
1

Replicated Server Placement with QoS

Constraints

Georgios Rodolakis, Stavroula Siachalou and Leonidas Georgiadis

Abstract

The network planning problem of placing replicated servers with QoS constraints is considered.

Each server site may consist of multiple server types with varying capacities and each site can be

placed in any location among those belonging to a given set. Each client can be served by more than

one location as long as the round-trip delay of data requests satisfies predetermined upper bounds. Our

main focus is to minimize the cost of using the servers and utilizing the link bandwidth, while serving

requests according to their delay constraint. This is an NP-hard problem. A pseudopolynomial and a

polynomial algorithm that provide guaranteed approximation factors with respect to the optimal for the

problem at hand are presented.

Index Terms

Algorithm design and analysis, Constrained optimization, Applications, Distributed file systems,

Client/server.

I. INTRODUCTION

Communications networks are used widely for distributing data and all kinds of services. In

networks such as the Internet, the world’s largest computer network, providers strive to satisfy

user QoS requirements in a cost effective manner. Within this framework, we concentrate in this

paper on the problem of placing replicated data servers in various parts of the network so that

the overall cost (i.e., cost of opening the servers and transferring the data) is minimized, while

satisfying user requirements that concern constraints on the round-trip delay of data requests.

We formulate this network planning problem in a general manner, so that the algorithms we

This paper was presented in part at the Third International Workshop on QoS in Multiservice IP Networks Catania, Italy –
February 2-4, 2005.

G. Rodolakis is with Hipercom Project, INRIA Rocquencourt, 78153 Le Chesnay Cedex, France. E-mail:
Georges.Rodolakis@inria.fr.

S. Siachalou and L. Georgiadis are with Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki,
Thessaloniki, Greece. E-mails: ssiachal@auth.gr, leonid@auth.gr.

2

provide can be useful in many different contexts and applications, for instance in the placement

of web proxies, in distributed file systems, in distributed databases etc.

The problem of replicated server placement has been addressed in the past in several papers.

Krishnan et. al. [1] developed polynomial optimal solutions to place a given number of servers in

a tree network to minimize the average retrieval cost of all clients. Li et. al. [2] investigated the

placement of a limited number of Web proxies in a tree so that the overall latency for accessing

the Web server is minimized. In [3] two objectives were studied: minimization of the overall

access cost by all clients to access the Web site and minimization of the longest delay for any

client to access the Web site. The problem was reduced to the placement of proxies in a set

of trees whose root nodes are replicas of the server. Jia et. al. [4] took the read and update

operations into consideration. Qiu et. al. [5] also assumed a restricted number of replicas and

no restriction on the number of requests served by each replica. A client could be served by a

single replica and the cost for placing a replica was also ignored. The objective was to minimize

the total cost for all clients to access the server replicas, while the cost of a request was defined

as the delay, hop count or the economic cost of the path between two nodes. They compared

several heuristic solutions and found that a greedy algorithm had the best performance. Chen

et. al. [6]-[7] tackled the replica placement problem from another angle: minimizing the number

of replicas while meeting clients’ latency constraints and servers’ capacity constraints by self

organizing these replicas into a dissemination tree with small delay and bandwidth consumption

for update dissemination. In [8] the authors considered the problem of placing a set of mirrors

only at certain locations such that the maximum distance from a client to its closest mirror (server

replica), based on round trip time, is minimized. They assumed no cost for placing a mirror and

showed that placing mirrors beyond a certain number offered little performance gain. Sayal et. al.

[9] presented a number of selection algorithms to access replicated Web servers. The algorithms

found the closest replicated server for a client based on different metrics such as hop counts,

round trip time and the HTTP request latency. In [10] the objective was to minimize the amount

of resources, storage and update, required to achieve a certain level of service. They assumed

that all servers in the network are organized into a tree structure rooted at the origin server. The

construction of a distribution tree for a given set of replicas with the objective of minimizing

the total communication cost of consistency management has been studied in [11]. Tang et. al.

[12] presented a theoretical study on geographical replication of dynamic Web contents with

the objective of minimizing the consistency management costs in terms of update transfers and

3

object reconstruction. Cohen and Shenker [13] defined replication strategies in decentralized

unstructured systems. They assumed each node had capacity ρ, which was the number of copies

the node could hold and R was the total capacity of the system. Their replication strategy was

a mapping from the query rate distribution to the fraction of the total system capacity allotted

to each item.

In this paper we approach the problem of replicated server placement with QoS constraints

from a system administrator’s perspective. Our contributions are the following. In contrast to

most of the papers addressing similar problems, instead of heuristics, we provide a solution

with provable performance guarantees for any possible network topology and client distribution.

Also, rather than attempting to optimize metrics related to communication delays, we impose

upper bounds on the round trip delays of data requests and attempt to minimize the operating

cost of server placement, while respecting the delay bounds. Moreover, in the optimization

we take into account the multiplicity of server types that may be available at a site. As will

be seen, the problem is NP-hard and therefore an optimal solution is not likely to be found.

We present a pseudopolynomial approximation algorithm and a polynomial time algorithm that

provide guaranteed approximation factors with respect to the optimal for the problem at hand.

The rest of the paper is organized as follows. In Section II, we formulate the problem

in details and we decompose it into three subproblems that can be solved independently. In

Section III, we present a pseudopolynomial time approximation algorithm. In Section IV, we

provide a polynomial time algorithm with approximation factor close to the best possible (unless

NP⊆DTIME(nO(log logn))). The performance of the algorithm in simulated networks is studied

in Section V. Conclusions are presented in Section VI.

II. PROBLEM FORMULATION

Let G(V,E) represent a network with node set V , and link set E. Let also H be a subset

of V . We are interested in placing servers at some of the nodes in H, that will serve requests

originated by any of the nodes in V . We assume that the servers contain the same information

and hence any node may obtain the requested information by accessing any of the servers.

With link (i, j) there is an associated delay dij . Requests should be obtained in a timely

fashion, and hence there is a bound D on the time interval between the issuing of the request

and the reception of the reply. We refer to this bound as the “round-trip delay bound”. Note that

the processing time of a request at the server can be incorporated in this model by replacing D

4

with D − dp, where dp is an upper bound on the request processing time at the server.

The load in requests per second originated by node i ∈ V is gi. To transfer an amount of

x requests per second, it is required to reserve bandwidth αx on the links traversed by the

requests. The transfer of server replies corresponding to the x requests back to the requesting

node, requires the reservation of βx units of bandwidth on the links traversed by the replies.

The cost of transferring 1 unit of bandwidth on link (i, j) is eij . Hence the cost of transferring

x requests per second on link (i, j) is αeijx while the cost of transferring the replies to these

requests is βeijx. A node i can split its load gi to a number of servers and routes as long as the

delay bound D between the issuing of the request and the reception of the reply is satisfied. At

each node j ∈ H there is a set Sj of server types that can be selected. Server type s, 1 ≤ s ≤ Kj ,

(Kj = |Sj|) costs f sj units and can process up to Us
j requests per second.

Our objective is to determine,

1) the locations (subset of the nodes in H) where the servers will be placed,

2) the amount of traffic (in requests per unit of time) that will be routed by each node to

each of the selected locations,

3) the routes through which the node traffic will be routed to each of the selected locations,

4) the type of servers and the number of each type that should be opened at each location,

so that,

1) the round-trip delay bound for each request is satisfied,

2) the total cost of using the servers and utilizing the link bandwidth is minimized.

Notice that in the current setup we do not consider link capacities. In effect we assume that the

network links have enough bandwidth to carry the requested load by the network nodes. Since

we consider link costs, this is a reasonable assumption, because any capacity that is required

can be provided by the ISP, which in case of bandwidth saturation can either add more capacity,

or charge an extra cost for the use of that link. Furthermore, in an environment where the server

requests on a given link are a small portion of the total amount of information that can be

supported by the network this assumption is of no consequence. However, in the case where

bottleneck links could emerge we need to take special care to apply excessive costs to these

links in order to avoid the concentration of too much traffic. The general problem where link

capacities are also included, is a subject of further research.

5

A. Optimization Problem Formulation

A feasible solution to the problem consists of the following:

• A set of locations F ⊆ H where the servers will be placed.

• A subset of server types Gj ⊆ Sj that should be opened at location j ∈ F.

• The number nsj of server types s ∈ Gj that should be opened at location j ∈ F .

• A set of round-trip routes Rij between node i ∈ V and facility j ∈ F . A round-trip route,

denoted rij = (prij , qrij), consists of two simple paths, prij and qrij . Path prij originates at

node i and ends at server location j, and is used for transferring requests. Path qrij originates

at server location j and ends at node i, and is used for transferring replies.

• The amount of requests per unit of time, xrij , accommodated on round-trip route rij .

The constraints of the problem are the following:

• The request load of each node should be satisfied. That is,

X
j∈F

X
r∈Rij

xr = gi, i ∈ V. (1)

• The round-trip delay of each round-trip route should be at most D. That is,

X
l∈p

dl +
X
l∈q

dl ≤ D, for r = (p, q) ∈ R, (2)

where R is the set of all round-trip routes, R = ∪i∈V ∪j∈F Rij , and the summation is over

all links of the corresponding paths.

• The total server capacity at server location j ∈ H should be at least as large as the request

rate arriving at location j. That is,

X
i∈V

X
r∈Rij

xr ≤
X
s∈Gj

nsjU
s
j , j ∈ H. (3)

The objective cost function to be minimized is

X
j∈F

X
s∈Gj

nsjf
s
j +

X
l∈E

el(α
X

r=(p,q)∈R
l∈p

xr + β
X

r=(p,q)∈R
l∈q

xr). (4)

The first term in (4) corresponds to the cost of opening the servers, while the second term

corresponds to the cost of reserving bandwidth on the network links in order to satisfy the node

requests. The term involving the factor α corresponds to the bandwidth reserved on a link for

transmission of node requests, while the term involving the factor β corresponds to the bandwidth

6

dij, eij delay and cost of link i, j F  H set of chosen locations
x requests/sec Gj  Sj, set of server types opened at j  F
gi load originated by node i n js number of server types s  Gj at j  F

rij  prij , qrij  round-trip route Rij set of round-trip routes between i  V and j  F
D delay bound of rij R   iV  jF Rij
H  V, set of possible server locations xrij requests/sec at route rij
S j set of possible server types at j  H fjs cost of server s at j  H

Uj
s requests/sec processed by server s at j  H fjy minimum cost server cost at location j for load y

Fig. 1. Notation Table

reserved on the same link for transmitting replies.

For the rest of the paper we assume that the node loads gi, i ∈ V, are nonnegative integers

and that splitting of these loads to a number of server locations may occur in integer units. In

practice this is not a major restriction, since usually the load is measured in multiples of a basic

unit. For the reader’s convenience, we summarize the basic notations used throughout the paper

in Figure 1.

B. Problem Decomposition

In this section we decompose the problem defined in Section II-A into three subproblems

which can be solved independently. As will be seen all three problems are NP-hard.

For a round-trip route r = (p, q), define the cost Cr = α
P

l∈p el + β
P

l∈q el. Consider a

feasible solution, π, for the optimization problem.

We can rewrite the second term in (4) as follows.

X
l∈E

el

α
X

r=(p,q)∈R
l∈p

xr + β
X

r=(p,q)∈R
l∈q

xr

 =
X
i∈V

X
j∈F

X
r∈Rij

Crxr. (5)

Let r∗ij be a minimum-cost round-trip route between node i and server location j, satisfying

the round-trip delay D. Consider the feasible solution that uses the same server locations, the

same servers at each location, but assigns all the request load from node i to server location j

on the round-trip route r∗ij , i.e., it assigns on r∗ij the load xij =
P

r∈Rij
xr.

It follows from (4) and (5) that the new solution has cost smaller than or equal to the cost of

solution π. Hence it suffices to restrict attention to solutions that assign all the load from node

i to server location j, on the round-trip route r∗ij . In this case, setting cij = Cr∗ij , the term in (4)

becomes
P

i∈V
P

j∈F cijxij .

7

Consider now the first term in (4). Let fj(y) be the minimum cost server type assignment

at location j, under the assumption that the request load at that location is y. By definition,

the feasible solution that assigns this minimum cost server assignment at location j for request

load yj =
P

i∈V
P

r∈Rij
xr, is at least as good as π. Hence, we may replace this term withP

j∈F fj (yj) .

For our purposes, it is important to observe that the function fj(y) defined in the previous

paragraph is subadditive, i.e., it satisfies the inequality

fj(y1) + fj(y2) ≥ fj(y1 + y2) for all y1 ≥ 0, y2 ≥ 0. (6)

To see this, note that if S(y1), S(y2) is the set of servers achieving the optimal costs fj(y1),

fj(y2) respectively, then the set of servers S(y1)∪S(y2) provides a feasible solution for request

load y1 + y2, with cost fj(y1) + fj(y2). Since fj(y1 + y2) is by definition the minimum cost

server assignment with request load y1 + y2, (6) follows.

From the discussion above it follows that we need to solve the following problems.

Problem 1. Given a graph, find a round-trip route with minimum cost, satisfying the round-trip

delay bound for any node i ∈ V and server location j ∈ H. This determines cij, i ∈ V, j ∈ H.

Problem 2. Given a set of server types Sj and a required load y at node j ∈ H, find the optimal

selection of server types and the number of servers nsj(y) of each type s so that the load y is

accommodated. That is, determine nsj(y) so that
P

s∈Gj
nsj(y)U

s
j ≥ y and fj(y) =

P
s∈Gj

nsj(y)f
s
j

is minimal.

Problem 3. Given non-decreasing subadditive functions fj(y), costs cij , integer node loads

gi ≥ 0, i ∈ V , solve

min
X
j∈H

fj(y) +
X
i∈V

X
j∈H

cijxij

subject to:
X
j∈H

xij = gi, i ∈ V,
X
i∈V

xij = y, j ∈ H, xij ≥ 0.

A graphical representation of the problem is depicted in Figure 2.

The decision problems associated to Problems 1 and 2 are NP-hard. Indeed, when β = 0, the

associated decision problem to Problem 1 is reduced to the Shortest Weight-Constrained Path

problem which is known to be NP-hard [14]. Also, the associated decision problem to Problem 2

amounts to the Unbounded Knapsack Problem which is NP-hard [15]. However for both problems

8

s
w

u

j

v s

wu

j

v

() (){ }1 1 2 2server types: , , ,f U f U

s

wu

j

v

suc
svc

juc
jwc

swc

jvc

(a) (b) (c)

suc swc jwcjvc

2 servers of
type 1

1 server of
 type 2Possible locations ()sf y

y

()jf y

y

Fig. 2. a) A graph with five clients, V = {s, u, v, w, i}, two possible locations H = {s, j} and two types of servers for each
location. b) The modified graph where each link represents the round-trip minimum cost routes, satisfying the delay constraint
between a client and a possible location. fs (y) and fj (y) are the cost functions at the possible locations. c) The resulting
graph. Servers have been placed at the appropriate locations.

pseudopolynomial algorithms exist (see Section III) and, as will be discussed in Section IV, fully

polynomial time approximation algorithms can be developed. Regarding Problem 3, there is an

extensive work in the literature under various assumptions on the function fj(y) and on the

costs cij ([16], [17], [18], [19], [20], [21], [22]). Most of the work is concentrated on the case

of “metric” costs, i.e., it is assumed that costs satisfy the inequality cij + cjk ≥ cik. However,

this inequality does not hold in our case. Moreover, fi(y) is assumed computable at unit cost

while in our case fi(y) cannot be computed in polynomial time (unless P = NP).

In the next section, by combining algorithms for the three problems discussed above, we

provide a pseudopolynomial time approximation algorithm for the problem addressed in this

paper. The algorithm for Problem 3 is based on the algorithm proposed in [22] and uses the

fact that fj(y) is a subadditive step function. In Section IV we modify the algorithm in order to

obtain a polynomial time algorithm with approximation factor close to the best possible (unless

NP⊆DTIME(nO(log logn))).

III. PSEUDOPOLYNOMIAL ALGORITHM

In this section we discuss pseudopolynomial algorithms for each of the Problems 1, 2 and 3.

By combining these algorithms we get a pseudopolynomial algorithm for the problem at hand.

A. Pseudopolynomial Algorithm for Problem 1

Let Fij(d) be the value of the minimum cost (forward) path from node i to j with delay at

most d, and Bij(d) the value of the minimum cost (backward) path from node j to i with delay

at most d. Here, for the computation of forward and backward paths the link costs are taken as

αeij, βeij respectively. Then it can be easily seen that,

cij = min
0≤d≤D

{Fij(d) +Bij(D − d)} . (7)

9

Based on (7), cij can be determined provided Fij(d) and Bij(d) are known. There are fully

polynomial time, generally complex, algorithms for computing these quantities. In this section

we will concentrate on efficient pseudopolynomial algorithms that work well in practice [23],

[24]. We provide the discussion for Fij(d), since the same holds for Bij(d). The algorithms in

[23], [24] are based on the fact that Fij(d) is a right continuous non-increasing step function

with a finite number of jumps. Hence, in order to compute Fij(d) one needs only to compute

its jumps, which in several practical networks are not many. Another useful feature of these

algorithms is that in one run they compute Fij(d) from a given node j ∈ H to all other nodes

in V .

Let Kf
ij be the number of jump points of Fij(d) and Kb

ij be the number of jump points of

Bij(d). Let dfij(k), 1 ≤ k ≤ Kf
ij, i ∈ V be the jump points of Fij(d) such that dfij(k − 1) <

dfij(k) ≤ D, k = 2, ..., Kf
ij . Similarly, let dbij(k), 1 ≤ k ≤ Kb

ij, i ∈ V be the jump points of

Bij(d). The optimal round-trip costs cij, j ∈ H, i ∈ V can be computed using Algorithm 1.

The jumps in steps 2 and 3 can be computed using the algorithm in [23]. The “for” loop in step

6 implements the minimization required by (7), taking into account that Fij(d) and Bij(d) are

step functions.

Algorithm 1 Algorithm for finding the minimum cost round-trip route
Input: Graph G with link costs and delays, round-trip delay bound D.
Output: The array c with the costs of the round-trip routes.
1) For any node j in H do
2) Compute jump points of Fij(d), dfij(k), 1 ≤ k ≤ Kf

ij, i ∈ V
3) Compute jump points of Bij(d), dbij(k), 1 ≤ k ≤ Kb

ij, i ∈ V
4) For i ∈ V do
5) cij =∞
6) For k = 1 to Kf

ij do
7) Let dbij be the largest jump point of Bij(d) not exceeding D − dfij(k)

8) cij ← min
n
cij, Fij(d

f
ij(k)) +Bij(d

b
ij)
o

We now discuss the complexity of Algorithm 1. For the purposes of complexity analysis, in

the rest of the paper we will assume that in the worst case H = V . Using the algorithm and the

analysis presented in [23] it can be proved that the worst case running time for the computation

of the jump points for all nodes in H is O (|V |D (|V | log |V |+ |E| log |V |)) . The running time

of the minimum operation (line 8) is O
¡|V |2D¢. Thus the running time of this algorithm is

dominated by the time needed to compute the jump points.

10

B. Pseudopolynomial Algorithm for Problem 2

We restate Problem 2 in its generic form, to simplify notation.

Problem 2 (generic form). Given a set of server types S, server capacities Us, server costs

f s > 0 and a required load y, find the optimal selection of server types G and the number of

servers of each type so that the load is satisfied. That is, determine ns(y) so that
P

s∈G ns(y)Us ≥
y and f(y) =

P
s∈G ns(y)f s is minimal.

Problem 2 is similar to the Unbounded Knapsack Problem (UKP) [15]. The difference is that

in UKP the inequality constraint is reversed and maximization of the cost
P

s∈Gj
ns(y)f s is

sought. A pseudopolynomial algorithm for Problem 2 can be developed in a manner analogous

to the one used for UKP. Specifically, number the servers from 1 to |S| and define A(f, i) to

be the largest load achievable by using some among the first i servers so that their total cost

is f . The entries of the table A(f, i) can be computed in order of increasing i and f using the

dynamic programming equation

A(f, i+ 1) = min{A(f, i), U i+1 +A(f − f i+1, i+ 1)}, (8)

with A(f, 0) = 0 for all f , A(f, i) = −∞ if f < 0, and A(0, i) = 0 for all 0 ≤ i ≤ K. The

optimal server selection cost is then determined as f(y) = min{f | A(f,K) ≥ y}. By keeping

appropriate structures one can also determine the server types and the number of servers of each

type for achieving the optimal solution.

The function f(y) has properties similar to those of Fij(d) and Bij(d). Specifically, it is a

right continuous non-decreasing step function. Moreover, based on (8) and using an approach

similar to [25], an efficient pseudopolynomial algorithm can be developed for finding the jump

points of f(y). Again, an important property in our case is that in one run of the algorithm, all

jump points of f(x), for integer x ≤ y, can be determined. The running time of this approach

can be bounded by O (|S| y), where |S| is the number of server types.

C. Pseudopolynomial Algorithm for Problem 3

In [22] a polynomial time algorithm is provided for Problem 3 for the case of concave facility

cost functions. It is assumed that the cost fj(y) of placing servers at node j ∈ H to accommodate

load y can be computed at unit cost and that all nodes have unit loads. It is shown that the

proposed algorithm achieves an approximation factor of ln |V | compared to the optimal. In our

case we have arbitrary integer node loads gi while the functions fj(y) are subadditive and can

11

be computed exactly only in pseudopolynomial time. As observed in [26] the assumption of unit

loads can be removed by considering a modified network where node i is replaced with gi nodes

each having the same costs to nodes in H as node i has. However, now the algorithm becomes

pseudopolynomial (even assuming unit costs for computing fj(y)) since the number of nodes in

the modified network can be as large as |V | gmax, where gmax = maxi∈V {gi}.
The approximability proof for general costs cij in [22] carries over without modification if

fj(y) are subadditive rather than concave functions. Hence the approximability factor in our case

becomes ln (|V | gmax).
To our knowledge, the algorithm in [22] is the only one proposed in the literature, that can

provide performance guarantees in terms of approximability to the optimal for general costs cij .

Moreover, its worst case running time is among the best of the proposed algorithms. Hence, we

will use the algorithm in [22] as the basis for our development. We present it below (Algorithm

2) adapted to our situation. For the moment we assume that fj(y) can be computed exactly.

The algorithm performs a number of iterations. At each iteration a node j∗ in H is selected

and the load of some of the nodes in V is assigned to j∗. Let matrix ψ(i, j) represent the

total load from node i assigned to server location j at the beginning of an iteration (i.e., the

beginning of the while loop at step 3). Hence the load of node i remaining to be assigned is

r(i) = gi −
P

j∈H ψ(i, j).

A node such that r(i) > 0 is called unassigned. For server location j ∈ H consider the

unassigned nodes arranged in non-decreasing order of their costs cisj, i.e., ci1j ≤ ci2,j ≤ ≤
cimj . Let Rj(n) =

Pn
s=1 r(is), 1 ≤ n ≤ m, and nj(k) = max {n : Rj(n) ≤ k}. Define also

lj(k) = k −Rj(nj(k)).

The variable loadj holds the total load assigned to node j ∈ H at the beginning of an iteration.

In step 5, the most economical (cost per unit of assigned load) load assignment for each of the

server locations is computed. In steps 7 and 8, the server location with the minimum economical

assignment is selected and the associated load is placed on this location. In steps 9 to 13, updating

of the remaining loads of the nodes that will place their load on the selected server location is

taking place.

The average running time of this algorithm can be improved by taking advantage of the fact

that in this case fj(y) is a step function. Specifically, in the Appendix A it is shown that in

order to compute the minimum in step 5, one needs to do the computation only for values of k

such that loadj + k is a jump point of fj(y), or k = Rj(n) for some n.

12

Algorithm 2 Generic algorithm for solving Problem 3
Input: Graph G, the array c with the costs of the routes and the Knapsack list.
Output: Locations and types of servers, routes and load assigned from each client to the

selected locations.
1) For j ∈ H set loadj = 0
2) For i ∈ V set ψ(i, j) = 0
3) While there is an unassigned node do
4) For j ∈ H do

5) t(j) = mink
fj(loadj+k)−fj(loadj)+

nj(k)

s=1 r(is)cisj+lj(k)cinj(k)+1
j

k

6) k(j) = argmink
fj(loadj+k)−fj(loadj)+

nj(k)

s=1 r(is)cisj+lj(k)cinj(k)+1
j

k
7) Let j∗ = argminj∈H {t(j)} , k∗ = k (j∗)
8) Set loadj∗ ← loadj∗ + k∗

9) For 1 ≤ s ≤ nj∗(k
∗) do

10) ψ(is, j
∗)← ψ(is, j

∗) + r(is)
11) r(is) = 0
12) ψ(inj∗(k∗)+1, j

∗) = lj∗(k
∗)

13) r(inj∗ (k∗)+1)← r(i+ 1)− lj∗(k
∗)

In Appendix B, we show that with the use of appropriate data structures and assuming unit

cost for computing fj(y), the running time of Algorithm 2 is

O(|V |3 g2max). (9)

Letting |S| be the maximum number of server types in any of the server locations, taking into

account that the maximum load on any facility is |V | gmax and that we may need to compute

at most |V | functions fj(y), we conclude that the worst case computation time of the complete

algorithm is

O
¡|V |D (|V | log |V |+ |E| log |V |) + |S| |V |2 gmax + |V |3 g2max¢ . (10)

The term |V |D (|V | log |V |+ |E| log |V |) corresponds to the computation of cij . The term

|S| |V |2 gmax corresponds to the cost of computing fj(|V | gmax), j ∈ H. Note that as mentioned

in Section III-B, for each j ∈ H, computing fj(|V | gmax) also computes all the jump points of

fj(y), y ≤ |V | gmax. As a result, when implementing Algorithm 2, fj(y) can be computed at

unit cost. Hence the third term in (10) represents the worst case computation time for running

Algorithm 2. As mentioned in Section III-C the approximability factor of this algorithm is

ln (|V | gmax).
As will be seen in Section V the proposed algorithm works well in practice. However, since

13

(10) involves the input parameters D and gmax, the proposed algorithm is pseudopolynomial.

It is theoretically important to know whether there exists a polynomial time algorithm that can

provide a guaranteed approximation factor with respect to the optimal. In the next section we

will show that this can be done based on the algorithm presented above.

IV. POLYNOMIAL ALGORITHM

In this section, by generalizing the approach in [22] we provide a polynomial time approxi-

mation algorithm for arbitrary integer node loads and non-decreasing subadditive functions that

are not necessarily computable exactly in polynomial time. Note that a concave function is also

subadditive and hence our results carry over to concave functions. However, as will be seen, for

concave functions the approximation constants can be made smaller.

The approach we follow is to provide polynomial time approximation algorithms for each of

Problems 1, 2 and 3. By combining these algorithms, we get a polynomial time algorithm for

the problem at hand with guaranteed performance factor compared to the optimal.

In the previous section the costs cij and the functions fj(y) were computed exactly using

pseudopolynomial algorithms for Problems 1 and 2 respectively. The use of polynomial time

approximation algorithms for these problems provides only approximate values for cij and fj(y).

That is, we can only ensure that for any ε > 0, we provide in polynomial time values cij and f j(y)

(for fixed y) such that cij ≤ cij ≤ (1+ε)cij and fj(y) ≤ f j(y) ≤ (1+ε)fj(y), y ≥ 0. Replacing

cij and fj(y) with cij and f j(y) in Problem 3 and providing an a-approximate solution for the

resulting instance, provides also an (1+ε)a- approximate solution for the original problem. This

important observation was used in [26] and we present it here in the next lemma.

Lemma 1: Consider the problems

min
x∈A

g(x), A ⊆ Rn, (11)

min
x∈A

g(x), A ⊆ Rn, (12)

where g(x) ≥ 0. If for x ∈ A, g(x) ≤g(x) ≤bg(x), then an a−approximate solution for problem

(12), a ≥ 1, is a ba-approximate solution for (11).

Proof: The proof is given in Appendix C.

Using Lemma 1 we can proceed as follows.

• Compute in polynomial time approximate values cij,

• Compute in polynomial time approximate values f(y) (for a given y ≥ 0),

14

• Provide an approximation algorithm for Problem 3, based on Algorithm 2, using the ap-

proximate values cij , f(y).

Difficulties arise in the approach outlined above for the following reasons. First, to compute

the minimum in step 5 of Algorithm 2, f(y) must be computed for all values of y in the worst

case, and the number of these computations is bounded by |V | gmax, i.e., it is not polynomial

in the input size, even if f(y) is computable at unit cost. Second, the amount of load assigned

to a node in H at each iteration of the “for” loop at step 9 can be 1 in the worst case and

hence the number of iterations of the while loop may be again |V | gmax in the worst case. Third,

while f(y) is subadditive, it cannot be guaranteed that f(y) is subadditive as well, and hence

the approximation factor with respect to the optimal cannot be guaranteed a priori. Hence, the

straightforward application of Algorithm 2 will result in pseudopolynomial worst case running

time and will not provide us with guaranteed performance bounds. As will be seen, however,

we can modify the approach so that the resulting algorithm runs in polynomial time at the cost

of a small increase in the approximation factor.

A. Polynomial Algorithms for Problem 1 and 2

A fully polynomial time approximation algorithm for the problem of finding the minimum

constrained path from a source to a given destination was developed by Hassin [27]. An

improvement of this algorithm was presented in [28]. The approach in [28] consists in defining a

test procedure, which is used iteratively to find upper and lower bounds for the restricted shortest

path.

The latter algorithm can be modified in order to develop a fully polynomial time approximation

algorithm for Problem 1, that is finding a constrained round trip path.

The adaptation consists in considering bounds for round trip paths and modifying Algorithm

SPPP in [28], which constitutes the test procedure mentioned before. The main idea in algorithm

SPPP is to scale the cost values and run the pseudopolynomial algorithm to find the smallest

possible delay for each cost. Algorithm 3 is our modified implementation of algorithm SPPP.

We denote Df(v, i) the minimum delay on a forward path from the source node s to a node

v, with cost bounded by the value i. Similarly, we use Db(v, i) to indicate the minimum delay

on a backward path from the destination node t to a node v, with cost bounded by the value i.

We denote D(i) the minimum delay of a round trip path from s to t, with cost bounded by i.

15

Algorithm 3 Modified Scaled Pseudo Polynomial Plus [SPPP]
Input: Graph G(V,E), {dl, cl}l∈E, delay T, bounds L, U , factor �, source s, destination t.
Output: Round trip path satisfying the delay bound and corresponding cost.
1) S ← L�

2n+1
2) for each l ∈ E
3) define c̃l ≡ b clS c+ 1
4) Ũ ← bU

S
c+ 2n+ 1

5) for all v 6= s, t
6) Df(v, 0)←∞
7) Db(v, 0)←∞
8) Df(s, 0)← 0
9) Db(t, 0)← 0

10) for i = 1, 2, . . . , Ũ
11) for v ∈ V
12) Df(v, i)← Df(v, i− 1)
13) for l ∈ {(u, v) | c̃(u,v) ≤ i}
14) Df(v, i)← min{Df(v, i), dl +Df(v, i− c̃l)}
15) for i = 1, 2, . . . , Ũ
16) for v ∈ V
17) Db(v, i)← Db(v, i− 1)
18) for l ∈ {(u, v) | c̃(u,v) ≤ i}
19) Db(v, i)← min{Db(v, i), dl +Db(v, i− c̃l)}
20) D(Ũ)← min

j=1..Ũ
{Df(t, j) +Db(s, Ũ − j)}

21) if D(Ũ) ≤ T
22) return the corresponding round trip path and cost
23) else return FAIL

The resulting algorithm runs in t = O(|E||V |(log log |V | + 1/ε)) for each pair of (client,

server) nodes.

A fully polynomial time approximation algorithm for Problem 2 can be developed by par-

alleling the approach for the UKP [15, Section 8.5]. The resulting algorithm has a worst case

running time of T = O(1
ε2
|S| log |S|), where |S| is the number of server types.

B. Polynomial Algorithm for Problem 3

We now address the main problem of Section IV, i.e., the development of a polynomial

algorithm for Problem 3, using the approximate costs cij and f j(y). We intend to use Algorithm

2 as the basis for the development. Assume for the moment that cij and fj(y) are computable

exactly. As was mentioned above the fact that the node loads are general nonnegative integers in

our case, renders the algorithm pseudopolynomial even under this assumption. However, if the

functions fj(y) are concave, then the algorithm becomes polynomial. This is due to the fact that

for concave functions Algorithm 2 can assign all the load of each node to a single server. This

16

is shown in the next lemma. Recall that a function f(y) defined for integer y is called concave

if for all y in its domain of definition it holds, f(y + 1)− f(y) ≤ f(y)− f(y − 1).
Lemma 2: If the functions fi(y) are concave and Algorithm 2 is applied, then the load of

each node in V can be assigned to a single server.

Proof: The proof is given in Appendix D.

Lemma 2 implies that when cij and fj(y) are computable in polynomial time and fj(y) are

concave, the algorithm runs in polynomial time. Indeed, if t is the worst case computation

time needed to compute ε−approximate cij , i, j ∈ V, according to the algorithm used to solve

Problem 1, then the time needed to compute the |V |2 values of cij is O(|V |2 t). Next, using the

cij as input to Algorithm 2, letting T be the worst case computation time needed to compute

ε−approximate f j(y) according to the algorithm used to solve Problem 2 and following a similar

reasoning as in the proof of (9), it can be seen that the worst case running time of the Algorithm

2 is O(|V |3 T)). Hence the computation time for the whole algorithm is O(|V |3 T + |V |2 t) and

the approximation factor is (1 + ε) log (|V | gmax). Since as discussed in Section IV-A both t and

T are polynomial for given ε, the resulting algorithm is also polynomial.

We now return to the problem at hand. In our case, cij and fj(y) are not computable in

polynomial time and, moreover, fi(y) is subadditive rather than concave. Hence the results

above cannot be applied directly to obtain a polynomial time algorithm. Regarding cij, as

discussed in Section IV we replace cij with polynomially computable approximations cij.This

takes time O(V 2t). Dealing with fj(y) requires more care since, as it is also discussed in IV,

simply approximating fj(y) for each y results in pseudopolynomial time algorithm and in no

approximation factor guarantees. The approach we follow is to construct in polynomial time a

concave function efj(y), such that for any y in its domain of definition efj(y) is computed in

polynomial time and,

fj(y) ≤ efj(y) ≤ afj(y). (13)

Then, by applying Lemmas 1 and 2 we get a polynomial time algorithm. To proceed we need

some definitions.

Consider a nonnegative function φ : {0, 1, . . . ,W} → Q+ (Q+ is the set of nonnegative

rationals) and let A be the convex hull of the set of points S = {(y, φ(y)), y = 0, 1, . . . ,W} ∪
{(0, 0), (W, 0)}. Recall that the convex hull of a set of points S is the smallest convex set that

includes these points. In two dimensions it is a convex polygon. The vertices of the polygon

17

Fig. 3. A subadditive step function φ(y) with its jump points y1, ..., y6 and its upper hull φ2(y).

correspond to a subset of S, of the form S0 = {(yk, φ(yk)), k = 1, ...,K}∪{(0, 0), (W, 0)} where

yk ∈ {0, 1, . . . ,W}, y1 = 0, yK =W , and yk < yk+1 for all k, 1 ≤ k ≤ K − 1.
Consider the piecewise linear function φ2(y) with break points the set S0, i.e., for yk ≤ y <

yk+1, φ2(y) is defined as,

φ2(y) = φ(yk) +
φ(yk+1)− φ(yk)

yk+1 − yk
(y − yk). (14)

The function φ2(y) is concave. We call φ2(y), the “upper hull” of φ(y). An example of a

subadditive step function and its upper hull is depicted in Figure 3. If φ(y) is non-decreasing,

then φ2(y) is also non-decreasing. By construction it holds for all y ∈ {0, 1, ...,W},

φ(y) ≤ φ2(y). (15)

As the next lemma shows, if the function φ(y) is subadditive and non-decreasing, then it also

holds that its upper hull is at most 2φ(y).

Lemma 3: If a function φ : {0, 1, . . . ,W} → Q is subadditive and non-decreasing, then it

holds for its upper hull φ2(y), φ2(y) ≤ 2φ(y).
Proof: The proof is given in Appendix E.

Consider now the subadditive function f(y) of interest in our case (we drop the index j for

simplicity). As a consequence of the approximate solution to Problem 2, for a given ε > 0 and

a given y ∈ {0, 1, ...,W}, W = |V | gmax, we can construct in polynomial time a non-decreasing

function f (y) such that

f(y) ≤ f(y) ≤ (1 + ε)f(y). (16)

18

Let f2(y) be the upper hull of f(y). By (16), f2(y) is smaller than or equal to the upper hull

of (1+ ε)f(y), which in turn by Lemma 3 is smaller than 2(1+ ε)f(y) (notice that (1+ ε)f(y)

is subadditive). Hence we will have

f(y) ≤ f2(y) ≤ 2(1 + ε)f(y). (17)

Since f2(y) is concave, if we replace cij with cij and f(y) with f2(y), we can provide an

approximate solution to Problem 2 with approximation factor log (|V | gmax). From (17) and

Lemma 1 we will then have a solution to our original problem with approximation factor 2(1+

ε) log |V gmax|.
The problem that remains to be solved is the construction of the upper hull of f(y) in

polynomial time. There are at most W 0 =W+2 points in the set
©
(y, f(y)), y = 0, 1, . . . ,W

ª∪
{(0, 0), (W, 0)} and the upper hull of the points in this set can be constructed (i.e., its break

points can be determined) in time W 0 logW 0 [29]. However, in our case W = |V | gmax and

hence the straightforward construction of the upper hull requires pseudopolynomial construction

time.

To address the latter problem, we construct first a non-decreasing step function bf1(y) with

polynomial number of jump points (y is a jump point of bf1(y) if bf1(y − 1) 6= bf1(y)) that is

a good approximation to f(y), and then we construct the upper hull of bf1(y). Since bf1(y) has

polynomial number of jump points its upper hull will also have polynomial number of break

points and can be constructed in polynomial time.

We have by definition f(0) = 0, f(1) = f(1) > 0. Consider the sequence of integers bf0 = 0,bfk, k = 1, ...,K, generated by Algorithm 4.

Algorithm 4
Input: Algorithm for computing f(y), � > 0.
Output: The sequence, bfk, k = 0, 1, ...,K.

1) bf0 = 0, bf1 = f(1), y1 = 1, k = 2,

2) bfk = (1 + �)f(yk−1)
3) If bfk > f(W), set yk =W, K = k and stop. Else,
4) Determine yk such that f(yk − 1) ≤ bfk ≤ f(yk)
5) k = k + 1, go to step 2.

The sequence bfk, k = 0, 1, ...,K can be used to construct a step function that is a good

approximation to f(y). This is shown in the next lemma.

Lemma 4: a) In Algorithm 4, K = O
³
1
�
log f(W)

f1

´
.

19

b)The worst case running time of Algorithm 4 is O
³
T log(W)1

�
log f(W)

f1

´
, where T is the

worst case time (over all y, 1 ≤ y ≤W) needed to compute f(y).

c) Consider the step function defined as follows: if yk ≤ y < yk+1 for some k, 1 ≤ k ≤ K−1,
then bf(y) = bfk, and bf(W) = bfK . It holds,

bf(y) ≤ f(y) ≤ (1 + �) bf(y). (18)

Proof: The proof is given in Appendix F.

Based on (18), we can use ef(y) = (1 + �) bf(y) as a function to approximate f(y). This is

shown in the next lemma.

Lemma 5: Let �0 > 0, � > 0 be given. Let f(y) be the optimal solution to Problem 2 and

assume that we compute for a given y the approximate function f(y) so that

f(y) ≤ f(y) ≤ (1 + �0) f(y). (19)

a) For the purposes of computing the step function bf(y) satisfying (18), f(y) may be assumed

non-decreasing.

b) It holds for ef(y) = (1 + �) bf(y)
f(y) ≤ ef(y) ≤ (1 + (�+ �0 + ��0)) f(y). (20)

c) The number of jump points of bf(y), hence of ef(y), is O
¡
1
�
log (|V | gmax)

¢
and the running

time of Algorithm 4 is O
¡
1
�
T (log (|V | gmax))2

¢
, where T is the worst case time (over all y,

1 ≤ y ≤W) needed to compute f(y).

Proof: The proof is given in Appendix G.

From the discussion above we have polynomial time Algorithm 5 for computing the server

locations.

Algorithm 5 Polynomial Time Algorithm For Calculating Server Locations
Input: Polynomial Algorithm for Problem 1, Algorithms 2 and 4, � > 0.
Output: Locations and types of servers, routes and load assigned from each client to the

selected locations.
1) For i ∈ V, j ∈ H, compute cij so that cij ≤ cij ≤ (1 + �)cij, i ∈ V, j ∈ H.
2) For j ∈ H, construct the step functions bfj(y), from f j(y) according to Algorithm 4,

using as subroutine the algorithm for computing, for a given y > 0, f j(y) such that
fj(y) ≤ f j(y) ≤ (1 + �)fj(y).

3) Construct the upper hull of efj(y) = (1 + �) bfj(y). Let φj(y) be this upper hull.
4) Use Algorithm 2 to solve Problem 3, where cij is replaced by cij and fj(y) is replaced

by φj(y).

20

In the algorithm, for simplicity, we pick a single � for all the approximations. If needed, a

separate � can be used for each of the approximations.

Let |S| = maxj∈H {|Sj|} . Recall that φj(y), j ∈ H are non-decreasing piecewise linear

functions with at most K number of break points, where K = O(log (|V | gmax)/�) . In fact, the

computation of φj(y) in step 3 of Algorithm 5 amounts to storing the break points of φj(y).

Hence it takes time O(logK), in the worst case, to compute φj(y) for a given y and according to

the discussion in Section IV-B it takes time O(|V |3 logK) to execute Algorithm 2 using φj(y).

Taking into account the previous discussion, the worst case running times of each step are:

1) O(|V |2t) = O(|E||V |3(log log |V |+ 1/�))
2) O(|V | 1

�
T (log (|V | gmax))2) = O(1

�3
|V | |S| log |S| (log (|V | gmax))2)

3) O(K logK) = O(1
�
log (|V | gmax) log (log (|V | gmax) /�))

4) O(|V |3 logK) = O
¡|V |3 log(log (|V | gmax)/�)¢

The resulting algorithm has a guaranteed performance ratio of 2(1+ �)2 log (|V | gmax) and its

worst case running time is dominated by steps 1 and 2.

O(|E||V |3(log log |V |+ 1/�) + 1

�3
|V | |S| log |S| (log (|V | gmax))2).

Note that since in Algorithm 4 the functions φj(y) are concave by construction, by Lemma 2

the algorithm assigns all the load of each node i ∈ V to a single server node in H.

V. NUMERICAL RESULTS

In this section we evaluate the proposed algorithm using sample topologies following the

Power Law. These topologies are taken from the BRITE package [30] by using the Router

Barabasi-Albert Model.

We used random parameters for the network, rather than specific application parameters in

order to test the overall performance of the algorithm under general conditions. For each network

the delay dl of a link is picked randomly with uniform distribution among the integers [1, 100]

and the cost is generated in such a manner that it is correlated to its delay. Thus, for each

link l a parameter bl is generated randomly among the integers [1, 5]. The cost of link l is then

bl (101− dl). Hence the link cost is a decreasing function of its delay. We assume that the the

same server types can be placed in each of the locations. For our simulations we use 4 different

server types with capacities and costs equal to {(100, 3000) (150, 3500) (250, 4000) (350, 5000)}
respectively. We set the factors α = 0.1 and β = 0.2 and assume the load in requests per unit of

21

time originated by each node is randomly chosen among the integers [1, 100]. We also assume

H = V , i.e., servers may be placed in any of the nodes.

We are not aware of other approaches in the literature addressing the form of the problem

examined in this paper. Hence direct comparison of our proposal to other algorithms cannot be

made. However, since there are several proposals that concentrate on metrics related to optimizing

the delays of requests in some manner, we examine the performance of the latter algorithms in

case operating costs were involved. Specifically, we run two sets of experiments which differ in

the manner the round-trip routes for requests are selected.

We generated ten different Power Law network topologies with |V | = 100 nodes and |E| = 970
edges. We run the algorithm for 6 different delay constraints D = {100, 200, 400, 500, 600, 800}.
MinDelay: This manner of selecting routes has been employed in [5] and [9] where all

requests from client node i to server node j are send over the minimal delay round-trip route.

Hence in this algorithm the minimum delay round-trip routes are selected without considering

the route cost. A route thus selected is rejected if its delay is larger than the specified constraint.

MinCost:. This is the algorithm proposed in the current work. That is, the round-trip routes

are selected so that they are of minimum cost among those that they satisfy the delay constraint.

Once the round-trip routes from any client node i to any node server j are selected using

either the MinDelay or MinCost approach, the parameters cij are determined. We then employ

the algorithm proposed in this paper to find a solution to Problem 3. For the simulations we

used the pseudopolynomial algorithm since it works sufficiently well for the selected instances

and its implementation is considerably simpler than the polynomial algorithm.

TABLE I
AVERAGE TOTAL COST FOR DIFFERENT DELAY CONSTRAINTS

D 100 200 400 500 600 800
MinCost 178638 127591 118069 115734 114504 113878
MinDelay 197832 188928 182178 182178 182178 182178

In Table I we present the average total cost of using the servers and utilizing the link

bandwidth. We make the following observations. The cost for both algorithms decreases as

the delay constraint increases and levels off after certain value of the delay constraint. This is

explained as follows. For smaller delay constraints, several locations are becoming unreachable

by the nodes. Hence the options of directing the node load to the various locations are reduced

and as result the overall cost of the solution increases. The leveling-off of the computed cost

22

Average Running Time of MinCost Algorithm

0

10

20

30

40

50

60

20 40 60 80 100 120 140 160
Nodes

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(s

ec
)

D100

D500

D800

Fig. 4. Average running time of Power Law Networks, D = {100, 500, 800}.

is due to the fact that as the delay constraints become looser, all the minimum cost round-trip

routes are selected by MinCost algorithm and all the minimum delay round-tip routes by the

MinDelay algorithm. We also observe in Table I that the total cost of MinCost algorithm is

always smaller than MinDelay, as expected, and the significance is becoming more pronounced

for larger delays. This behavior is again due to the manner in which routes are selected by

the two algorithms for a given delay constraint. For strict delay constraints, both algorithms

choose mainly the permissible minimum delay round-trip routes and hence they have similar

performance. For looser constraints, the fact that MinCost picks the minimum cost round-trip

routes that satisfy the delay constraint instead of simply the minimum delay route (as MinDelay

does) allows it to reduce the routing cost.

We also performed experiments for networks of various sizes in order to assert the performance

of the proposed algorithm in terms of running time. We generated Power Law directed networks

for |V | = {20, 50, 100, 150}, ratio r = |E| / |V | equal to 3 and two delay constraints D =

{100, 500, 800}. For each |V | and r we generated ten different networks and for each experiment

the link cost and delay, the server types, as well as the load of the nodes were generated according

to the methods previously described.

The experiments were run on a Pentium PC 4, 1.7GHz, 786MB RAM. In Figure 4 we

present the average running time (in seconds) of the proposed algorithm. We make the following

observations. For a fixed number of nodes and edges we observe an increase of the running time

as the delay constraint increases. The increase becomes more pronounced as the number of nodes

increases. This is explained by the fact that as the delay constraint and the number of nodes

increase, the number of candidate route-trip paths increases and as a results more iterations

are needed for the algorithm to converge. We also observe that for a fixed number of nodes

23

the increase in running time levels-off when the delay constraint becomes large (800 in our

experiments). This is due to the fact that as the delay constraint increases, only the cost of

a round-trip path becomes the determining factor for its inclusion in the algorithm; hence the

number of candidate round-trip paths levels-off as the delay constraint increases. In general,

although pseudopolynomial, tests with a wide variety of networks, show that the algorithm has

fairly satisfactory performance. Note that we have assumed H = V , that is, servers may be

placed in any of the nodes. In practical systems servers are placed in specific locations, that is

H ⊂ V . In such cases the running time of the algorithm decreases significantly. Indeed, we run

an experiment for a network with |V | = 100 nodes, ratio r = |E| / |V | equal to 3, constraint

D = 500 and ten possible server locations, that is |H| = 10, which are randomly chosen among

the set of nodes V . The running time and the overall cost were found equal to 3.5 sec and

269722 respectively. By assuming H = V and repeating the latter experiment we observe a)

an increase of the running time (15.9sec), b) a decrease of the overall cost (120467) and the

placement of servers in 17 different nodes.

VI. CONCLUSIONS

In this paper we presented a pseudopolynomial approximation algorithm and a polynomial

time algorithm for the NP-hard problem of replicated server placement with QoS constraints.

The pseudopolynomial algorithm works well in several practical instances and is significantly

simpler than the polynomial time algorithm. The polynomial time algorithm is significant from

the theoretical point of view and can be useful to employ if the problem instance renders the

pseudopolynomial time algorithm very slow.

In this work we did not consider link capacities. It is an interesting open problem to incorporate

the latter constraint into the problem. Another problem of interest is to consider the case where

not all the database is replicated to each of the servers.

REFERENCES

[1] R. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,” IEEE/ACM Transactions on Networking, vol. 8, no. 5,

pp. 568–582, October 2000.

[2] B. Li, M. Golin, G. Italiano, and X. Deng, “On the optimal placement of web proxies in the internet,” in IEEE INFOCOM,

1999.

[3] X. Jia, D. Li, X. Hu, and D. Du, “Optimal placement of web proxies for replicated web servers in the internet.” The

Computer Journal, vol. 44, no. 5, pp. 329–339, 2001.

24

[4] X. Jia, D. Li, X. Hu, W. Wu, and D. Du, “Placement of web-server proxies with consideration of read and update operations

on the internet,” The Computer Journal, vol. 46, no. 4, 2003.

[5] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web server replicas,” in IEEE INFOCOM, April 2001,

pp. 1587–1596.

[6] Y. Chen, R. Katz, and J. Kubiatowicz, “Dynamic replica placement for scalable content delivery,” in First International

Workshop on Peer-to-Peer Systems, 2002, pp. 306–318.

[7] ——, “SCAN: A dynamic scalable and efficient content distribution network,” in First International Conference on

Pervasive Computing, 2002.

[8] S. Jamin, C. Jiu, A. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror placement on the internet,” in IEEE INFOCOM,

April 2001, pp. 31–40.

[9] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek, “Selection algorithms for replicated web servers,” in Workshop

on Internet Server Performance, Madison, Wisconsin, 1998.

[10] X. Tang and J. Xu, “On replica placement for QoS-aware content distribution,” in IEEE INFOCOM, 2004.

[11] X. Tang and S. Chanson, “The minimal cost distribution tree problem of recursive expiration-based consistency

management,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 3, pp. 214–227, March 2004.

[12] ——, “Minimal cost replication of dynamic web contents under flat update delivery,” IEEE Transactions on Parallel and

Distributed Systems, vol. 15, no. 5, pp. 431–439, May 2004.

[13] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-to-peer networks.” ACM SIGCOMM, 2002.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory on NP-Completeness. W. H.

FREEMAN AND COMPANY, 1979.

[15] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Spinger-Verlag, 2004.

[16] F. Chudak and D. Williamson, “Improved approximation algorithms for capacitated facility location problems,” in Integer

Programming and Combinatorial Optimization, 1999.

[17] M. Korupolu, C. Plaxton, and R. Rajaraman, “Analysis of a local search heuristic for facility location problems,” Journal

of Algorithms, vol. 37, pp. 146–188, 2000.

[18] V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit, “Local search heuristics for k-median and facility location

problems,” in In Proceedings of the 33rd ACM Symposium on Theory of Computing, 2001, pp. 21–29.

[19] K. Jain and V. Vazirani, “Approximation algorithms for the metric facility location and k-median problems using the

primal-dual schema and the lagrangian relaxation,” Journal of the ACM, vol. 48, pp. 274–296, 2001.

[20] M. Pal, I. Tardos, and T. Wexler, “Facility location with nonuniform hard capacities,” in IEEE Symposium on Foundations

of Computer Science, October 14-17, 2001, p. 329.

[21] F. Chudak and D. Shmoys, “Improved approximation algorithms for the uncapacitated facility location problem,” SIAM

Journal on Computing, vol. 33, no. 1, pp. 1–25, 2003.

[22] M. Hajiaghavi, M. Mahdian, and V. S. Mirrokni, “The facility location problem with general cost functions,” Networks,

vol. 42, no. 1, pp. 42–47, 2003.

[23] S. Siachalou and L. Georgiadis, “Efficient QoS routing,” Computer Networks, vol. 43, pp. 351–367, 2003.

[24] P. van Mieghem, H. de Neve, and F. Kuipers, “Hop-by-hop quality of service routing,” Computer Networks, vol. 37, pp.

407–423, 2001.

[25] R. Andonov and S. Rajopadhye, “A sparse knapsack algo-tech-cuit and its synthesis,” in International Conference on

Application Specific Array Processors ASPA ’94. IEEE, 1994.

[26] M. Mahdian, E. Markakis, A. Saberi, and V. Varizani, “Greedy facility location algorithms analyzed using dual fitting with

factor-revealing LP,” Journal of the ACM, vol. 50, no. 6, pp. 795–824, 2003.

25

[27] R. Hassin, “Approximation schemes for the restricted shortest path problem,” Mathematics of Operations Research, vol. 17,

no. 1, pp. 36–42, 1992.

[28] D. Lorenz and D. Raz, “A simple efficient approximation scheme for the restricted shortest path problem,” Operations

Research Letters, vol. 28, no. 5, pp. 213–221, June 2001.

[29] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry, Algorithms and Applications.

Springer-Verlag, 2000.

[30] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Universal topology generation from a user’s perspective, Tech.

Rep. 2001-003, 1 2001.

APPENDIX

In this appendix we show how the average time of Algorithm 2 can be improved, we present

the worst case running time of Algorithm 2 and provide proofs of the lemmas presented in this

paper.

A. Step Function fj (y).

In this section it is shown that the average running time of Algorithm 2 can be improved

by taking advantage of the fact that in this case fj(y) is a step function. For simplicity we

drop the index j. Assume the unassigned nodes arranged in non-decreasing order of their costs

c1 ≤ c2 ≤ ... ≤ cm. Let l be the load already assigned. We then have to compute

min
k

f(l + k)− f(l) +
Pk

i=1 ciyi + yck+1
k

.

Let

Yk =
kX
i=1

yi, Ck =
kX
i=1

ciyi, k = Yk + y, 0 ≤ y ≤ gk+1,

and

t(y) =
f(l + k)− f(l) +

Pk
i=1 ciyi + yck+1

k
=

=
f(l + Yk + y)− f(l) + Ck + ck+1y

Yk + y
= (21)

=
f(l + Yk + y)− f(l) + Ck − ck+1Yk

Yk + y
+ ck+1 (22)

Assume that f(z) is a step function

f(z) = fm, if zm ≤ z < zm+1, m = 1, 2, ...,

26

)(zf

1z 2z 3z0z
4z 5z 6z 7z

kl Y+
1w 2w 3w 4w

1

1ky +

2

1ky +

3

1ky +

4

1ky +

1
max
ky +

: points that need
to be checked

Fig. 5. Points that need to be checked when checking ck+1

where z0 = 0, f(0) = 0.We call zm the point of the mth jump of the function f(z).

Assume that y ≥ 0 can take maximum value yk+1max, i.e., yk+1max is the maximum remaining load

of the node connected through link k + 1.

For the rest of the discussion, Figure 5 will be helpful

Let mk+1 be the index of the last point before l + Yk at which a jump of the function f(z)

occurs,

mk+1 = max {m : zm ≤ l + Yk} .

Also, let wk+1
m be the mth point after l + Yk at which a jump of f(z) occurs,

wk+1
m = zmk+1+m, m = 1, 2,,

and

yk+1m = wk+1
m − l − Yk

Observe from (22) the following:

If

f(l + Yk)− f(l) + Ck − ck+1Yk < 0

then t(y) < ck+1 for any y, 1 ≤ y ≤ yk+11 and the algorithm must stop. Note that this cannot

happen when we examine c1 and hence the algorithm always gives some output before it stops.

27

If on the other hand

f(l + Yk)− f(l) + Ck − ck+1Yk ≥ 0,

then the minimum is achieved at min
©
yk+11 − 1, ymax

ª
. Moreover, in this case it holds (since

f(z) is increasing),

f(l + Yk + yk+1m)− f(l) + Ck − ck+1Yk ≥ 0, for all m,

which implies that the minimum in the interval
£
yk+1m , yk+1m+1 − 1

¤
is achieved at

min
©
yk+1m+1 − 1, ymax

ª
.

The above discussion implies that when we need to find the minimum value of t(y), we need

only check its values at the points

y = yk+1m − 1, where yk+1m − 1 ≤ ymax, and y = ymax.

B. Running time of Algorithm 2.

We discuss below an implementation of Algorithm 2 and present its complexity. Let |V |
and |H| be the number of client and server locations respectively. We assume for simplicity

that gmax = 1. As discussed in Section III-C, the general case can be treated by considering a

modified network with at most |V | gmax nodes. We also assume unit cost for compute fj(k). All

references to steps below, concern Algorithm 2.

The implementation is the following.

1) We construct |H| doubly linked lists, one per server location, where each list, Lj , j ∈ H,

holds cij , for all i ∈ V that are connected to j, in increasing order. Since each sorting

takes time O(|V | log |V |), the time to construct the |H| linked lists is O(|H| |V | log |V |).
2) We also create a matrix M(i, j), i ∈ V , j ∈ H, where M(i, j) holds the address of link

(i, j) in the list Lj . If link (i, j) does not exist in Lj , then we set M(i, j) to null. This

takes time O(|H| |V |). The matrix M(i, j) is used to erase efficiently an element from Lj

(see line 3b).

3) In the while loop (step 3) the following operations are performed.

a) The t(j) for each server location j ∈ H are computed (step 5). For this, we need to

scan through the list Lj , which takes O(|V |) time (since each Lj contains at most

28

|V | elements). Hence to compute all t(j), j ∈ H and the minimum of these t(j)

(step 7), takes time O (|H| |V |).
b) The updating of server and client location loads (steps 9-13) takes O(1) time. How-

ever, whenever the remaining load of a node becomes 0 (step 11), the node must be

removed from further consideration. Hence, it must be removed from all linked lists

Lj , j ∈ H. Therefore, for each of the k∗ client locations, say location i, we check

first if the link (i, j) exists in the list Lj, i.e. check whether M(i, j) is non null. If so,

M(i, j) contains the address of link (i, j) in Lj; using this address we remove link

(i, j) from Lj and we set M(i, j) to null. This takes time O(k∗ |H|). Note that we

can dispense with the matrix M(i, j) altogether and search through the whole list Lj

in order to remove the link (i, j). This will increase the complexity of this operation

to O(k∗ |V | |H|) but will also eliminate the space needed to store the matrix M(i, j).

The overall complexity of the algorithm will not be affected.

Regarding the overall complexity, we have the following.

• Line 1 is executed outside the while loop and hence takes time O(|H| |V | log |V |).
• Line 3a is executed inside the while loop. Since in the worst case only one client location

may be removed at each iteration, this step may be executed a most |V | times. Hence the

total complexity of this operation is O(|H| |V |2).
• If kn is the number of customers allocated to a facility at iteration n, and it takes m iterations

for the algorithm to end, we have k1 + k2 + k3 + ..+ km = |V |. Hence line 3b is executed

in time O(k1 |H|) +O(k2 |H|) + ...+O(km |H|) = O(|H| |V |).
From the above we conclude that the whole algorithm executes in worst case time,

O
¡|H| |V | log (|V |) + |H| |V |2¢ = O

¡|H| |V |2¢, which is dominated by the time to compute t(j)

in step 5. For general loads, replacing |V | with |V | gmax, the complexity becomes O
¡|H| |V |2 g2max¢.

Since in our setup |H| can be as large as |V |, the overall complexity of the algorithm is

O(|V |3 g2max).

C. Proof of Lemma 1

Lemma 1: Consider the problems

min
x∈A

g(x), A ⊆ Rn, (23)

min
x∈A

g(x), A ⊆ Rn, (24)

29

where g(x) ≥ 0. If for x ∈ A,

g(x) ≤g(x) ≤bg(x), (25)

then an a−approximate solution for problem (24), a ≥ 1, is a ba-approximate solution for (23).

Proof: Let x∗, x∗ be the optimal solutions to (23), (24) respectively. Let also y be an

a-approximate solution for problem (24), i.e.

g(x∗) ≤ g(y) ≤ag(x∗). (26)

Since x∗ is optimal for problem (24), it holds

g(x∗)≤g(x∗) ≤ bg(x∗) by (25) (27)

Then

g(x∗) ≤ g(y) since x∗solves (23)
by (25)
≤ g(y)

by (26)
≤ ag(x∗)

by (27)
≤ abg(x∗).

Hence y is a ab solution to (23).

D. Proof of Lemma 2

Lemma 2: If the functions fi(y) are concave and Algorithm 2 is applied, then the load of

each node in V can be assigned to a single server.

Proof: Assume that at the beginning of the tth iteration of the while loop in Algorithm 2

(step 3) the load of any assigned node, has been actually assigned to a single server. We will

show that the same is true at the beginning of the t + 1th iteration. The result will follow by

induction.

It suffices to show that the minimum in step 5 is achieved when all the load of each unassigned

node is assigned to a single server. To simplify notation, let c1 ≤ c2 ≤ ... ≤ cm be the unassigned

nodes connected to node j, and let l be the load assigned to node j at the tth iteration. For

simplicity, we drop the index j from the notation. We then have to compute

min
k

f(l + k)− f(l) +
Pn(k)

i=1 cigi + l(k)cn(k)+1
k

. (28)

30

Let Y =
Pn

i=1 gi and k = Y + y, 0 ≤ y ≤ gn+1. It suffices to show that the minimum of

s(y) =
f(l + Y + y)− f(l) +

Pn
i=1 cigi + ycn+1

Y + y
, 0 ≤ y ≤ gn+1,

is achieved either at y = 0 or at y = gn+1. Indeed this implies that the minimum in (28) is

achieved when k =
Pj

i=1 gi for some j, 1 ≤ j ≤ m, i.e., that all the node loads are assigned to

a single server.

Let us rewrite

s(y) =
f(l + Y + y)− f(l) +

Pn
i=1 cigi + cn+1y

Y + y

=
f(l + Y + y)− f(l) +

Pn
i=1 (ci − cn+1) gi

Y + y
+ cn+1 =

φ(Y + y)

Y + y
+ cn+1,

where φ(x) = f(l + x)− f(l) +
Pn

i=1 (ci − cn+1) gi.

Notice that φ(x) is concave. Suppose that a minimum of s(y) occurs at y = y0, such that

0 < y0 < gn+1. By the definition of y0 and the fact that y0 > 0, we have

φ(Y + y0)

Y + y0
≤ φ(Y + y0 − 1)

Y + y0 − 1

or

φ(Y + y0)− φ(Y + y0 − 1) ≤ φ(Y + y0)

Y + y0
.

Hence, using the concavity of φ(x),

φ(Y + y0 + 1)− φ(Y + y0) ≤ φ(Y + y0)

Y + y0

and
φ(Y + y0 + 1)

Y + y0 + 1
≤ φ(Y + y0)

Y + y0
.

Therefore y0+1 is a minimum too. Similarly, using the fact that y0 < gn+1 we conclude that

y0 − 1 is also a minimum.

This implies by induction that φ(Y+y)
Y+y

is constant for 0 ≤ y ≤ gn+1 and hence the same holds

for s(y). We conclude that either the minimum is achieved at y = 0 or at y = gn+1, or s(y) is a

constant for 0 ≤ y ≤ gn+1. In the latter case we can pick y = gn+1 as the minimizing point.

31

E. Proof of Lemma 3

Lemma 3: If a function φ : {0, 1, . . . ,W} → Q is subadditive and non-decreasing, then it

holds for its upper hull φ2(y), φ2(y) ≤ 2φ(y).
Proof: For y = 0 and y =W we have by definition φ2(y) = φ(y). Let now y be an integer

such that yk < y ≤ yk+1. Consider two cases

1) yk+1 − yk < y. Then

φ2(y) ≤ φ (yk+1) by (14)

≤ φ (yk + y) since φ is non-decreasing

≤ φ (yk) + φ(y) by subadditivity

≤ 2φ(y) since φ is non-decreasing.

2) yk+1 − yk ≥ y. Since φ2(y) is piecewise linear and yk, yk+1 are consecutive break points,

it holds for any z, yk ≤ z < yk+1,

φ2(yk+1)− φ2(yk)

yk+1 − yk
=

φ2(yk+1)− φ2(z)

yk+1 − z
.

Since φ2(yk) = φ(yk), k = 1, ...,K,

φ(yk+1)− φ(yk)

yk+1 − yk
=

φ(yk+1)− φ2(z)

yk+1 − z

≤ φ(yk+1)− φ(z)

yk+1 − z
by (15)

≤ φ(yk+1 − z)

yk+1 − z
by subadditivity. (29)

Now set z = yk+1 − y. Since yk ≤ z < yk+1 by hypothesis, using the last inequality we

have,

φ2(y) = φ(yk) +
φ(yk+1)− φ(yk)

yk+1 − yk
(y − yk)

≤ φ(yk) +
φ(y)

y
(y − yk) by (29)

≤ φ (yk) + φ(y) ≤ 2φ(y) since φ is non-decreasing.

This completes the proof.

32

F. Proof of Lemma 4

Lemma 4: a) In Algorithm 4, K = O
³
1
�
log f(W)

f1

´
.

b)The worst case running time of Algorithm 4 is O
³
T log(W)1

�
log f(W)

f1

´
, where T is the

worst case time (over all y, 1 ≤ y ≤W) needed to compute f(y).

c) Consider the step function defined as follows: if yk ≤ y < yk+1 for some k, 1 ≤ k ≤ K−1,
then bf(y) = bfk, and bf(W) = bfK . It holds,

bf(y) ≤ f(y) ≤ (1 + �) bf(y). (30)

Proof: a) According to steps 2 and 4 it holds,

f(yk − 1) ≤ (1 + �1)f(yk−1) ≤ f(yk). (31)

Since f(y) is non-decreasing and f(1) > 0 (hence f(y) > 0, y ≥ 1), inequality (31) implies

that yk−1 < yk. Moreover, (1+�) bfk−1 ≤ (1+�)f(yk−1) = bfk.This implies that (1 + �)k−1 bf1 ≤ bfk.
Hence the algorithm stops in O

³
log1+�

f(W)

f1

´
= O

³
log f(W)

f1
/�
´

steps.

b) Since f(y) is non-decreasing, we can use binary search in [1,W] to find each yk. Hence

the determination of each yk takes O(T logW) computations and the total running time is

O(TK logW).

c) For yk ≤ y < yk+1, taking into account (31) we have

f(y) ≤ f(yk+1 − 1) since f(y) is non-decreasing

≤ (1 + �)f(yk) = (1 + �) bf(y).
By definition, bf(y) = f(yk). Taking also into account that f(yk) ≤ f(y), (30) follows.

G. Proof of Lemma 5

Lemma 5: Let �0 > 0, � > 0 be given. Let f(y) be the optimal solution to Problem 2 and

assume that we compute for a given y the approximate function f(y) so that

f(y) ≤ f(y) ≤ (1 + �0) f(y). (32)

a) For the purposes of computing the step function bf(y) satisfying (30), f(y) may be assumed

non-decreasing.

33

b) It holds for ef(y) = (1 + �) bf(y)
f(y) ≤ ef(y) ≤ (1 + (�+ �0 + ��0)) f(y). (33)

c) The number of jump points of bf(y), hence of ef(y), is O
¡
1
�
log (|V | gmax)

¢
and the running

time of Algorithm 4 is O
¡
1
�
T (log (|V | gmax))2

¢
, where T is the worst case time (over all y,

1 ≤ y ≤W) needed to compute f(y).

Proof: a) To see that for the purposes of constructing f(y) we can assume without loss

of generality that f(y) is non-decreasing, proceed as follows. If at some point during the

computations for the construction of f(y) we obtain for y1 < y2, f(y1) > f(y2), then we

can replace f(y2) with f1(y2) = f(y1) without violating (32). Indeed,

f(y2)
by (32)
≤ f(y2) < f(y1) = f1(y2), by assumption

and

f1(y2) = f(y1)
by (32)
≤ (1 + �0) f(y1) ≤ (1 + �0) f(y2) since f(y) is increasing.

b) Let yk ≤ y ≤ yk+1 − 1. We then have

f(y)
by (32)
≤ f(y)

by (30)
≤ (1 + �) bf(y)

= ef(y). (34)

On the other hand,

f(y)
by (32)
≥ 1

1 + �0
f(y)

by (30)
≥ 1

1 + �0
bf(y)

=
ef(y)

(1 + �0) (1 + �)
. (35)

From (34), (35), we obtain (33).

c) Since f(y) is subadditive, it holds f(W)/f(1) ≤W . The result then follows from Lemma

4 a) and b).

