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Abstract

We consider a slotted ring that allows simultaneous transmissions of messages by different
nodes, known as ring with spatial reuse. To alleviate fairness problems that arise in such
networks, policies have been proposed that operate in cycles and guarantee that certain
number of packets not exceeding a given number called a quota will be transmitted by every
node in every cycle. In this paper, we provide sufficient and necessary stability conditions
that implicitly characterize the stability region for such rings. These conditions are derived
by extending a technique developed by two of us for some networks of queues satisfying
a monotonicity property. Our approach to instability is novel and its peculiar property
is that it is derived from the instability of a dominant system. Interesingly, the stability
region depends on the entire distribution of the message arrival process and the steady-state
probabilities of lower dimensional systems, leading to a region with nonlinear boundaries,
the exact computation of which is in general intractable. Next, we introduce the notions of
essential and absolute stability region. An arrival rate vector belongs to the former region if
the system is stable under any arrival distribution with this arrival vector, while it belongs
to the later if there exists some distribution with this rate vector for which the system is
stable. Using a linear programming approach, we derive bounds for these stability regions
that depend only on conditional average cycle lengths. For the case of two nodes, we provide
closed-form expressions for the essential stability region.
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1 Introduction

We consider a unidirectional ring with spatial reuse, i.e., a ring in which multiple simultaneous

transmissions are allowed as long as they take place over different links (cf. [8, 12, 15]). While

rings with spatial reuse have higher throughput than standard token passing rings, they also

introduce the possibility that some overloaded nodes may block other nodes from accessing

the ring. To avoid this problem, the following policy is proposed in [8, 12] for the operation

of the ring: Each node is assigned a number called “quota”. The policy operates in cycles. A

node is allowed to transmit packets generated locally during a cycle, as long as the number of

these packets that have already been transmitted does not exceed its assigned quota. A cycle

ends when the quota of all nodes are delivered to their destinations. In this way, the operation

of a node with regular traffic requirements is not adversely affected by nodes that may become

overloaded. The policy requires a distributed mechanism by which every node realizes that all

the other nodes completed their quota and thus a cycle ends. Such a mechanism is provided

in [12]. An analysis of the throughput characteristics of this policy is presented in [15]. It

should be pointed out that in [15] it was assumed that all nodes were overloaded, i.e., they

had infinite queues and the measure of interest was the average number of packets originated

at a node (throughput) that could eventually be delivered to their destination. It was shown

that by appropriately picking the quotas, all feasible throughput vectors could be achieved.

Therefore, the situation where a node is blocked from transmitting its own packets because

of transmissions from other nodes can be effectively eliminated. In the current work we

assume a stochastic input with arrival rates of packets to each node that are finite, and we

are interested in the region of arrival rates for which the queues of all nodes have proper

probability distributions (stability region).

The primary goal of this work is to obtain the stability region of the ring network with

finite quota and to compare it with the maximum achievable stability region for such ring

networks derived in [15, 18, 29]. We demonstrate (cf. Example 1 in Section 3.1) that the sta-

bility region of the system with the fixed quota mechanism is reduced relative to the stability

region of other policies that lack this fairness property (cf: [18, 29]). The second motivation

is to extend the stability approach of Georgiadis and Szpankowski [16, 17] and Szpankowski

[27, 28] to ring networks with spatial reuse, and other queueing networks that operate in

cycles and satisfy a monotonicity property. The sufficient conditions for stability are derived

by means of a technique that is based on an application of mathematical induction, stochas-

tic monotonicity properties and Loynes stability criteria. A special technique, based on the

structure of the complement of the stability region and the construction of a dominant sys-
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tem, permits the derivation of the necessary stability conditions from the instability condition

of the dominant system. In the process, we provide a decomposition and characterization of

the instability region of the system. While this decomposition has been used before on an

intuitive basis, it is not as obvious as might seem at first, and we will illustrate this point by a

few simple examples (see the discussion following Proposition 4 in Section 3.1). The general

steps of the above stability analysis have been applied to the analysis of other systems as well

(cf. [16, 17, 28]). It should be stressed, however, that this general construction of [16, 28]

requires detailed and subtle modifications for almost every queueing network which may be

far from trivial, and this paper is a typical example.

As it turns out, the exact computation of the stability region for the ring with spatial reuse

depends on the distribution of the arrival processes as well as the steady-state probabilities

of lower dimensional systems and this often renders this computation intractable. This leads

us to the introduction of the notions of the Essential and Absolute Stability Regions. The

first contains any arrival vector such that for every distribution with this arrival rate vector

the network is stable. The second contains any arrival rate vector for which there exists some

distribution with this arrival rate vector under which the network is stable. In this paper,

we present a method based on linear programming (cf. alos [19] for another usage of linear

programming to stability problems) that permits the development of upper and lower bounds

on the Absolute and Essential Stability Regions using only the knowledge of the conditional

average cycle lengths. For the case of two nodes, we provide a closed-form expression for the

Essential Stability Region in terms of the conditional average cycle lengths. The conditional

average cycle lengths are fundamental quantities of the system operation, whose statistics

depend only on the packet destination probabilities, and not on the steady-state probabilities

or the packet arrival distributions. In this sense, they are the simplest quantities on which

the stability analysis can be based. We note, however, that due to the complicated expression

for the cycle lengths (cf. formula (1)), even these quantities cause computational difficulties.

For small number of nodes the conditional average cycle lengths can be computed directly,

while asymptotic results for large number of nodes can be found in [15].

Stability criteria for Markov chains and more general queueing systems have a long tradi-

tion. In recent years, resurgence of interest in these problem arose due to novel applications.

It resulted in an excellent book of Meyn and Tweedie [24]. This book as well as most research

in this area is based on the so called Lyapunov or test function approach. Construction of

this function is quite troublesome for multidimensional Markov chains. A general approach to

such a construction was suggested in 1981 by Malyshev and Mensikov [22]. This general con-

struction still fails for many important distributed systems, however, recently some progress

3



has been achieved (cf. [6, 14, 19, 25]). Our approach is non-standard and it is based on

different philosophy, but it has some similarities with the faces and induced Markov chains of

Malyshev and Menshikov [22]. As mentioned above, in our analysis we apply mathematical

induction (that recently became very popular in stability analysis [7, 16, 17, 23, 26, 28]),

Loynes stability criteria (cf. [1, 5, 3] for extensions and other applications), and stochastic

monotonicity. Monotonicity was recently used in [4, 7, 13, 23] to establish stability regions

for other multidimensional queueing systems and computer networks. Finally, we should

mention a recent new development in this area suggested by Dai [10], and Dai and Meyn [11]

who used fluid approximation to derive general stability criteria for queueing networks. For

more exhaustive discussion of the existing literature on stability criteria the reader is referred

to [5, 11, 16, 24, 27, 28].

The paper is organized as follows. In the next section we formulate a stochastic model

for the network under consideration. Section 3 contains our main results: In Subsection 3.1

we present the construction of the exact stability region. Bounds on the stability region are

provided in Section 3.2. For a ring with two nodes we present in Section 3.3 the derivation

of the Essential Stability Region. Finally, Section 4 contains proofs of the results needed

for establishing the necessary conditions for stability, and describes a novel approach to the

instability analysis.

2 Model Description and Preliminary Results

We consider a unidirectional ring network consisting of a set of M nodes with cardinality,

|M| = M . Node i ∈M transmits in its outgoing link, either packets arriving to this node

from the outside world (i.e., “external” packets) or packets that were originated at some other

node and have to cross node i in order to reach their destination. Time is divided in slots,

packets are of fixed size and each slot is equal to the length of a packet. We assume zero

propagation delay. A node can transmit a packet on the outgoing link at the same time that

it receives another packet in the incoming link. A node receiving a packet whose destination

is another node in the ring (ring packet) may relay the packet in the outgoing link in the same

slot, i.e., the ring has cut-through capabilities. Moreover, a ring packet has non-preemptive

priority over the packets that exist in the node queue. Packets are removed from the ring

by their destination (not by the source as in standard token rings). We study the following

policy, which is a generalization of a policy proposed in the literature (cf. [8, 12]).

(A1) The system works in cycles, and the kth cycle starts at time τk. We write N(k) =

(N1(k), . . . , NM(k)) to denote the number of packets in the node buffers at the beginning

4



of cycle k = 1, . . . . The number of external packets that node i is allowed to transmit

during cycle k is Qi(k) = min
n
fi(Ni(k)), bQi

o
, bQi > 0, where fi(·) is a nondecreasing

and contractive function, i.e., fi(s1)− fi(s2) ≤ s1− s2 whenever s1 > s2. The quantitybQi is called the (maximum) quota. At each time slot during a cycle, a node may transmit

packets that are either generated locally or by some upstream node, according to the

policy Π∗1 described in Section IV of [15]. The kth cycle ends when all Qi(k) packets,

1 ≤ i ≤ M , are delivered to their destinations. Algorithmic and implementation

details can be found in [12, 8, 15], however, of interest to our discussion here is only the

statistics of the length of time needed to complete a cycle (cf. (1) below). The standard

ring network operating with the quota allocation policy corresponds to the case when

fi(s) = s.

As part of the technique used in the proof of the stability conditions we need to analyze

a system ΘM,U , where in addition to the set, M, of regular nodes there is also a set, U , of
“persistent nodes”, which operate as follows.

(A2) (i) There are no external packet arrivals at node i ∈ U , and (ii) a node i ∈ U partic-
ipates in the policy described in (A1) by generating locally and transmitting exactlybQi “dummy” packets in a cycle (in addition to the packets that may have originated in

some other node but have to be retransmitted by node i in its outgoing link in order

to reach their destination). While the nodes in U affect the duration of the cycles, by
definition they do not have queues and we are interested only in the stability of the

queue length process of the nodes inM. As will be seen in the next section, the intro-

duction of persistent nodes assures that when some regular nodes behave like persistent

ones, the system consisting of the rest of the nodes is a copy of the original system, but

of lower dimension. This property permits the application of mathematical induction.

The case U = ∅ corresponds to the ring we are interested in.

Next, we make an assumption regarding the statistics of external packet arrival process

at the ring nodes.

(A3) We denote by Ri(t) the number of external packets arriving at station i ∈M in slot

t ≥ 1. The nth packet originated at node i ∈M ∪ U has destination Di(n) ∈M ∪ U .
The processes {Ri(t)}∞t=1, i ∈M and {Di(n)}∞n=1, i ∈M ∪ U consist of i.i.d. random
variables and are independent of each others. We set λi = ERi(1), i ∈M and pij =

Pr{Di(1) = j}, i, j ∈M ∪ U . Clearly, Pj∈M∪U pij = 1 for i ∈M ∪ U .
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Before proceeding, we must introduce some new notations. Boldface letters denote vec-

tors, while calligraphic ones denote sets of nodes. Our main goal is to study the ergodicity

of the imbedded Markov chain N(k) = (N1(k), . . . , NM(k)) for k = 0, 1, . . . . We write

MA = M − A (while nonstandard, this notation simplifies the presentation significantly).

We will often consider the partition (MV ,V) of the set M, where V ⊆ M. For a vector

x = (x1, . . . , xM) we set x
A = {xi}i∈A. In particular, we write N(k) = (NMA(k),NA(k)).

For M -dimensional vectors x, y, x ≤ y reads xi ≤ yi for all 1 ≤ i ≤M .

As already observed in [12, 15], the behavior of the network depends crucially on the cycle

length Tk = τk+1 − τk which is also called the evacuation time. Let T (q) (or Tk(q)) be the

length of cycle k when the quota vector is QM∪U(k) = q = (q1, . . . , qM , . . . , qM+|U|). It was

shown in [15] (cf. [18]) that1

Tk(q) = max

½
max

i∈M∪U
Hi(q), 1

¾
(1)

where Hi(q) is the total number of packets out of
P

i∈M∪U qi originated in a cycle at any

node (i.e., regular or persistent) that have to pass through the outgoing link of node i in

order to reach their destination. Note that Hi(q) includes the packets originated at node i.

Also, note that the statistics of T (q) depend only on the vector q and the packet destination

probabilities pij .

In passing, we should mention that in order for all nodes to realize the end of a cycle, a

distributed mechanism is needed [12]. The implementation of this mechanism increases the

evacuation time by two slots and the results in this paper can be directly applied by simply

replacing T (q) with T (q)+2. We also mention that (1) holds under any work-conserving

policy, i.e., any policy that instructs each node never to idle whenever it can transmit packet

in its outgoing link (see [18]). Therefore, the order by which packets are served at a node is

immaterial.

Below we establish a monotonicity property of the cycle lengths. As we will see, this is a

relevant property of the cycle lengths from the stability point of view. In fact, our analysis

holds for any other system which, in addition to operating in cycles during which a certain

quota can be transmitted by each node and satisfying the statistical assumptions in (A3), has

the property that the cycle lengths are independent of the past history given QM∪U(k) = q

and satisfy the monotonicity property presented in the next proposition.

1In [15] it was assumed that qi ≥ 1 for some node i. In our model, however, it is possible that all nodes have
empty queues at the beginning of a cycle, in which case Tk(0) = 1. For this reason we include the maximum

with 1 in (1).
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Proposition 1 Let q1 ≤ q2. Then

Tk(q1) ≤st Tk(q2)

where ≤st means “stochastically smaller”.

Proof. Follows easily from formula (1).

Let us now consider a modified system in which a set V ⊂M of users becomes persistent,

that is, every user in i ∈ V transmits bQi packets (i.e., it transmits “dummy” packets when

their queues are empty or possess less than bQi packets). From the point of view of the nodes

in the set MV , the nodes in V behave exactly as the persistent nodes in the set U . Note,
however, that there is a difference between the nodes in U and V in that the nodes in V
receive external packets and therefore have queues formed. We denote such a system as

Θ
(MV ,V),U . Define eN(MV ,V)(k) = ( eNMV (k), eNV(k)) as the queue length vector in the system

Θ
(MV ,V),U . In the next result, we prove that the queues in the modified system dominate

stochastically the queue length in the original system. This property is crucial to applications

of our method.

Proposition 2 Consider two partitions (MV1 ,V1) and (MV2 ,V2) such that V1 ⊆ V2. Then
for every k = 0, 1, . . . eN(MV1 ,V1)(k) ≤st eN(MV2 ,V2)(k) (2)

provided eN(MV1 ,V1)(0) = eN(MV2 ,V2)(0).

Proof. The proof follows the steps of the proof of the monotonicity property of the queue

lengths in token passing rings. For details, the reader is referred to Theorem 4 of Georgiadis

and Szpankowski [16].

3 Main Results

This section presents our main results. In the sequel, we construct the stability region for

the network, derive some bounds on the stability region, and finally provide in a closed-form

the essential stability region of a ring with two nodes.

3.1 Construction of the Stability Region

Consider the system ΘM,U consisting of a setM of regular nodes and a set U of persistent
nodes. Our goal is to establish stability conditions for the queue length vector NM(k). By

stability we mean the existence of the limiting distribution.

7



The process NM(k) is an imbeded Markov chain. Indeed, we have for every i ∈M,

Ni(k + 1) = Ni(k)−Qi(k) +

τk+1−1X
t=τk

Ri(t). (3)

Under (A1)-(A3) and equation (1), the above set of stochastic equations forms an M -

dimensional Markov chain defined on a countable state space.

In the sequel, we will use the following property of multidimensional Markov chains defined

on a countable state space: To establish ergodicity of NM(k) it suffices to show that every

component Ni(k), i ∈M, of NM(k) is substable (i.e., the one dimensional process Ni(k) is

bounded in probability as k →∞). This fact is easy to prove on a countable state space, and
the reader is referred to [16, 28]. On a general state space, the situation is more complicated,

and one should consult Meyn and Tweedie [24]. This fact, called isolation lemma in [27, 28],

permits the study of the stability of each queue in isolation.

We now begin the construction of the stability region (i.e., the set of node arrival rates) of

system ΘM,U based on the knowledge of the stability region and the steady-state probabilities

of lower dimensional systems. We denote stability region of a whole system as SM,U . We

write S
(M{i},{i}),U to denote the stability region of the dominant system Θ(M{i},{i}),U which

arose by making the ith node behave like a persistent one. Note that while node i in the

dominant system behaves like a persistent one, this node still has a queue formed, and

therefore region S
(M{i},{i}),U consists of M -dimensional (not of (M − 1)-dimensional as the

region SM{i},U∪{i}) vectors. For simplicity, whenever there is no possibility for confusion, we

omit the set U from the notation in Θ, Θ, S, or S. For example, unless otherwise specified,

ΘM ≡ ΘM,U , ΘMV ,V ≡ ΘMV ,U∪V , S(M{i},{i}) ≡ S
(M{i},{i}),U .

The construction of the stability region follows the steps developed in [16, 28]. We will

therefore skip the details of a rigorous derivation and instead we will explain in some detail

the main idea behind each step. The construction is done inductively as follows:

Step 1: Derive the (sufficient) stability condition for a ring with one regular node and an

arbitrary set U of persistent nodes. In this case, we have a single queue (at the regular node)
and the derivation of the stability condition is easy. Specifically, let i be a single regular node

in the ring. Then, since the queue length Ni(k) is a Markov chain, using the Lyapunov test

function method (cf. [24]) one directly proves that the chain is ergodic if,

λi <
bQi

ET ( bQ) (4)

where, we recall that T ( bQ) denotes the cycle length when QM∪U(1) = bQ at the beginning of

a cycle. That is, ET ( bQ) ≡ E[T1|QM∪U(1) = bQ].
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Step 2: Assume that we derived the stability region for a ring with M − 1 regular nodes
and an arbitrary set U of persistent nodes. We next seek to define the stability region of a ring
with a setM, |M| =M, regular nodes, and an arbitrary set U of persistent nodes, in terms of
the stability regions and steady state probabilities of lower dimensional systems. This is done

by taking a set V ⊆M, V 6= ∅, of regular nodes and making them behave like persistent ones,
i.e., by considering system Θ

(MV ,V). By Proposition 2, NM(k) ≡ eN(M,∅)(k) ≤st eN(MV ,V)(k),

provided that NM(0) = eN(MV ,V)(0). Therefore, ΘM is stable whenever Θ
(MV ,V) is, i.e.,

SM ⊇ S
(MV ,V). Since V is arbitrary, we conclude that SM ⊇ SV⊆M S

(MV ,V), where V 6= ∅.
However, it follows again from Proposition 2 that if i ∈ V, then S

(M{i},{i}) ⊇ S
(MV ,V).

Therefore,

SM ⊇
[
i∈M

S
(M{i},{i}).

In fact, it turns out (see Theorem 2 below) that for the problem at hand, we have equality

(with the possible exception of boundaries) in the previous subset relation. With a slight

abuse of notation, to avoid the introduction of new symbols we will also denote the setS
i∈M S

(M{i},{i}) by SM.

Step 2a: Next, we determine the stability region S
(M{i},{i}) of system Θ(M{i},{i}), in

terms of the stability region and the steady state probabilities of the system ΘM{i},{i} which

is of dimensionM−1, and therefore, its stability region has been determined by the inductive
assumption. It should be noted that this is the point where the “fixed but arbitrary” set U
is used in the proof since now we can claim that ΘM{i},{i} is a “smaller copy” of the original

system. Specifically, in system Θ
(M{i},{i}) the set of persistent nodes is U . However, in system

ΘM{i},{i}, the set of persistent nodes is U ∪ {i} 6= U . Therefore we could not have applied
the inductive hypothesis if the assumption in this hypothesis did not involve an arbitrary set

U . To determine S(M{i},{i}) we apply the isolation lemma, i.e., we look for conditions under

which each queue in the setM, under system Θ
(M{i},{i}), is substable. For this, we look first

at the queues in the setM{i}, which evolve exactly as in system ΘM{i},{i}. Therefore, these

queues are stable as long as λM{i} ∈ SM{i},{i}, which by the inductive hypothesis is known.

Step 2b: It remains to determine conditions under which the queue at node {i} is
(sub)stable in system Θ

(M{i},{i}), which is done as follows. Assuming that λM{i} ∈ SM{i},{i},

we can construct a stationary and ergodic version of the queue length vector eNM{i}(k)

by starting it from the stationary distribution. Provided that this is done, the cycles in

S
(M{i},{i}), denoted as TM{i}(k), form a stationary and ergodic sequence (by similar argu-

ments to the one presented in our papers [16, 28]). We set TM{i} = TM{i}(1). More generally,

in the following we denote by TMV the steady-state cycle length in the system ΘMV ,V , pro-
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vided that this system is stable.2 Since the queue length of node i satisfies (3) and the cycle

lengths are stationary, an application of Loynes’ criterion [21] shows that the queue at node

i is stable if

λi < bQi/ET
M{i} .

which completes the construction of the stability region. 2

In summary, system Θ
(M{i},{i}) is stable when

λM ∈ S
(M{i},{i}) =

(
λ : λM{i} ∈ SM{i},{i} and λi <

bQi

ETM{i}

)
.

Repeating the previous argument for all i ∈M, we finally have the following result.

Theorem 1 Let

SM =
[
i∈M

(
λ : λMi ∈ SM{i},{i} and λi <

bQi

ETM{i}

)
. (5)

Then, system ΘMis stable if λ ∈ SM.

Using the stability condition of the one-dimensional system as described above and iter-

ating the recursive formula (5), we obtain a more explicit form for the stability region.

Corollary 1 Let Σ be the set of permutations of the set M = {1, 2, . . . ,M}, and let σ =
(σ(1), . . . , σ(M)) ∈ Σ. System ΘM is stable if λ ∈ SM, with

SM =
[
σ∈Σ

(
λ : λσ(l) <

bQσ(l)

ETMσ(l)
, l ∈M

)
, (6)

whereMσ(l) =
Sl−1
n=1{σ(n)} (by convention

S0
n=1{σ(n)} = ∅) .

Theorem 1 provides sufficient conditions for the stability region of the M -dimensional

system in terms of the sufficient conditions for the stability region (through SM{i},U∪{i}) and

the steady-state probabilities (through ETM{i}) of M − 1-dimensional systems. As we will
see below, with the exception of the boundaries, these conditions are also necessary.

We now start discussing the necessity of the conditions in (5). The following decomposi-

tion is crucial for the analysis. Its proof is presented in Section 4.

2Note that by definition, T ∅ is the steady-state cycle length in the system Θ∅,M, that is in the system where

all nodes behave like persistent nodes, i.e., node i ∈ U ∪M generates bQi packets during a cycle. Therefore, in

this case we have T ∅ ≡ T (bQ).

10



Proposition 3 Let S M
c be the complement of the stability region SM. Then, the following

decomposition holds

SMc =
[
V⊆M

(
λ : λMV ∈ SMV ,V , λj ≥

bQj

ETMV
for all j ∈ V

)
(7)

where V ranges over all nonempty subsets ofM.

In order to prove the necessary stability condition we need the following general result

that is of its own interest. Its proof can be found in Section 4.

Proposition 4 Let XM(n), n = 1, . . . , be an M-dimensional Markov chain (not necessarily

denumerable). Assume that it is known that if the process starts from state u ∈ <M , then for

all i ∈ V ⊆M,

lim
n→∞Xi(n) =∞.

Then, given any bounded one-dimensional set A, there is a state c ∈ <M such that ci /∈ A for

all i ∈ V and
Pr {Xi(n) /∈ A, i ∈ V, n ≥ 1 | X(1) = c} > 0 ,

that is, with positive probability all components of X(n) with indices belonging to V never

return to the set A.

We are now ready to show that with the exception of the boundaries, condition (5) is

necessary for the stability of the ring with spatial reuse. In addition, we provide a char-

acterization of the instability region. Specifically, we show that with the exception of the

boundaries, when the system is unstable, we can identify regions where some queues are sub-

stable and the remaining queues tend to infinity with positive probability. Note that while

it is easy to show that instability of one queue leads to instability of the whole system (for

a formal proof see for example [28]), in general, instability of a multidimensional Markov

chain, does not imply that at least one of the components converges to infinity. It is easy

to construct multidimensional systems where fluctuations of the queue lengths between large

and small values occur when the system is unstable (cf. [22]). Consider for example the

case of two queues with packets of unit length, served by a single server and assume that the

server serves exhaustively the queue that it visits. If λi < 1 for i = 1, 2 but λ1+λ2 > 1, then

the system is unstable while the queue sizes of both queues return to zero infinitely often

with probability one, for all initial states.

The next theorem completes the construction of the stability region for the ring with

spatial reuse.
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Theorem 2 System ΘM is unstable if λ ∈ bSMc , where bSMc is the complement of SM minus

the boundary points, that is,

bSMc =
[
V⊆M

(
λ : λMV ∈ SMV ,V , λj >

bQj

ETMV
for all j ∈ V

)
, (8)

where V ranges over all nonempty subsets ofM. Furthermore, in the region

bSMc (V) =
(
λ : λMV ∈ SMV ,V , λj >

bQj

ETMV
for all j ∈ V

)
(9)

all queues j ∈MV are substable while all queues i ∈ V tend to infinity with positive probability.

Proof. Consider the dominant system Θ
(MV ,V) and let λ ∈ bSMc (V). Since λMV ∈ SMV ,V ,

the queue lengths eNMV (k) constitute an ergodic Markov chain and starting from any state

we have

lim
k→∞

Pk
m=1 T

MV
m

k
= ETMV .

Since, in addition λj > bQj/ET
MV , an application of Loynes method [21] for instability shows

that starting from any state, limk→∞ eNj(k) = ∞ for all j ∈ V. Setting A =
h
0,maxj∈V bQj

i
in Proposition 4, we conclude that there is a state c ∈ <M such that if the process eNMV (k)

starts from state c, then there is a set of sample paths, Ωc, of positive probability such thateNj(k) ≥ bQj , j ∈ V for all k = 1, 2, . . .. Observe now that by definition, on the set Ωc

the queues in the original system Θ and in the dominant system Θ
(MV ,V) are identical and

therefore limk→∞Nj(k) = ∞ for all j ∈ V. This implies that the Markov chain NMV (k) is

transient. The fact that all queues inMV are substable follows directly from Proposition 2

and the ergodicity of eNMV (k).

We present next in some detail an example that illustrates the complications involved in

the calculation of the exact stability region of the system and the strong dependence of the

stability region on the distribution of the arrival rates.

Example 1. Stability Region of a Two Node Ring with Quotas 1 and 2

Consider the ring with U = ∅, bQ1 = 2, bQ2 = 1 and fi(s) = s, i = 1, 2 (fi(s) is defined in

condition (A1) in Section 2). The stability region can be expressed as follows

S{1,2} =

½
λ1 <

2

ET {2}
, λ2 <

1

ET ∅

¾
∪
½
λ1 <

2

ET ∅
, λ2 <

1

ET {1}

¾
(10)

= S
{1,2}
1 ∪ S{1,2}2

where T {i} is the steady-state cycle length in a system with node {i} being regular and the
other one persistent.
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Let us assume the simplest destination probabilities, namely p12 = p21 = 1. Then the

computation of the first set on the right hand side in (10) is straightforward. Indeed, observe

that by the choice of the destination probabilities, a node transmits in its outgoing link only

packets originated at itself. The interaction between the two nodes in this case is due only

to the fact that one node may have to wait until the other one completes transmission of its

quota packets. Recalling the definitions after formula (1) we have,

H1 (Q1(k), Q2(k)) = Q1(k), H2 (Q1(k), Q2(k)) = Q2(k),

where Hi(Q1(k), Q2(k)) represents the number of packets out of Q1(k)+Q2(k) that will pass

through the outgoing link of node i to reach their destination. If nodes 1 and 2 are persistent,

we have H1( bQ1, bQ2) = 2 and H2( bQ1, bQ2) = 1. Therefore,
T ∅ = T ( bQ1, bQ2) = max {2, 1} = 2 .

If on the other hand node 1 is persistent while node 2 is regular, then since Q2(k) ≤ bQ2 = 1
we again have

ET {2} = lim
k→∞

E
n
max

n
H1

³ bQ1, Q2(k)´ ,H2

³ bQ1,Q2(k)´oo = lim
k→∞

E {max {2, Q2(k)}} = 2.

Therefore,

S
{1,2}
1 =

½
λ1 <

2

ET {2}
, λ2 <

1

ET {∅}

¾
= {λ1 < 1 , λ2 < 0.5} .

We consider now the second set S
{1,2}
2 . The quantity that needs to be determined in this

case is the expected cycle length in steady state, when node 2 is persistent and node 1 is

regular, that is,

ET {1} = lim
k→∞

E {max {Q1(k), 1}} . (11)

Let Nk = N1(k) be the queue size at node 1 at the beginning of the kth cycle. Let R(z)

be the z-transform of R1(1), the number of arrivals to node 1 in the first slot (recall that

we assume that {R1(k)}∞k=1 are i.i.d.). Let l = τk, be the time when the kth cycle starts.

Then, it is easy to see from the definition of Q1(k) that max {Q1(k), 1} = 1 when Nk ≤ 1
and max {Q1(k), 1} = 2 otherwise. Therefore,

Nk+1 = (Nk − 2)+ +R1(l)1{Nk≤1} + (R1(l) +R1(l + 1))1{Nk≥2}

= (Nk − 2)+ +R1(l) +R1(l)1{Nk≥2}. (12)

The sequence Nk, k = 1, 2, . . . constitutes a one-dimensional Markov chain which by

construction is stable in the region S
{1,2}
2 . Indeed, in this special case, the condition for
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stability of Nk is λ1 < 1 which is guaranteed since by the definition of region S
{1,2}
2 ,

S
{1,2}
2 =

½
λ1 <

2

ET ∅
, λ2 <

1

ET {1}

¾
=

½
λ1 < 1, λ2 <

1

ET {1}

¾
,

and one must determine ET {1} to characterize the stability region.

In order to estimate ET {1}, let πn denote the steady state probability that there are n

packets in the queue of node 1 at the beginning of a cycle. Taking z-transforms in (12) and

considering the steady state, we have

N(z) = R(z)
³
Pr{N ≤ 1}+E

³
zN−2|N ≥ 2

´
R(z) Pr{N ≥ 2}

´
= R(z)

Ã
π0 + π1 +R(z)

∞X
n=2

πnz
n−2

!
= (π0 + π1)R(z) +R2(z)z−2N(z)−

³
π0z

−2 + π1z
−1´R2(z), (13)

where N(z) is the generating function of Nk in the steady state. From the above we conclude

that

N(z) =
(π0 + π1)z

2R(z)− (π0 + π1z)R
2(z)

z2 −R2(z)
. (14)

Using standard arguments based on the analyticity of N(z), we find that the probabilities

π0, π1, are determined by the system of equations,

(2− λ1)π0 + (1− λ1)π1 = 2− 2λ1, (15)

π0(za + 1) + 2zaπ1 = 0, (16)

where za is the unique root in [−1, 0] of the equation

R(z) = −z, (17)

Since the cycle length is either 1 if there is 0 or 1 packet in the queue of node 1 at the

beginning of a cycle, or 2 otherwise, we can easily compute the average steady state cycle

length as follows

ET {1} = π0 + π1 + 2(1− π0 − π1) =
4za

2za + (1− λ1)za − (1− λ1)
,

and therefore we finally obtain

S
{1,2}
2 =

½
λ1 < 1, λ2 <

2za + (1− λ1)za − (1− λ1)

4za

¾
Note that one should not conclude that in the previous formula the limit of

2za + (1− λ1)za − (1− λ1)

4za
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Figure 1: Stability region for the ring of Example 1.

as λ1 → 1, is 1
2 . In fact, za depends implicitly on λ1 and therefore, other limits are also

possible.

The root za of (17) depends on the distribution of the arrival process to node 1 and as a

result the same is true for the stability region. To demonstrate this strong dependence, we

plotted in Figure 1 the stability regions for the following arrival distributions to node 1:

1. D1 = {Pr{R1(1) = 0},Pr{R1(1) = 1},Pr{R1(1) = 2}} = {α2, 2α(1− α), (1− α)2},
0 ≤ α ≤ 1. This is binomial with parameters (α, 2) ;

2. D2 = {1− α2 − αe−1/(1−α), α2, αe−1/(1−α)}, 0 ≤ α ≤ 1;

3. D3 = {1− αe−1/(1−α) − 0.5α2, αe−1/(1−α), 0.5α2}, 0 ≤ α ≤ 1.

Note the strange at first sight behavior of the region corresponding to distribution D2.

This curve implies that for certain values of (λ1, λ2) it is possible to make an unstable system

stable by keeping λ2 constant and increasing λ1. The physical explanation of this behavior

is that as λ1 → 1, the probability that a single packet arrives at a slot dominates quickly

over the probability that 2 packets arrive at a slot. This results in the queue at node 1 to be

more likely of size 1, and therefore the cycle lengths are also more likely to be 1 than 2. But
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then there are fewer slots wasted by node 2 waiting for node 1 to complete its quota during

a cycle and therefore the unstable queue at node 2 may become stable.

As one can observe, the region ABED is common for the three arrival distributions.

However, the rest of the region depends strongly on the arrival distribution. From (17) it can

be seen that if the number of arrivals in a slot is always even, that is, if Pr{R1(1) = 2k+1} = 0
for all integer k ≥ 1, then za = −1 and the stability region is ABED. On the other hand,
when the number of arrivals during a slot is either 0 or 1, i.e., Pr{R1(1) = 0}+Pr{R1(1) =
1} = 1, it can be easily seen that the stability region is ABCD. As we will see in the next
section, the region ABED is a subset of the stability region for any arrival distribution. 2

The previous example also shows the price that has to be paid in order to achieve fairness

with the quota mechanism. The maximal stability region of the ring with spatial reuse (i.e.,

the region inside which there is always at least one policy that can stabilize the system) is

determined by (cf. [15, 18])

S = {λ :
MX
i=1

λiaij < 1 for j ∈M}

where aij = Pr{a packet generated by node i has to cross node j}. In [18] we presented a
policy whose stability region is S. Under the latter policy, node are assigned quota dynami-

cally by setting Qi(k) = Ni(k) (i.e., at the beginning of the kth cycle the quota assigned to

node i is equal to the queue length in this node at the beginning of the cycle). In Example

1, region S corresponds to the area ABCD. We see that the stability region under the fixed

quota policy is a strict subset of S. It should be mentioned, however, that under the policy

that dynamically adapts the node quota, an overloaded node will cause an overload to all

other nodes, a situation that does not occur under the fixed quota policy.

3.2 Bounds on the Stability Region Through Linear Programming

Example 1 demonstrates that even in the simplest case the stability region of the system de-

pends strongly on the distribution of the arrival process. While in this case the computations

are feasible, as the number of nodes and/or the quota sizes increase the computation of the

exact stability region quickly becomes intractable.

The strong dependence of the stability region on the arrival rate distribution as well as

the steady-state probabilities of lower dimensional systems, makes it worthwhile to search for

the following regions of arrival rates.

Essential Stability Region (ESR): The set of arrival rates λM with the prop-

erty that the system is stable under any arrival distributions as long as the nodes
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have the corresponding arrival rates λM.

Absolute Stability Region (ASR): The set of arrival rates λM with the prop-

erty that there is at least one set of node arrival distributions with corresponding

rates λM such that the system is stable.

The ESR is the intersection of the stability regions under all arrival distribution while

the ASR is the union of these stability regions. Clearly, ESR⊆ASR. The ESR is useful in

situations where the arrival distributions are not known a priori, a common situation in many

practical systems. Besides the theoretical interest of the ASR as the region outside which

the system cannot be stabilized under any arrival distribution with the given arrival rates, it

might also have practical implications when the input traffic can be controlled before entering

the network.

Based on Theorem 1 and Corollary 1, we will now develop bounds for the ESR and

ASR respectively, that depend only on the conditional average cycle lengths ET (q) which

are easier to compute than the steady state probabilities appearing in Theorem 1. We must

emphasize that the conditional average cycle lengths are fundamental quantities which can

be computed without knowing the steady state probabilities. The computation of ET (q)

depends only on the packet destination probabilities pij and q, and for small number of

nodes can be estimated directly based on (1). For large number of nodes and large quota,

computing even ET (q) is not easy, however, asymptotic results for these quantities exist [15].

The bounds are derived by associating the stability of the system to a solution of some linear

programming optimization problems whose constraints are derived from the flow balance

equations.

Our first goal is to find an upper bound on the average steady-state cycle length ETG in

system Θ
(G,V)

where (for simplicity of notations we set) G =MV , that is independent of the

arrival distribution. As will be seen, this leads to a subset of the ESR. When λ ∈ SG , then

by definition the nodes in the set G constitute a stable system. Let π(n), n = {nj , j ∈ G}
be the steady state probability of the process of node queue lengths at the beginning of a

cycle and for l ∈ G define a one dimensional distribution as

πl(n) =
X

n, nl=n

π(n). (18)

Standard arguments based on the regenerative theorem can be used (see e.g., [2, 16] for

similar results) to show that the following flow equations are satisfied for the system consisting

of the nodes in G
λlET

G =
∞X
n=0

ql(n)πl(n), l ∈ G, (19)
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where ql(n) = min
n
fl(n), bQl

o
, is the number of local packets transmitted by node l in a

cycle when the number of packets at that node at the beginning of the cycle is n. Equation

(19) states simply that in steady state the average number of arrivals to node l in a cycle is

equal to the average number of external packets transmitted by node l during a cycle.

Let now ETG(q), q = {qj : j ∈ G} be the conditional average cycle length in system
Θ
(G,V)

when node j ∈ G transmits qj packets in a cycle (and by definition a node j ∈ U ∪V
transmits bQj packets). Then, the average steady state cycle length satisfies,

ET G =
X
n

ET
G
(q(n))π(n), (20)

where q(n) = {qj(nj), j ∈ G}. Define next for m = {mj , j ∈ G}, 0 ≤ mj ≤ bQj ,

x(m) =

 π(m) if 0 ≤ mj ≤ bQj − 1, for all j ∈ GP
mj≥bQj , j∈K π(m) if mj = bQj , j ∈ K ⊆ G and 0 ≤ mj ≤ bQj − 1, j ∈ GK.

In terms of these variables, and based on the fact that qj(nj) = bQj when nj ≥ bQj , we can

rewrite the equations in (19) and (20) as follows.

λl
P
mET G(q(m))x(m) =

PbQl
n=0 ql(n)

P
m, ml=n

x(m), l ∈ GP
m x(m) = 1

x(m) ≥ 0

 , (21)

where m = {mj , j ∈ G}, 0 ≤ nj ≤ bQj .

From the above discussion we see that with every partition (G,V) ofMwe can associate

a polytope ℘(G,V) defined by the constraints in (21). Let us define TGmax as the solution of the

following linear programming optimization problem

TGmax = max
x(m)∈℘(G,V)

(X
m

ETG(q(m))x(m)
)
, (22)

Notice that the solution to this optimization problem requires only the knowledge of the

values of the conditional average cycle lengths which are usually easier to compute than the

corresponding steady state quantities.

Using the notation from Corollary 1, let us define the following two regions

SMσ =

½
λ : λσ(l) <

bQσ(l)

ETMσ(l)
, l ∈M

¾
LMσ =

½
λ : λσ(l) <

bQσ(l)

T
Mσ(l)
max

, l ∈M
¾ (23)

But, from the definition of TGmax we have

TMσ(l)
max ≥ ETMσ(l), l ∈M,
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which implies that for any permutation σ(·),

LMσ ⊆ SMσ . (24)

Defining next

TGmin = min
x(n)∈℘(G,V)

(X
n

ETG(q(n))x(n)
)
, (25)

and using similar arguments we have that

SMσ ⊆ UMσ ,

where

UMσ =

(
λ : λσ(l) <

bQσ(l)

T
Mσ(l)
min

, l ∈M
)
. (26)

In conclusion we have the following theorem.

Theorem 3 Let us define TGmax and TGminas in (22) and (25) respectively. Then, we obtain

a lower bound LM on the stability region SM as follows

LM =
[
σ

LMσ ⊆
[
σ

SMσ = SM,

where LMσ is defined in (23). Similarly, an upper bound is,

SM =
[
σ

SMσ ⊆
[
σ

UMσ = UM,

where UMσ is defined in (26).

Since by construction any arrival vector λ that belongs to LM results in a stable system,

we conclude that LM is in fact a subset of ESR. Similarly, UM is a superset of ASR.

Example 2. Again the Ring From Example 1.

Consider the ring from Example 1. Referring to Figure 1, it can be easily checked that in

this case the lower bound on the ESR is the region ABED, while the upper bound is the region

ABCD. For the same ring, assume now that the destination probabilities are p12 = p21 = 0.75.

Referring to Figure 2, the bounds on the ESR and ASR are the regions ABED and ABEFD

respectively. For arrivals rates in ABED the system is stable irrespective of the distribution

of the arrivals. For rates outside the region ABEFD, there is no distribution of arrivals that

can stabilize the system. As we will see in the next section, the region ABED is in fact the

ESR for the system with two nodes. 2
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Figure 2: ESR and ASR bounds

3.3 ESR for the Ring with Two Nodes

To illustrate our previous discussion, we derive explicitly the ESA region for two queues

ring network with fi(s) = s (the most interesting case in practice) and arbitrary number of

quotas, that is,M = {1, 2} and U = ∅. This example also illustrates how complicated ESA
computation can be even for the simplist possible case.

To establish just announced result, we need the following lemma that we prove in the

Appendix:

Lemma 1 The functions

ϕ(n) :=
ET ( bQ1, n)−ET ( bQ1, 0)

n
, 1 ≤ n ≤ bQ2,

ψ(n) :=
ET (n, bQ2)−ET (0, bQ2)

n
, 1 ≤ n ≤ bQ1,

are nondecreasing.

Based on Lemma 1 we can now determine the ESR for the ring with two nodes.
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Theorem 4 The Essential Stability Region for system Θ{1,2} coincides with the lower bound

in Theorem 3 and is given by

L =

(
λ1 <

bQ1
ET ( bQ1, bQ2) ,

Ã
ET ( bQ1, bQ2)bQ1 −

bQ2bQ1
!
λ1 + λ2 < 1,

)
(27)

∪
(
λ2 <

bQ2
ET ( bQ1, bQ2) , λ1 +

Ã
ET ( bQ1, bQ2)bQ2 −

bQ1bQ2
!
λ2 < 1,

)
(28)

Proof. The subset of the lower bound in Theorem 3 determined by the permutation σ(1) =

1, σ(2) = 2 is

L{1,2}σ =

(
λ1 <

bQ1
ET ( bQ1, bQ2) , λ2 <

bQ2
T
{1}
max

)
,

where

T {1}max = max
{x(n)}∈℘({1},{2})


bQ1X
n=1

ET (n, bQ2)x(n)
 ,

and the polytope ℘({1},{2}) is defined by the constraints

λ1
PbQ1

n=0ET (n,
bQ2)x(n) =

PbQ1
n=0 nx(n),PbQ1

n=0 x(n) = 1

x(n) ≥ 0, 0 ≤ n ≤ bQ1.

 (29)

We will show that the solution to the above maximization problem is obtained at the

point x∗ defined as x∗(n) = 0, 1 ≤ n ≤ bQ1 − 1, and

x∗(0) =
bQ1 −ET ( bQ1, bQ2)λ1bQ1 + bQ2λ1 −ET ( bQ1, bQ2)λ1 , (30)

x∗( bQ1) =
bQ2λ1bQ1 + bQ2λ1 −ET ( bQ1, bQ2)λ1 . (31)

It will follow that

T {1}max = ET (0, bQ2)x∗(0) +ET ( bQ1, bQ2)x∗( bQ1) = bQ1 bQ2bQ1 + bQ2λ1 −ET ( bQ1, bQ2)λ1 ,
and therefore,

λ2 <
bQ2

T
{1}
max

= 1 + λ1
bQ2bQ1 − ET ( bQ1, bQ2)bQ1 λ1 (32)

which is equivalent to the second inequality in (27).

Since entirely analogous arguments hold for the permutation σ(1) = 2, σ(2) = 1, we

conclude that region L is a subset of ESR. To show that it is indeed equal to the ESR, it
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is sufficient to provide arrival distributions under which the described region is actually the

stability region of the ring. But this can easily be done, by considering that the number of

packets arriving at node i in a slot is either 0 or bQi. In this case, the number of packets

at node i at the beginning of a cycle is either 0 or a multiple of bQi. For the permutation

σ(1) = 1, σ(2) = 2, this implies that π1(n) = 0, 1 ≤ n ≤ bQ1 − 1. But since the variables
x(n) = π1(n), 0 ≤ n ≤ bQ1 − 1, and x( bQ1) =P∞

n=bQ1 π1(n) have to satisfy the flow equations
for node 1, i.e., constraints (29), we conclude that π1(0) = x∗(0) and

P∞
n=bQ1 π1(n) = x∗( bQ1).

It follows that T
{1}
max = ET {1}, which implies that the ESR for this system is the one described

in the theorem.

We now show that x∗ is the solution to the maximization problem (29) by considering

the associated Kuhn-Tucker conditions (cf. [20]). We need to show the existence of unique

un ≥ 0, 0 ≤ n ≤ bQ1, (inequality constraints) and c1, c2 (equality constraints) such that

1. unx
∗(n) = 0

2. −ET (n, bQ2)− un + c1(λ1ET (n, bQ2)− n) + c2 = 0 .

Since λ1 < ( bQ1/ET ( bQ1, bQ2), it follows that x∗(0) > 0, x∗( bQ1) > 0 and therefore, u0 =

ubQ1 = 0. This implies that ci, i = 1, 2 are determined uniquely by the solution of the system:
λ1ET (0, bQ2)c1 + c2 = ET (0, bQ2)³

λ1ET ( bQ1, bQ2)− bQ1´ c1 + c2 = ET ( bQ1, bQ2). (33)

Next, un, 0 < n < bQ1, are determined from³
λ1ET (n, bQ2)− n

´
c1 + c2 = un +ET (n, bQ2) (34)

Substituting the values of ci determined from (33) in (34), we find that the condition that

the un are nonnegative is equivalent to the condition

ET (Q1, Q2)−ET (0, Q2)

Q1
≥ ET (n,Q2)−ET (0, Q2)

n
, 0 < n < Q1. (35)

The truth of (35) follows from Lemma 1.

4 Proof of Instability Results

In this section we prove two auxiliary results, namely, Proposition 3 (cf. Subsection 4.1) and

Proposition 4 (cf. Subsection 4.2) that are crucial for our main instability result, namely

Theorem 2. These propositions allow us to conclude the instability of the system from the

instability of the dominant one and may be useful in other situation as well.
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4.1 The Decomposition Result

We start with the decomposition formula (7) of Proposition 3. First, we need two simple

facts.

Lemma 2 Let V1 ⊆ V2 ⊆M. Then,

ETMV2 ≥ ETMV1 .

Proof. The proof follows directly from Propositions 1 and 2.

Lemma 3 Let V1, V2 be subsets ofM such that V1 − V2 6= ∅. Then,

BV1 ∩ SMV2 = ∅,

where

BV1 =
(
λ : λMV1 ∈ SMV1 , λj ≥

bQj

ETMV1
, j ∈ V1

)
.

Proof. Let V0 = V1 − V2. By (6) of Corollary 1 we can write SMV2 as a union of sets,

SMV2 =
[
σ

Cσ,

where each Cσ contains the following constraint for some i ∈ V0

λi <
bQi

ETMV
, (36)

where V ⊇ V1 ∪ V2. But, since by Lemma 2, ETMV ≥ ETMV1 , constraint (36) contradicts

the constraint

λi ≥
bQi

ETMV1

which clearly holds for i ∈ V1.
Now we are ready to establish our decomposition formula (7).

Proposition 3 Let SMc be the complement of the stability region SM. Then, the following

decomposition holds

SMc =
[
V⊆M

(
λ : λMV ∈ SMV ,V , λj ≥

bQj

ETMV
for all j ∈ V

)
.

where V ranges over all nonempty subsets ofM.
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Proof. Let Φn be the set of all subsets V of M with cardinality |V| = n ≤ M and Φn =Sn
k=1Φk. We will show that we can write

SMc =

 \
V∈Φn

SMV ,V
c

[ [
V∈Φn

BV

 , (37)

where

BV =
(
λ : λMV ∈ SMV ,V , λj ≥

bQj

ETMV
for all j ∈ V

)
.

Notice that setting n = M in (37) is equivalent to the desired result. The proof of (37) will

be by induction on n.

For n = 1, taking complements of (5) in Theorem 1 we have

SMc =
\
i∈M

{Di,1 ∪Di,2} =
[
s

( \
i∈M

Di,si

)
=

( \
i∈M

Di,1

) [
s6=1

( \
i∈M

Di,si

)
, (38)

where s = (s1, · · · , sM), si = 1 or 2, and 1 = (1, 1, . . . , 1),

Di,1 = S
M{i},{i}
c

and

Di,2 =

(
λ : λM{i} ∈ SM{i},{i}, λi ≥

bQi

ETM{i}

)
.

Now, by Lemma 3 we have that if i 6= j, then Di,2 ∩ SM{j},{j} = ∅. This implies that for
i 6= j, Di,2 ∩Dj,2 = ∅ and Di,2 ∩Dj,1 = Di,2. This in turn implies that if si = 2 and sj = 1

for all j 6= i, then
T
iDi,si = Di,2 while if si = 2 and sj = 2 for at least one j 6= i, thenT

iDi,si = ∅. Therefore, we can write (38) as follows.

SMc =

Ã \
i∈M

Di,1

!
∪
Ã [
i∈M

Di,2

!

The last equality is equivalent to (37) for n = 1.

Assume now that (37) is true for n < M . We will show that

\
V∈Φn

SMV ,V
c =

 \
V∈Φn+1

SMV ,V
c

 ∪
 [
V∈Φn+1

BV


which implies (37) for n+ 1. Exactly as in the case n = 1, we can write

SMV ,V
c = EV,1 ∪EV,2,

where

EV,1 =
\

i∈MV

S
MV∪{i},{i}∪V
c
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and

EV,2 =
[

i∈MV

(
λ : λMV∪{i} ∈ SMV∪{i},{i}∪V , λi ≥

bQi

ETMV∪{i}

)
.

Therefore, we again have,

\
V∈Φn

SMV ,V
c =

[
s

 \
V∈Φn

EV,sm(V)

 =
 \
V∈Φn

EV,1

 [
s6=1

 \
V∈Φn

EV,sm(V)

 ,

where s = (s1, . . . , s(Mn )
), si = 1 or 2 and m(V) is a one-to-one mapping from Φn ton

1, · · · , ¡Mn ¢o. It is easy to see that\
V∈Φn

EV,1 =
\

V∈Φn+1
SMV ,V
c .

It remains to show that [
s6=1

 \
V∈Φn

EV,sm(V)

 = [
V∈Φn+1

BV

For this we can use arguments similar to the case n = 1 after observing that for V ∈ Φn+1\
i∈V

EV−{i},2 = BV .

which completes the proof.

4.2 A General Result For Unstable Markov Chains

Here we establish Proposition 4 concerning the probabilistic behavior of an unstable Markov

chain. For convenience, we repeat below the proposition.

Proposition 4 Let XM(n), n = 1, . . . , be an M-dimensional Markov chain (not necessarily

denumerable). Assume that it is known that if the process starts from state u ∈ <M , then for

all i ∈ V ⊆M,

lim
n→∞Xi(n) =∞.

Then, given any bounded one-dimensional set A, there is a state c ∈ <M such that ci /∈ A for

all i ∈ V and
Pr {Xi(n) /∈ A, i ∈ V, n ≥ 1 | X(1) = c} > 0 ,

that is, with positive probability all components of X(n) with indices belonging to V never

return to the set A.

Proof. Let B =
n
s ∈ <M : si ∈ A, for some i ∈ V

o
. Assume that

Pr {X(n) /∈ B, for all n ≥ 1 | X(1) = s} = 0
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for all states s /∈ B. This implies that for all states s,

Pr {X(n) ∈ B, for some n ≥ 1 | X(1) = s} = 1. (39)

We will show now that (39) implies that for any state s,

Pr {X(n) ∈ B, i.o. | X(1) = s} = 1.

Let Cl = {ω : X(n) ∈ B for at least l times} . Since {X(n) ∈ B, i.o.} = T∞
l=1Cl, we have that

Pr {Xi(n) ∈ B, i.o. | X(1) = s} = lim
l→∞

Pr {Cl|X(1) = s} .

Therefore, it suffices to show that Pr {Cl|X(1) = s} = 1, l ≥ 1. From (39) we see that this

is true for l = 1. Assume now that it is true for l. Define the random time T as the first time

that the process visits the set B for the lth time. Since Pr {Cl|X(1) = s} = 1, we conclude
that T is finite almost surely. Therefore,

Pr {Cl+1|X(1) = s} = Pr {X(T + n) ∈ B for some n ≥ 1|X(1) = s }
=

R
Pr {X(T + n) ∈ B for some n ≥ 1| X(T + 1) = z , X(1) = s } dPr{z|X(1) = s}

(40)

Since T is a stopping time and X(n) is Markov, we conclude that

Pr {X(T + n) ∈ B for some n ≥ 1|X(T + 1) = z , X(1) = s }
= Pr {X(n) ∈ B, for some n ≥ 1 | X(1) = z}
= 1.

This together with (40) implies that Pr {Cl+1|X(1) = s} = 1.
Since Pr {X(n) ∈ B, i.o. | X(1) = s} = 1 and |V| < ∞, starting from any state at least

one of the components j ∈ V of the Markov chain visits the set A infinitely often . But this

contradicts the assumption that starting from state u,

lim
n→∞Xi(n) =∞, i ∈ V.

This completes the proof.

5 Conclusions

We derived the necessary and sufficient conditions for the stability of a ring with partial

reuse. These conditions define implicitly the stability region of the system. Specifically, the

stability region of an M -dimensional system is defined in terms of the stability regions and
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the steady-state probabilities of (M − 1)-dimensional systems. Therefore, in principle, if the
stability region of the system with 1 node is known, the stability region of higher dimensional

systems can be determined. It should be stressed, however, that the calculation of the steady-

state probabilities of lower dimensional stable systems is also required. While knowledge

of the stability region of lower-dimensional systems is necessary for this calculation to be

meaningful, the calculation itself is a whole new problem which quickly becomes intractable.

As a result the stability regions are in general very complicated. We developed bounds on the

stability region using a Linear Programming approach, where only the conditional average

cycle lengths (not steady-state) are used.

The results presented here can be directly applied to any multi-dimensional queueing

system that operates in cycles during which certain quota of packets can be transmitted by

each node. The only quantity that will change is the formula for the conditional average

cycle lengths which is the fundamental quantity determined by the operation of the policy

for serving the various queues. Whether the developed bounds are easy to calculate depends

on how easy it is to calculate the conditional average cycle lengths.

We saw that the algorithm operating with fixed quota results in reduced stability region

relative to the algorithm studied in [18], where the quota vary dynamically. However, as a

result of keeping the quota fixed, no node is ever blocked for a long time from transmitting

its locally generated packets. In practice this is significant enough to justify some reduction

in the stability region. Besides, it has been shown in [15] that if the statistics of packet

destination probabilities pij are known, then the quota can be chosen so that each node

acquires its required throughput. In the absence of such knowledge, the problem becomes

more difficult. In [9], mechanisms have been proposed by which the nodes adjust their quota

according to ring load conditions. Simulation results show that these mechanisms result in

increase in throughput while still guaranteeing that a node is not blocked for a long time

from transmitting its locally generated packets.
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APPENDIX: Proof of Lemma 1

In this appendix we prove Lemma 1 which we repeat below for convenience.

Lemma 1 The functions

ϕ(n) :=
ET ( bQ1, n)−ET ( bQ1, 0)

n
, 1 ≤ n ≤ bQ2,

ψ(n) :=
ET (n, bQ2)−ET (0, bQ2)

n
, 1 ≤ n ≤ bQ1,

are nondecreasing.

Proof. Let di,k be the destination of the kth packet transmitted by node i, i = 1, 2, and let

Xk := 1{d2(k)=2}, Yk := 1{d1(k)=1}.

In other words, Xk is 1 if the kth packet generated by node 2 will have to go through node

1 and similarly for Yk. We know that (see (1))

T ( bQ1, n) = max
 bQ1 + nX

k=1

Xk, n+

bQ1X
k=1

Yk

 (41)

and therefore,

T ( bQ1, n)− T ( bQ1, 0) = max


nX

k=1

Xk, n− bQ1 + bQ1X
k=1

Yk


= max

(
nX

k=1

Xk, n− V

)
,

where V = bQ1 −PbQ1
k=1 Yk, (therefore, 0 ≤ υ ≤ bQ1). Let Z =Pn

k=1Xk and

W = nmax {Z +Xn+1, n+ 1− V }− (n+ 1)max {Z, n− V } .

To show that ϕ(·) is nondecreasing, it is sufficient to show that for 0 ≤ υ ≤ bQ1,
E {W |V = υ} ≥ 0, 1 < n < bQ2. (42)

Notice first that if V = υ and Z > n− υ, then

W = nmax {Z +Xn+1, (n+ 1)− υ}− (n+ 1)Z
= nmax {Xn+1, n− υ − Z}− Z

≥ nXn+1 − Z (43)
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On the other hand, if V = υ, n− υ ≥ 0 and 0 ≤ Z ≤ n− υ,

W = nmax {Z +Xn+1, n+ 1− υ}− (n+ 1)(n− υ)

= max {nXn+1 + n (Z − (n− υ))− (n− υ), υ}
≥ υ. (44)

If n − υ ≤ −1, taking into account that Z ≥ 0 and V is independent of Xk, k = 1, · · · , bQ2,
we conclude from (43) that,

E {W |V = υ} = E {W |V = υ, Z > n− υ}
≥ nEXn+1 −EZ

= nq22 − nq22 = 0

Assume now that n− υ ≥ 0. Then, from (43), (44) we have that

E {W |V = υ} ≥ E
³n
(nXn+1 − Z)1{Z>n−υ}

o
|V = υ

´
+ υE

³n
1{0≤Z≤n−υ}

o
|V = υ

´
= nq22 Pr {Z > n− υ}−E

³
Z1{Z>n−υ}

´
+ υPr {0 ≤ Z ≤ n− υ} , (45)

where in the last equality we used the fact that the random variable V , Z and Xn+1 are

independent. To simplify the notation set q22 = q. Since by definition EZ = nq, we have

from (45)

E {W |V = υ} ≥ E
³
Z1{0≤Z≤n−υ}

´
− (nq − υ) Pr {0 ≤ Z ≤ n− υ} ,

or, setting m = n− υ,

E {W |V = υ} ≥ E
³
Z1{0≤Z≤m}

´
− (nq − n+m) Pr {0 ≤ Z ≤ m} , (46)

To show that E {W |V = υ} ≥ 0, it is sufficient to have
E
³
Z1{0≤Z≤m}

´
≥ (nq − n+m) Pr {0 ≤ Z ≤ m} , (47)

or equivalently,

E (Z| {0 ≤ Z ≤ m}) ≥ nq − n+m. (48)

Recalling that Z =
Pn

k=1Xk and that Xk take only the values 0, 1 we have

E (Z |{0 ≤ Z ≤ m}) = nE

Ã
X1|

(
nX

k=1

Xi ≤ m

)!

= nPr

(
X1 = 1

¯̄̄̄
¯
(

nX
k=1

Xk ≤ m

))

= n
Pr {X1 = 1,

Pn
k=2Xk ≤ m− 1}

Pr {Pn
k=1Xk ≤ m}

= n
qPr

nPn−1
k=1 Xk ≤ m− 1

o
Pr {Pn

k=1Xk ≤ m}
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In the last equality we used again the fact that Xk, k = 1, . . . , n are i.i.d. The probabilities

in the last equality are related as follows:

Pr

(
nX

k=1

Xk ≤ m

)
= Pr

(
nX

k=1

Xk ≤ m,
n−1X
k=1

Xk ≤ m− 1
)
+Pr

(
nX

k=1

Xk ≤ m,
n−1X
k=1

Xk ≥ m

)

= Pr

(
n−1X
k=1

Xk ≤ m− 1
)
+Pr

(
Xn = 0,

n−1X
k=1

Xk = m

)

= Pr

(
n−1X
k=1

Xk ≤ m− 1
)
+ (1− q) Pr

(
n−1X
k=1

Xk = m

)
.

Using these facts we find after some simple calculations that in order to prove (48) it is

sufficient to proveµ
1− m

n

¶
Pr

(
nX

k=1

Xk ≤ m

)
≥ q(1− q) Pr

(
n−1X
k=1

Xk = m

)
(49)

To show that (49) holds argue as follows

n−m

n
Pr

(
nX

k=1

Xk ≤ m

)
≥ n−m

n
Pr

(
nX

k=1

Xk = m

)

=
n−m

n

n!

m!(n−m)!
qm(1− q)n−m

= (1− q)
(n− 1)!

m!(n−m− 1)!q
m(1− q)n−m−1

= (1− q) Pr

(
n−1X
k=1

Xk = m

)

≥ q(1− q) Pr

(
n−1X
k=1

Xk = m

)

which completes the proof.
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