arrival model with bounded burstiness it is assumed that for each arrival stream

14



{Rij(t)}∞t=1 there are numbers ρij , bij such that

t2X
t=t1

Rij(t) ≤ ρij(t2 − t1) + bij (21)

If the vector {ρij} lie in region R0 then the system is stable under Π in the sense that

the backlogs are uniformly bounded over time. To see this notice that by the definition of

Nm(t), relation (5) and inequality (21), we have that

Nm(τk+1) ≤ rmTk +
X
i,j

bij

≤ rm(N(τk) + 1) +
X
i,j

bij ,

where the rm’s are defined in terms of the ρij ’s in the same manner as in the definition of

R and Tk, τk are the same as in (5). Therefore,

N(τk+1) ≤ rN(τk) +B + 1,

where B =
P

i,j bij and r = max{rm : m ∈M} < 1. We conclude that if the vector of ρij ’s
lies in the region R then,

N(τk) ≤
B + 1

1− r
+ rkN(τ1),

Since Nm(t) ≤ Nm(τk) + Nm(τk+1) whenever τk < t < τk+1, we can easily extend the

previous bound for an arbitrary time t.

The proof of stability that we gave when the arrivals are i.i.d. goes through in the more

general case where the arrivals are Markov modulated. Consider the following Markov

modulated arrival model. There is a finite irreducible Markov chain {u(t)}∞t=1 with state
space U and a family of distributions {Fu : u ∈ U} such that the conditional distribution of
Rij(t) given u(t) is Fu(t). Furthermore Rij(t) is independent of {Rij(τ) : τ < t} given u(t).

Assume finally that {u(t)}∞t=1 is stationary therefore {Rij(t)}∞t=1 is stationary as well. With
the above assumptions parts (i) and (ii) of Theorem 1 holds with minor modifications in

the proofs. The only difference is that the queue length process at the beginnings of a cycle

is not a Markov chain any more. However, the combination (Q(τn), u(τn)) of the queue

length vector with the modulating chain constitutes a Markov chain and the proofs can be

carried through based on this chain.

15



A Appendix

Proof of Lemma 1

According to the policy, the queue size at node i at time τ2 consists of all the external

packets that arrive in the interval (1, τ2] to node i. From the definition of the degree of a

node it follows that if T1 = n,

Nm(τ2) =
nX
t=1

X
i∈M

iX
j=m⊕1

Rij(t). (22)

Using the strong law of large numbers we conclude that

lim
n→∞

Nm(τ2)

n
=
X
i∈M

iX
j=m⊕1

rij =
X
i∈M

αim.

Now let F (·) be a non-decreasing continuous function. In view of the above, we have for
almost all sample paths,

lim
n→∞

F (N(τ2)/n) = lim
n→∞

F (max {Nm(τ2)/n : m ∈M})

= lim
n→∞

max {F (Nm(τ2)/n) : m ∈M}

= max
n
lim
n→∞

F (Nm(τ2)/n) : m ∈M
o

= max {F (rm) : m ∈M} . (23)

The lemma will follow from (23) with F (x) = xl, l ≥ 1, if we show that the sequence

{(N(τ2)/n)l} is uniformly integrable (u.i.).

Using the mean inequalityÃPk
i=1 |ai|
k

!l

≤
Pk

i=1 |ai|l
k

, l ≥ 1,

we have

N l
m(τ2) =

⎛⎝X
i∈M

iX
j=m⊕1

Ã
nX
t=1

Rij(t)

!⎞⎠l

≤ M2(l−1) X
i∈M

iX
j=m⊕1

Ã
nX
t=1

Rij(t)

!l

.
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Therefore,

µ
Nm(τ2)

n

¶l
≤ M2(l−1) X

i∈M

iX
j=m⊕1

µPn
t=1Rij(t)

n

¶l

≤ M2(l−1) X
i∈M

iX
j=m⊕1

Pn
t=1R

l
ij(t)

n
(24)

Since by assumption ERl
ij(1) < ∞ and the variables {Rij(t)}∞t=1 are i.i.d, it follows (see

Chow and Teicher [3, exercise 4.2.7]) that the sequence {(Pn
t=1R

l
ij(t))/n}∞n=1 is uniformly

integrable. Therefore, the sequence

X
i∈M

iX
j=m⊕1

Ã
nX
t=1

Rij(t)

n

!l

is uniformly integrable since it is the sum of uniformly integrable sequences (see Chow-

Teicher [3, page 94]). From (24) it follows that the sequence {(Nm(τ2)/n)
l}∞n=1 is uni-

formly integrable and since N(τ2) ≤
P

m∈MNm(τ2), the same holds for the sequence

{(N(τ2)/n}∞n=1. Finally, from (23) and the uniform integrability of the sequence {(N(τ2)/n}∞n=1
it follows that we can interchange limits and expectations, i.e.,

lim
n→∞

E

µ
Nm(τ2)

n

¶l
= max{rlm : m ∈M}.

for all l ≥ 1.

Proof of Lemma 2

Observe first that ifXi, i = 1, . . . ,K are random variables such that E(exp(ϑXi)) <∞, i =

1, . . . ,K for some ϑ, then

E exp(ϑ1

KX
i=1

Xi) <∞,

where ϑ1 = ϑ/K. This follows by taking expectations in the following inequality that is a

consequence of the convexity of the exponential function

exp(ϑ1

KX
i=1

Xi) = exp

ÃPK
i=1Kϑ1Xi

K

!
≤ 1

K

KX
i=1

exp(ϑ1KXi) (25)
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Applying the previous observation to the random variables

R̃m(t) :=
X
i∈M

iX
j=m⊕1

Rij(t), m ∈M,

we see that there is a ϑ2 > 0 such that

E exp(ϑ2R̃m(t)) <∞, m ∈M.

Consider now the function Φm(ϑ) = E exp(ϑR̃m(t) − ϑ), 0 ≤ ϑ ≤ ϑ2. From the previous

discussion it can be seen that this function is well defined, continuous and differentiable in

[0, ϑ2]. Since Φm(0) = 1, Φ
0
m(0) = ER̃m(t)−1 = rm−1 ≤ r−1 < 0, andM <∞, it follows

that there is a ϑ0 > 0 and a � > 0, such that for m ∈M, Φm(ϑ
0) < 1− �, or equivalently,

E exp(ϑ0R̃m(t))

expϑ0
< (1− �)

From (22) we see that

Nm(τ2) =
nX
t=1

R̃m(t)

and since the random variables Rm(t), t = 1, . . . are i.i.d, we conclude that

E exp(ϑ0Nm(τ2))

exp(ϑ0n)
=

µ
E exp(ϑ0Rm(t))

exp(ϑ0)

¶n
≤ (1− �)n. (26)

Since

E exp(ϑ0N(τ2)) = E exp(max{ϑ0Nm(τ2) : m ∈M})

= Emax{exp(θ0Nm(τ2)) : m ∈M}

≤
X
m∈M

E exp(ϑ0Nm(τ2)),

taking into account (26) we conclude

0 ≤ lim
n→∞

E exp(ϑ0N(τ2))

exp(ϑ0n)
≤M lim

n→∞
(1− �)n = 0

which completes the proof.
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