
Efficient QoS Routing B

Stavroula Siachalou, Leonidas Georgiadis

Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki,
Thessaloniki, Greece.

Abstract

We consider the problem of routing in a network where QoS constraints are placed
on network traffic. We provide two optimal algorithms that are based on determining
the discontinuities of functions related to the optimization at hand. The proposed
algorithms have pseudopolynomial worst case running time and for a wide vari-
ety of tested networks they have fairly satisfactory running times. They perform
significantly better than the algorithm based on the direct application of the Dy-
namic Programming equations and can also be used in conjunction with known
polynomial-time approximation algorithms to provide good average case behavior,
in addition to guaranteeing polymonial worst-case running time.

Key words: Network Routing, QoS Routing, Graph theory, Simulations

1 Introduction

Transmission of multimedia traffic presents many challenges to the network
designer. Voice and video packet streams require certain bandwidth as well
as bounds on delay, loss probability and jitter in order to maintain reception
quality. These issues give rise to the problem of routing multimedia traffic so
that Quality of Service (QoS) is maintained, [12], [14],[15] otherwise known as
the Constrained Shortest Path Routing Problem.

The QoS Routing Problem consists in finding an optimal-cost path from a
source to a destination subject to one or more constraints (e.g., total delay

B This work was presented in part at INFOCOM’ 03, USA, San Francisco, April
01- 03, 2003.
Email addresses: stavroula@psyche.ee.auth.gr (Stavroula Siachalou),

leonid@eng.auth.gr (Leonidas Georgiadis).

Preprint submitted to Elsevier Science 4 April 2003

and loss probability) on the path. It is well known that this problem is NP-
complete [5] and several heuristics have been proposed for its solution [2], [3],
[9]. On the other hand, fully polynomial �-approximate solution schemes for the
problem exist [8], [16]. These results were recently improved in [10] and were
applied to related problems in [11]. In [6], polynomial algorithms have been
proposed that find the optimal solution from one source to all destinations,
within �-deviation from the set path constraint. The algorithms in [6] and
[10] use as a subroutine the iterations implied by the Dynamic Programming
equation related to the problem at hand.

In this paper we provide two optimal algorithms for the QoS Routing problem.
The algorithms consist in finding the discontinuity points of functions related
to the optimization problem. Although pseudopolynomial, tests with a wide
variety of networks, link costs and link constraints, show that the proposed
algorithms have fairly satisfactory performance and can be used in practical
systems. Moreover, if guaranteed polynomial worst-case running time is also
desired, the algorithms can replace the dynamic programming recursions in
the approximate polynomial-time algorithms in [6] and [10], to improve their
average running time.

The rest of the paper is organized as follows. In Section 2 we provide the
notation and the basic results. The algorithms are presented in Section 3.
In Section 4 we provide a set of numerical experiments that evaluate the
performance of the proposed algorithms. Conclusions are presented in Section
5.

2 Notations and Basic Results

Let G = (N,L) be a graph with node set N and link set L. A link with
origin node m and destination node n is denoted by (m,n). With N+(n) and
N−(n) we denote the set of incoming and outgoing neighbors to node n, that
is, respectively,

N+(n) = {m ∈ N : (m,n) ∈ L} ,
N−(n) = {m ∈ N : (n,m) ∈ L} .

With each link l = (m,n) , m, n ∈ N there is an associated cost cmn ≥ 0
and delay dmn ≥ 0. If p = (m1, ...,mk) is a directed path (a subgraph of G
consisting of nodes m1, ...,mk, mi 6= mj for all 1 ≤ i, j ≤ k, i 6= j, and links
(mi,mi+1), 1 ≤ i ≤ k − 1) then we define the cost and delay of the path

2

respectively,

C(p) =
X

(m,n)∈p
cmn,

D(p) =
X

(m,n)∈p
dmn.

The set of all paths with origin node s, destination node n and delay less than
or equal to d is denoted by Psn(d). The set of all paths from s to n is denoted
simply by Psn. For any d, we are interested in finding a path p∗ ∈ Psn(d) such
that

C(p∗) ≤ C(p) for all p ∈ Psn(d).

Let C∗n(d) be the minimum of the costs of the paths p ∈ Psn(d). If Psn(d) = ∅,
we define C∗n(d) =∞. For node s, we also define

C∗s (d) =

 ∞ if d < 0

0 if d ≥ 0
.

The algorithms to be presented below depend heavily on the properties of the
functions C∗n(d). These properties are presented in the lemmas below.

Lemma 1 The functions C∗n(d), n ∈ N, n 6= s, satisfy the following equations.

C∗n(d) = min
m∈N+(n)

{cmn + C∗m(d− dmn)}

Proof. These are the dynamic programming equations for the problem at
hand [1, Problem 4.46.]. We only note that due to the fact that the links costs
are nonnegative, we can use the equations as stated in the lemma instead of

C∗n(d) = min

 C∗n(d− 1),
minm∈N+(n) {cmn + C∗m(d− dmn)}

 ,

and we do not need to make any integrality assumptions on d.

Lemma 2 For any n ∈ N , C∗n(d) has the following properties

(1) C∗n(d) is nonincreasing
(2) If C∗n(d) <∞ for some d, then C∗n(d) is a piecewise constant, right con-

tinuous function of d. If C∗n(d) is discontinuous at d0, then
(a) There is a path p∗d such that C

∗
n(d) = C(p∗d) and D(p

∗
d) = d0 .

(b) There is an m ∈ N+(n) such that C∗m(d) is discontinuous at d0−dmn

and C∗n(d0) = C∗m(d0 − dmn) + cmn.

3

(3) The set Dn, of points (real number pairs) (d, C∗n(d)) at which disconti-
nuities of C∗n(d) occur, is finite.

Proof. 1) The fact that C∗n(d) is nonincreasing follows directly from the defi-
nition.

2.a) Observe that if C∗n(d) <∞, then there must exist a path p ∈ Psn(d) with
C(p) = C∗n(d). Let p

∗
d be a path with smallest delay among the paths that

have cost C∗n(d). By definition,

C∗n(d) = C(p∗d). (1)

Moreover it holds that

C∗n(d
0) > C∗n(d) for d

0 < D(p∗d). (2)

To see this note that if C∗n(d
0) = C∗n(d) then there must exist a path q with

delay at most d0 < D(p∗d) such that C(q) = C∗n(d
0) = C∗n(d), which contradicts

the definition of p∗d. Since C
∗
n(d) is nonincreasing, the only possibility is that

C∗n(d
0) > C∗n(d) for d

0 < D(p∗d).

Next, let bpd be the path with smallest delay among the paths in the set
P (d) = {p ∈ Psn : C(p) < C∗n(d)} .

In case P (d) = ∅ define D(bpd) =∞. Then, it holds
C∗n(d

0) = C(p∗d) for D(p
∗
d) ≤ d0 < D(bpd). (3)

To see this note that if C∗n(d
0) < C(p∗d) for some d

0 such that D(p∗d) ≤ d0 <
D(bpd), then there must exist a path q with delay at most d0 < D(bpd) such
that C(q) = C∗n(d

0) < C∗n(p
∗
d) = C∗n(d), which contradicts the definition of bpd.

Since C∗n(d) is nondecreasing, the only possibility is that C
∗
n(d

0) = C∗n(d) for
D(p∗d) ≤ d0 < D(bpd).
The fact that C∗n(d) is a piecewise constant, right continuous function, as well
as 2.a, follow from (1), (2) and (3).

2.b) LetM be the set of nodes k ∈ N+(n) for which it holds

C∗n(d0) = C∗k(d0 − dkn) + ckn.

It follows from Lemma 1 thatM is non empty and

C∗n(d0) < C∗k(d0 − dkn) + ckn, for k ∈ N+(n)−M (4)

Since C∗n(d) is discontinuous at d0, the continuity of the function min {•}
implies that for at least one node m inM, C∗m(d) is discontinuous at d0−dmn.

4

3) According to 2), if C∗n(d) is discontinuous a dl, there exists a path p∗dl
such that D(p∗dl) = dl. Hence to different discontinuities (i.e., different dl)
correspond different paths and the statement follows from the fact that the
number of paths in the network is finite.

The following observations that follow from the lemmas are important in the
development of the algorithms below.

• Since C∗n(d) is piecewise constant, knowing its discontinuity points in fact
determines the whole function.

• Let C∗n(d) be discontinuous at d0. According to Lemma 2, 2.b, there is an
m ∈ N+(n) such that C∗m(d) is discontinuous at d0 − dmn and C∗n(d0) =
C∗m(d0 − dmn) + cmn. Moreover, according to Lemma 2, 2.a, there is a path
q ∈ Psm(d0 − dmn) such that C∗m(d0 − dmn) = C(q) and D(q) = d0 − dmn.
Therefore, the path p∗d obtained by adjoining link (m,n) to q, is a path
with delay d0 and cost C∗n(d0). The triple (d0 − dmn, C

∗
m(d0 − dmn), m) is

called predecessor of (d0, C∗n(d0), n), and (d0, C
∗
n(d0), n) successor of (d0 −

dmn, C
∗
m(d0 − dmn), m).

• Suppose that we know that for m ∈ N , C∗m(d0) is discontinuous at d0 and in
addition we know a path q for which C∗m(d0) = C(q), d0 = D(q). Then the
possible successors of (d0, C∗m(d0),m) are the triplets (d0 + dmn, C

∗
m(d0) +

cmn, n) for n ∈ N−(m). If we find a way of deciding which of these possible
successors are actual ones, then we will immediately know the corresponding
path by adjoining node n to p.

We denote by D = ∪n∈NDn the set of all discontinuities of the functions
C∗n(d), n ∈ N .

In the following we also make use of the lexicographic order between pairs of
real numbers. We say that the pair (d1, c1) of real numbers is lexicographically
smaller (or simply smaller if there is no possibility for confusion) than (d2, c2)
and write

(d1, c1) < (d2, c2),

if either d1 < d2, or d1 = d2 and c1 < c2.

3 Algorithm Description and Analysis

The proposed algorithm determines all the discontinuities of the functions
C∗n(d), n ∈ N,i.e., D in nondecreasing lexicographic order. Precomputing all
possible discontinuities is useful when it is desirable to satisfy varying customer
service requests, that are not known apriori [7]. If only the optimal path for a
given delay bound, d, is desired, then the algorithm can be easily adapted to
stop whenever the corresponding discontinuities are found. Clearly, a smallest

5

discontinuity occurs at (0, 0) for the function Cs(d).

We assume the implementation of queues and heap structures with the fol-
lowing operations [1].

• Queue structure Q
· head(e,Q): returns (i.e., shows or points to, without removing) the first
element e of the Q.

· tail(e,Q): returns the last element e of the Q.
· enqueue(e,Q): inserts element e at the end of Q.
· dequeue(e,Q): removes and returns the head element e of Q.
· size_of(Q): returns the size of Q.

All previous operations on Q take O(1) time
• A heap H, using key K.
· create_heap(H): creates an empty heap H.
· insert(e,H): inserts element e to H.
· find_min(e,H): returns an element e in H with the smallest key.
· get_min(e,H): removes and returns an element e in H with the smallest
key.

· decrease_key(enew, e,H): replaces in H element e with enew. Element enew
has smaller key than e.

· increase_key(enew, e,H): replaces in H element e with enew. Element enew
has larger key than e.
We assume a Fibonacci heap implementation [4] of H, so that all previous

operations with the exception of get_min(e,H) and increase_key(enew, e,H)
take O(1) time. Operations get_min(e,H) and increase_key(enew, e,H)
take O(logN) time, where N is the size of the heap.

3.1 Algorithm I

The following structures are maintained during the execution of the algorithm.

• An arrayAb[n] of queues. Queue Ab[n] holds the currently known discontinu-
ities of C∗n(d) in nondecreasing order. Its elements are of the form eb =(delay,
cost, predecessor, discontinuity_node), where (delay, cost) is a discontinu-
ity pair of C∗n(d), n =discontinuity_node and predecessor is the predecessor
node of (delay,cost, n). Parameter discontinuity_node is of course redun-
dant, but we keep it in order to simplify the presentation of the code.

• A heap Ha. This heap contains possible discontinuities that may be succes-
sors of some of the already known discontinuities. Each element ea of this
heap is of the same form as the elements of Ab[n]. The key for the heap
elements is the pair (delay,cost) of ea.

6

The algorithm repeatedly performs the steps shown in Figure 1. In pseudocode
form the algorithm is shown in Figure 2. First, initialization of queues Ab[n],
n ∈ N and heap Ha (steps 1-4) takes place. At this stage only the queue corre-
sponding to the source node s is nonempty, containing the single discontinuity
at (0, 0) and with null predecessor. The rest of the queues are initialized to
(−∞,∞, null, n). The latter initialization is done in order to facilitate the
description of the code. The heap Ha contains the possible successor discon-
tinuities of (0, 0, s) (steps 5-7). The latter (possible discontinuities) consist of
one possible discontinuity of the form (dsn, csn, s, n) for each of the outgoing
neighbors of s.

In the while loop, line 8, the algorithm removes the minimum key disconti-
nuity ea among the possible discontinuities in Ha. Next, it compares the cost
parameter of the key of ea with the cost parameter of the key of the tail el-
ement eb in the queue that corresponds to the discontinuity_node of ea . If
ea.cost is larger than or equal to eb.cost, then ea is discarded. Else the dis-
continuity represented by ea is enqueued to the discontinuities of the queue
corresponding to m = ea.discontinuity_node. Next, in the for all loop, line
14, a possible discontinuity is added to Ha for each outgoing neighbors of m.
A further optimization step is taken here by avoiding to create possible dis-
continuities for the node n ∈ N−(m) for which n = ea.predecessor, since such a
discontinuity is impossible. The algorithm stops when Ha = ∅, that is, when
there are no possible discontinuities left to be examined.

Algorithm I finds all the discontinuities of the functions C∗n(d), n ∈ N, that
is, all optimal paths from s to any node n ∈ N and for any possible delay.
If we are interested only in finding a path from node s to a given node n,

Fig. 1. Basic Steps of Algorithm I

7

ALGORITHM I Inputs: Graph G with link costs cij and delays dij.
Outputs: The array Ab[n] of queues, which contains the discontinuities of
each node. /* begin initialization */
(1) create_heap(Ha)
(2) for all n ∈ N − {s}{
(3) Ab[n] = (−∞,∞, null, n);}
(4) Ab[s] = (0, 0, null, s);
(5) for all n ∈ N−(s){
(6) ea = (dsn, csn, s, n);
(7) insert(ea, Ha);} /* end initialization */
(8) while Ha 6= ∅ do {
(9) get_min(ea, Ha);
(10) m = ea.discontinuity_node;
(11) tail(eb, Ab[m]);
(12) if (eb.cost> ea.cost) then{
(13) enqueue(ea, Ab[m]);
(14) for all n ∈ N−(m), n 6= ea.predecessor{
(15) e0a = (ea.delay+dmn, ea.cost+cmn, m, n);
(16) insert(e0a,Ha);}}}

Fig. 2. Algorithm I

with delay at most d, then the algorithm can be made to stop as soon as for
function C∗n(d) a discontinuity is found whose delay is larger than or equal to d.
Below we prove the correctness of Algorithm I and analyze its computational
complexity.

3.1.1 Correctness of Algorithm I

At the kth iteration of the loop that begins on line 8, let Dk = ∪n∈NAb[n]. We
will establish by induction that.

(1) The kth smallest discontinuity ea in D is added to the appropriate queue
Ab[n].

(2) The keys of the elements in heap Ha are larger than or equal to the keys
of the elements in Dk.

(3) The heap Ha contains all the discontinuities that may be successors of
the discontinuities in Dk.

The statement is correct at the initialization step k = 0. Assume next that
the statement is correct at step k. Let ea be the element with smallest key
in Ha and eb the last element in Ab[m], where m = ea.discontinuity_node.
If eb.cost≤ ea.cost, then ea cannot be a discontinuity of C∗m(d) and there-
fore ea can be discarded. To see this, note that by assumptions (1) and (2),
we know that ea.delay≥ eb.delay. Therefore, for ea to represent a disconti-

8

nuity of C∗m(d), by Lemma 2 we must have eb.cost> ea.cost. Assume now
that eb.cost> ea.cost. Then, eb.delay< ea.delay since otherwise the key of ea
will be strictly smaller than the key of eb, which contradicts assumption (2).
By assumption (3), there is a predecessor of ea in Dk. There can be no dis-
continuity e0a for C

∗
m(d) with delay strictly smaller than ea.delay and strictly

larger than eb.delay. To see this, assume that such an e0a exists. According to
Lemma 2.b, there must be a path p0a = (m1,m2, ...mr), m1 = s, mr = m,
such that a) C(p) = e0a.cost , D(p) = e0a.delay and b) path pua = (m1, ...,mu) ,
1 ≤ u ≤ r − 1 corresponds to a discontinuity smaller than or equal to e0a.
Since e0a.delay>eb.delay, e

0
a /∈ Dk. Let ml be the smallest index node, l ≤ r

such that the discontinuity ela corresponding to pla = (m1, ...,ml) does not
belong to Dk (note that l > 1 since m1 = s). The predecessor of ela must
belong to Dk and therefore, according to assumption (3), ela must belong
to Ha. Since e0a.delay≥ ela.delay, and ea.delay> e0a.delay, we conclude that
ea.delay> ela.delay, which contradicts the fact that ea has the minimum key
in Ha. Since by construction there is a path with delay and cost respectively
ea.delay and ea.cost, from the discussion above we conclude that ea represents
a discontinuity of C∗m(d), m = ea.discontinuity_node and assumption (1) is
satisfied for k + 1. Assumptions (2) and (3) are also satisfied since the insert
operations in the for all loop, line 14, creates a)keys that are larger than or
equal to ea and b) all the discontinuities that may be ancestors of ea.

3.1.2 Computational Complexity of Algorithm I

In the following we analyze the worst case running time of the algorithm
provided that we intend to find all the discontinuities in D. A similar analysis
holds for the worst case analysis when a bound d is specified on the delays.
We express these bounds in terms of parameters that are revealing of the
performance of the algorithms in the average case. If desired, these bounds
can also be expressed in terms of node, link numbers and the delay bound.

Let R(n) be the number of discontinuities of C∗n(d). Denote,

Rmax = max
n∈N

{R(n)} ,
RS =

X
n∈N

R(n),

E =
X
m∈N

|N−(m)|R(m).

N−
max = max

n∈N
{N−(n)} .

Each discontinuity that is added to Ab[m] inserts |N−(m)| elements to Ha.
Therefore, E elements are inserted in Ha and its size is at most E. The
get_min operation is executed once for each element of Ha. Since the get_min
operation takes O(logE) time in the worst case, the worst case running time

9

due to the get_min operation is O(E logE). The insert operation takes con-
stant time and is executed E times. Hence the worst case running time of the
algorithm is O(E logE).

We can express the worst case bound of the algorithm in terms of other relevant
parameters as follows. Observe that

E ≤ Rmax
X
n∈N

|N−(n)| = Rmax |L| , (5)

where |L| is the cardinality of the set L. Hence the worst case performance of
the proposed algorithm is,

O(Rmax |L| (log |L|+ logRmax))

Note that no integrality assumptions are made regarding the link delays. For
comparison, assuming that the delays are positive integers and using the dy-
namic programming recursive equation in Lemma 1, the function C∗n(d) can
be determined in the worst case running time, [6],

O(Dmax |L|),
where Dmax is the maximum delay at which a discontinuity in D may occur. If
delays can take zero values, then the worst case running time of the dynamic
programming recursive equations becomes

O(Dmax(|L|+ |N | log |N |).
As we will see in Section 4, numerical results show that for a wide range of
networks, Dmax is much larger than Rmax. As a result, the running time of
the proposed algorithm is in general significantly better than the algorithm
obtained by a direct application of the dynamic programming equation.

3.1.3 Memory requirements of Algorithm I

We again assume that we intend to find all the discontinuities in D.

In order to hold all discontinuities, the arrays Ab[n], n ∈ N , need space O(RS).
As mentioned above, the size of heap Ha is at most O(E).

Therefore, the memory requirements of the algorithm are O(Rs + E). Since
Rs ≤ Rmax |N | , taking into account (5) we have that the memory requirements
are O(Rmax(|N |+ |L|)) = O(Rmax |L|).

Regarding the dynamic programming approach, we also need O(RS) space to
hold the discontinuities in RS. A straightforward implementation of the re-
cursions in Lemma 1 requires an additional space O(|N |maxm,n∈N {dmn}) to

10

keep the most recent values of D∗
n(d). However, these values can be obtained

by the already known discontinuities in Ab[n], n ∈ N. Hence with the lat-
ter implementation, the memory requirements of the dynamic programming
approach are O(Rmax |N |). Note, however, that this implementation increases
the computational complexity of the algorithm and hence worsens its running
time.

3.2 Algorithm II

The performance of Algorithm I presented in the previous section can be
improved by amore efficient organization of the heapHa containing all possible
successors of the already known discontinuities. We present this approach in
the current section.

Instead of the heap Ha we consider the following structures.

• An array B[l] of queues, l ∈ L. An element e of B[l] is of the form,

e = (delay, cost, predecessor, discontinuity_node),

where m=predecessor is the origin of link l , n=discontinuity_node is the
destination of link l and (delay,cost) signifies a possible discontinuity of
C∗n(d) with predecessor node m. As in the previous section, n and m are
redundant here, but we keep them for simplicity in the description. Hence
queue B[l] contains all possible discontinuities of C∗n(d) that may be suc-
cessors of the already known discontinuities of C∗m(d). The elements in B[l]
are stored in increasing order of keys, where key is the pair (delay,cost).

• An array of heaps Ha[n]. Heap Ha[n] contains the head elements of the
queues B[(m,n)] , m ∈ N+(n). An element ea of Ha[n] is of the same form
as the elements in arrayB[l].

• A heap Hg containing the minimum key elements of Ha[n], n ∈ N . An
element eg of Hg is of the same form as the elements in array B[l]. Op-
erations performed during the update of Hg ensure that each element e
in Hg has smaller delay than any of the discontinuities in Ha[n], n =
e.discontinuity_node. This, combined with the correctness proof of Algo-
rithm I, ensures that the minimum key element eg in Hg is a real disconti-
nuity for C∗n(d), n = eg.discontinuity_node.

We also need the following subroutines

• obtain_minimum(eg, Hg): this subroutine returns the minimum-key element
eg in Hg. At the same time, it updates Ha[n], n = eg.discontinuity_node
and B[l], l = (m,n), m ∈ N+(n), and either removes or updates element eg.

• update_new(ea): This subroutine inserts a possible discontinuity ea in queue

11

Fig. 3. Restucturing of Ha used in Algorithm I

ALGORITHM II Inputs: Graph G with link costs cij and delays dij.
Outputs: The array Ab[n] of queues, which contains the discontinuities of
each node. /* begin initialization */
(1) create_heap(Hg);
(2) Ab[s] = (0, 0, null, s);
(3) for all l ∈ L {
(4) B[l] = ∅;}
(5) for all n ∈ N − {s}{
(6) create_heap(Ha[n]);
(7) Ab[n] = (−∞,∞, null, n);}
(8) for all n ∈ N−(s) {
(9) ea = (dsn,csn, s, n);
(10) update_new(ea);} /* end initialization */
(11) while Hg 6= ∅ do {
(12) obtain_minimum(eg, Hg);
(13) m = eg.discontinuity_node;
(14) enqueue(eg, Ab[m]);
(15) for all n ∈ N−(m){
(16) e0a = (eg.delay+dnm, eg.cost+cnm, m,n);
(17) update_new(e0a) ;}}

Fig. 4. Algorithm II

B[(m,n)], where m = ea.predecessor and n = ea.discontinuity_node. At the
same time, Ha[n] and Hg are updated.

The structures included in Algorithm II are shown in Figure 3. The modified
algorithm is presented in Figure 4. It is assumed without loss of generality that
N+(s) = ∅. The initialization of Ab[n] with a single element (−∞,∞, null, n)
is made in order to simplify the description of the code.

12

It is instructive at this point to compare Algorithm II with Dijkstra’s algorithm
[1, page 109]. In the latter algorithm, at each step there is a set S ⊆ N
that consists of the nodes whose minimum distance from the source node is
known, and there is a label associated with each node representing the shortest
distance path from the node to the source, provided that only the nodes in S
can be used as intermediate nodes in a path. At each step of the algorithm, a
node n in S = N − S with smallest label is moved to S and the labels of all
outgoing neighbors of n are updated.

There is a direct correspondence between Dijkstra’s algorithm and Algorithm
II as follows

• S corresponds to the union of the elements in Ab[n], n ∈ N.
• N corresponds to the set D of discontinuities of the functions C∗n (d)
• The label of node n corresponds to the set of possible discontinuities of n
that are located in B((m,n)), m ∈ N+(n).

In this sense, we may say that the proposed algorithm is a generalization of
Dijkstra’s algorithm.

We present the subroutine update_new in Figure 5, and we describe the var-
ious steps of the pseudocode. If the cost of ea is larger than or equal to the
cost of the tail element et in Ab[n] (line 4), then ea is not a possible discon-
tinuity and therefore it is discarded. If the cost of ea is smaller than the cost
of et, then, as with Algorithm I, it is known that ea.delay >et.delay. If the
heap Ha[n] is empty, then the new element is inserted in B[l], Ha[n] and Hg

(lines 5 to 7) and the subroutine ends. Else, (lines 8 and below) the key of ea
is compared with the minimum-key element emin in Ha[n] in order to decide
whether ea can be a possible discontinuity of C∗n(d) and whether emin should
be updated and certain possible discontinuities can be discarded. Specifically,

(1) If emin.delay ≤ ea.delay and emin.cost ≤ ea.cost (line 10), then ea cannot
be a possible discontinuity of C∗n(d) and therefore it is discarded.

(2) If (emin.delay< ea.delay and emin.cost > ea.cost) (line 11), then ea is a
possible discontinuity and in case B[l] is empty, ea must be inserted in
Ha[n]. Moreover, ea is added to B[l].

(3) If (emin.delay > ea.delay and emin.cost < ea.cost) (line 14), then ea is a
possible discontinuity. Since the key of ea is smaller than the key of emin,
B[l] must be empty (the key of ea is always larger than the key of the
head element in B[l] which in turn is larger than or equal to the key of
emin). Therefore ea must be added toB[l], must be inserted in Ha[n] and
must replace emin in Hg.

(4) If (emin.delay = ea.delay and emin.cost > ea.cost) or (emin.delay > ea.delay
and emin.cost ≥ ea.cost (line 17) then ea is a possible discontinuity while
emin is not. Therefore, ea replaces emin both in Ha[n] and in Hg (lines

13

subroutine update_new(ea) Inputs: Element ea, the arrays B, Ha,Ab

and the heap Hg.
(1) n = ea.discontinuity_node; m = ea.predecessor ;
(2) l = (m,n);
(3) tail(et, Ab[n]);
(4) if et.cost ≤ ea.costthen { return; }
(5) if Ha[n] = ∅ then{
(6) enqueue(ea, B[l]); insert(ea,Ha[n]);
(7) insert(ea, Hg); return;}
(8) find_min(emin,Ha[n]);
(9) switch
(10) case:emin.delay ≤ ea.delay and emin.cost ≤ ea.cost{return;}
(11) case:emin.delay< ea.delayand emin.cost > ea.cost{
(12) if B[l] = ∅ then {insert(ea,Ha[n]);}
(13) enqueue(ea, B[l]);}
(14) case:emin.delay > ea.delay and emin.cost < ea.cost{
(15) enqueue(ea, B[l]); insert(ea,Ha[n]);
(16) decrease_key(ea, emin, Hg);}
(17) case:(emin.delay = ea.delay and emin.cost > ea.cost) or

(emin.delay> ea.delay and emin.cost≥ ea.cost){
(18) decrease_key(ea, emin, Ha[n]);
(19) decrease_key(ea, emin, Hg);
(20) enqueue(ea, B[l]);
(21) k = emin.predecessor_node;
(22) l = (k, n);
(23) dequeue(emin, B[l]);
(24) while B[l] 6= ∅ do{
(25) head(e,B[l]);
(26) if e.cost < ea.cost then {
(27) insert(e,Ha[n]); return;}
(28) else {dequeue(e,B[l]);}}
(29) return;

Fig. 5. Subroutine update_new

18, 19) and emin is removed from B((k, n)), k = emin.discontinuity_node
(line 23). Next, (line 24) the queue B[(n, k)], is scanned and all impossible
discontinuities in this queue are removed.

Finally, we present the obtain_minimum(eg,Hg) subroutine in Figure 6. Ini-
tially, the minimum-key element eg in Hg is obtained. Next, eg is dequeued
from queue B[l] and Ha[n], where l = (m,n), n = eg.discontinuity_node,
m = eg.predecessor , and if B[l] is not empty, the head element in B[l] is in-
serted in Ha[n]. The rest of the pseudocode (starting from line 10) determines
the element in Ha[n] that is going to replace eg and removes from queues

14

subroutine obtain_minimum(eg,Hg) Inputs: The arrays B, Haand the
heap Hg. Outputs: The minimum key element eg in Hg.
(1) find_min(eg, Hg);
(2) êg = eg;
(3) n = eg.discontinuity_node; m = eg.predecessor ;
(4) l = (m,n);
(5) dequeue(eg, B[l]);
(6) get_min(eg, Ha[n]);
(7) if (B[l] 6= ∅) then {
(8) head(eh, B[l]);
(9) insert(eh,Ha[n]);}
(10) while (Ha[n] 6= ∅) do{
(11) find_min(emin,Ha[n]);
(12) if eg.delay< emin.delay and eg.cost > emin.cost then {
(13) increase_key(emin, eg, Hg);
(14) return êg;}
(15) else{k = emin.predecessor;
(16) l = (k, n);
(17) dequeue(emin, B[l]);
(18) get_min(emin,Ha[n]) ;
(19) while (B[l] 6= ∅) do{
(20) head(e,B[l]);
(21) if e.cost < eg.cost then {
(22) insert(e,Ha[n]);
(23) increase_key(e, eg, Hg);
(24) return êg;}
(25) else {dequeue(e,B[l]);}}}}
(26) get_min(eg, Hg);
(27) return êg;

Fig. 6. Subroutine obtain minimum

B[(k, n)], k ∈ N+(n) impossible discontinuities. The minimum-key element
emin in Ha[n] is determined. In order to be inserted to Hg, emin must have
strictly larger delay and strictly smaller cost than eg. If this is true (line 12),
then emin is inserted in Hg in place of eg and the subroutine ends. Otherwise,
since it is always true that the keys of the elements in Ha[n] are larger than or
equal to the key of eg, the only possibilities are that eg.delay≤ emin.delay and
eg.cost ≤ emin.cost. In such a case, emin cannot be a possible discontinuity of
C∗n(d) and must be removed. The rest of the code in the while loop performs
this removal and at the same time removes impossible discontinuities from
B[(k, n)], where k = emin.predecessor. On exit from the while loop (line 26),
Ha(n) must be empty and therefore eg is removed from Hg instead of being
replaced with another element in Ha(n) as was done in lines 13, 23.

15

3.2.1 Computational Complexity of Algorithm II

We use the same notation as in Section 3.1. Subroutine enqueue(eg, Ab[m])
takes O(1) time and is executed once for each discontinuity in D. Subroutine
obtain_minimum() is invoked once for each discontinuity in D, that is RS

times. Each such invocation involves a get_min or increase_key operation
on Hg, which takes O(log |N |) time in the worst case. Hence, the worst case
running time for all these operations is O(RS log |N |). There are also other
computations involving Ha[n] and B[l], which are taken into account below.

Subroutine update_new() is invoked once per discontinuity in D. Each invo-
cation causes |N−(m)| updates, to Ha[m] and B[(m,n)] corresponding to the
outgoing neighbor m of the node n = ea.discontinuity_node. These latter
updates involve in the worst case an enqueue and dequeue operation to one
of the queues in B[l] , a get_min, insert, or decrease_key operation on Ha[m]
and decrease_key operation on Hg. The get_min operations on Ha[m] take
worst-case time O(log |N+(m)|) since the size of Ha[m] is at most |N+(m)| ,
while the rest of the operations take worst-case time O(1). Hence, the total
worst case running time of the algorithm is

O

RS log |N |+
X
n∈N

R(n)
X

m∈N+(n)
log

¯̄̄
N+(m)

¯̄̄ .

Since
RS ≤ |N |Rmax,

and, denoting N+
max = maxm∈N {N+(m)} ,X

n∈N
R(n)

X
m∈N+(n)

log |N+(n)| ≤

≤ Rmax log
³
N+
max

´ X
n∈N

X
m∈N+(n)

1 =

= Rmax log
³
N+
max

´
|L| ,

we can express the previous bound as

O
³
Rmax

³
|N | log |N |+ |L| logN+

max

´´
. (6)

Note that if all delays are zero, then we have in effect the unconstrained short-
est path routing problem. In this case, each C∗n(d) has a single discontinuity
at 0, and Ha[n] never has more than a single element. That means that the
factor logN+

max can be removed from (6) and therefore the worst-case running
time in this case becomes

O (|N | log |N |+ |L|) ,

16

that is, identical to the worst-case running time of Dijkstra’s algorithm. This
is to be expected since in this case Algorithm II reduces in effect to Dijkstra’s
algorithm.

3.2.2 Memory requirements of Algorithm II

The structures introduced in Algorithm II are basically a reorganization of
the heap Ha used in Algorithm I. Hence the space requirements of Algorithm
II are again O(Rmax |L|).

In table 1 we summarize the worst-case running times of Algorithms I, II
(ALG I and ALG II respectively) and the algorithm that results from the
direct application of the dynamic programming equation. (DP)

Table 1
Worst Case Runnining Times and Memory Requirements

Running Times Memory Requirements

DP O (Dmax(|L|+ |N | log |N |)) O(Rmax |N |)
ALG I O(Rmax |L| (log |L|+ logRmax)) O(Rmax |L|)
ALG II O (Rmax(|N | log |N |+ |L| logN+

max)) O(Rmax |L|)

4 Numerical Results

We run three sets of experiments. Each set corresponds to different methods
of network generation, as follows.

Uniform Networks: A number |N | of nodes and a number |L| = α |N | of
edges, α > 1 is chosen. We use the graph generator random_graph() from
the LEDA package [13]. A random edge is generated by selecting a random
element from a candidate set C defined as follows:

• C is initialized to the set of all |N | (|N |− 1) pairs (u,w) of distinct nodes.
• Upon a selection of a pair (u,w) from C, the pair is removed from C.

For each edge, a delay is picked randomly with uniform distribution among
the integers [1, 100].

Power Law Networks: A number |N | of nodes and a number |L| = α |N |,
α > 1 of links are chosen. The |L| links are used to connect nodes randomly
in such a manner that the node degrees follow a power law [17]. This is one of
the methods that attempt to generate network topologies that are “Internet
like”. The nodes are placed randomly on a grid and the link delays are taken

17

to be proportional to the distance between the nodes joined by the link under
consideration.

Real Internet Network Topology: This network topology was taken from
[18] and is based on the network topology observed in 01/02/2000. For each
edge, a delay is picked randomly with uniform distribution among the integers
[1, 100].

For all the experiments, link costs are generated by one of the following meth-
ods.

COST 1: A cost cl for link l is picked randomly with uniform distribution
among the integers [1, 100].

COST 2: A parameter σl for link l is picked randomly with uniform distri-
bution among the integers [1, 5]. The cost for the link under consideration is
then cl = σl(101 − dl). This method of cost generation reflects the situation
where link costs are decreasing as link delays are increasing. For example, this
may be the case when link costs represent actual monetary values payed to
use a particular link. On the other hand, for other link cost interpretations,
it may be reasonable to expect that link costs increase with link delays. For
example, this may occur if link costs represent loss probabilities. Then, for
congested links one expects to have both high loss probabilities (link costs)
and long delays.

For each of the experiments, we determine all discontinuities of the functions
C∗n(d), n ∈ N , that is, in effect we find all optimal paths from a node s to all
nodes in the network, under any possible delay constraint. We denote by Dmax

the maximum delay at which discontinuities in D occur. If one is interested
only in finding a path with delay at most d, then for the given network, Dmax

corresponds to the delay d that causes the longest running time for all three
algorithms tested.

We generated random uniform and power law networks with 400, 800, and
1200 nodes, and with ratios α = |L| / |N | equal to 4, 8, 16, which are close
to or larger than the ratios between 3 and 4 commonly found in today’s net-
works. For each |N | and α, we generated 10 random networks. For each of
the generated networks we created link costs according to COST 1 and COST
2. In tables 2 - 5 we present the parameters of the generated networks. The
parameter values are the averages of the values obtained for each of the 10
random networks. We observe that in general Rmax is much smaller thanDmax.
For the same method of link cost generation, the variations of parameter val-
ues for random and power law networks, (with the exception of N+

max) are not
significant. However, networks where the COST 2 method is used for link cost
generation generally have larger Rmax and Dmax than corresponding networks
where the COST 1 method is used. As we will see, these observations have an

18

Table 2
Parameters for Random Uniform Networks, Cost 1.

|N | 400 800 1200

α 4 8 16 4 8 16 4 8 16

Dmax 679.7 679.1 558.9 810.1 767.3 695 823.7 743.8 750

Rmax 11.7 16.1 18.8 13.3 17.5 21.4 13.7 18.5 21.6

N+
max 10.9 16.8 28.1 12.1 19.2 29.7 12.3 18.9 30.4

Table 3
Parameters Random Power Law Networks, Cost 1

|N | 400 800 1200

α 4 8 16 4 8 16 4 8 16

Dmax 516.3 485 453 591 631 579 609 623 590

Rmax 12.9 17 18 14 18 22 15 20 23

N+
max 48 68 94 68 98 141 83 129 178

Table 4
Parameters for Random Uniform Networks, Cost 2.

|N | 400 800 1200

α 4 8 16 4 8 16 4 8 16

Dmax 899.8 1027.2 1073 1186.1 1188.5 1229 1233 1256 1280

Rmax 19.4 35 61.9 23.3 45.5 73.8 26 45.6 74.8

N+
max 10.9 16.8 28.1 12.1 19.2 29.7 12.3 18.9 30.4

Table 5
Parameters Random Power Law Networks, Cost 2

|N | 400 800 1200

α 4 8 16 4 8 16 4 8 16

Dmax 710 833 839 862.8 924 975 960 1026 1067

Rmax 21.7 37.8 86.4 27.2 42 73 32 63 78

N+
max 48 68 94 68 98 141 83 129 178

effect on the performance of all three algorithms considered.

The tested Real Network consisted of 6474 nodes with 12572 bidirectional
links, therefore α = 3.88 (2x12572/6474). Link delays are again picked ran-
domly with uniform distribution among the integers [1, 100]. Both COST 1
and COST 2 methods for generating link costs were tested. In this network,

19

Table 6
Parameters for Real Internet Topology (6474 nodes, 25144 links).

COST 1 COST 2

Dmax 776 1001

Rmax 26 93

N+
max 1458 1458

we performed 10 experiments, where in each experiment a node is picked ran-
domly to represent the source. The quantityDmax is defined in the same way as
with the randomly generated networks. Table 6 shows the relevant parameters
in these experiments.

The experiments were run on a Pentium PC IV, 1.7GHz. Below we report our
results both on average running times and memory requirements.

4.1 Average Running Times

The average running times (in seconds) for the three algorithms and for the
various experiments are shown in tables 7 - 11. Also, in these tables we present
the ratio of the average running time of the DP algorithm to the average
running time of ALG I and ALG II. The following observation are worthwhile.

• For the same link cost generation method, the variations of running times
of a given algorithm for Random Uniform and Power Law networks with
fixed |N | and α are not significant.

• For a given algorithm, link costs generated by method COST 2 induce longer
running times than link costs generated by method COST 1, for fixed |N |
and α.

• The performance of ALG I is comparable to ALG II for α = 4, however for
larger values the running time of ALG II can be about two times shorter
than that of ALG I.

• For all experiments the running times of ALG I and ALG II are significantly
better than DP (18 to 100 times shorter).

It is also worth noting that the performance of DP algorithm depends on the
desired accuracy of link delays, while this is not true for both ALG I and ALG
II. For example, we picked link delays between 1 and 100, which implies that
we require two-digit accuracy. If the required accuracy is increased, then both
Dmax and Rmax may increase, but the increase in Rmax is much slower, and
therefore the difference in the running times of the algorithms becomes even
more significant. To demonstrate this we run the following experiment. We
generate a Uniform network with |N | = 800 nodes and |L| = α |N | = 8∗800 =

20

Table 7
Average Running Times for Random Unifrom Networks, cost 1

|N | 400 800 1200

α 4 8 16 4 8 16 4 8 16

ALG I 0.0593 0.214 0.625 0.146 0.495 1.52 0.225 0.812 2.44

ALG II 0.0579 0.1485 0.3296 0.145 0.34 0.789 0.21 0.545 1.25

DP 5.875 11.029 17.56 14.66 26.08 47.16 22.8 38.65 76.58

DP/ALG I 99.07 51.5 28.1 99.88 52.68 31 101.4 47.6 31.3

DP/ALG II 101.4 74.27 53.29 100.84 76.7 59.7 108.5 70.8 61.2

Table 8
Average Running times for Random Power Law Networks, Cost 1

|N | 400 800 1200

α 4 8 16 4 8 16 4 8 16

ALG I 0.049 0.183 0.529 0.125 0.457 1.348 0.208 0.765 2.176

ALG II 0.065 0.143 0.298 0.154 0.354 0.731 0.253 0.583 1.189

DP 4.35 7.56 13.58 10.5 20.96 37.17 16.47 31.5 58.13

DP/ALG I 87.3 41.2 25.6 83.9 45.7 27.5 79.2 41.1 26.7

DP/ALG II 66.4 52.5 45.5 67.8 59 50.8 65 54 48.8

Table 9
Average Running Times for Random Uniform Networks, cost 2

|N | 400 800 1200

α 4 8 16 4 8 16 4 8 16

ALG I 0.0845 0.3858 1.276 0.223 1.01 3.2 0.357 1.46 5.21

ALG II 0.0826 0.2577 0.6188 0.2124 0.58 1.56 0.329 0.947 2.48

DP 7.91 17.098 34.88 21.84 41.1 83.63 34.8 66.9 135

DP/ALG I 93.6 44.31 27.32 97.9 40.6 26 97.4 45.6 25.9

DP/ALG II 95.77 66.35 56.37 102.8 70.8 53. 105.7 70.6 54.4

6400 edges. In the first experiment we pick delays between [1, 100] and in the
second between [1, 1000]. In table 12 we present the relevant parameters and
the running times for the tested network. We observe that the running time
of DP algorithm increases tenfold while the increases of the running times of
ALG I and ALG II are insignificant.

21

Table 10
Average Running Times for Random Power Law Networks, cost 2

|N | 400 800 1200

α 4 8 16 4 8 16 4 8 16

ALG I 0.077 0.346 1.11 0.195 0.854 2.99 0.335 1.48 4.84

ALG II 0.101 0.262 0.583 0.346 0.617 1.53 0.393 1.057 2.5

DP 6.12 13.4 26.1 15.6 31.2 63.89 26.6 53.3 108

DP/ALG I 78.6 38.7 23.5 80 36.5 21.3 79.3 35.8 22.3

DP/ALG II 60.3 51.1 44.7 45 50.5 41.7 67.6 50.4 43.2

Table 11
Average Running Times For Real Internet Network

COST 1 COST 2

ALG I 2.641 8.188

ALG II 2.765 8.531

DP 132.15 153.68

DP/ALG I 50 18.7

DP/ALG II 47.8 18

Table 12
Parameters and Running Times for a Random Uniform Network, Cost 2

|N | 800

α 8

delay (1,100) (1,1000)

Dmax 1425 16611

Rmax 42 45

N+
max 18 18

ALG I 0.797 0.922

ALG II 0.531 0.594

DP 49.26 599.64

DP/ALG I 61.8 650.3

DP/ALG II 92.7 1009.5

22

 Random Uniform Networks (Nodes=1200)
cost independent of delays

7484,9 10494,2
6831,7

20917,1

58735,5

4556,3
0

10000

20000

30000

40000

50000

60000

70000

4 8 16

Ratio Edges/Nodes

M
em

or
y

R
eq

ui
re

m
en

t

DP(sum of discontinuities) AlgI, AlgII

Fig. 7. Memory Requirements for Random Uniform Networks with cost independent
of delays.

4.2 Memory Requirements

The memory requirements of ALG I an ALG II are very similar. Hence we con-
centrate on the requirements of ALG I. Apart from some auxiliary variables,
the memory requirements at any time are determined by the total number
of elements in the arrays Ab[n], n ∈ N and the heap Ha. For each run we
determined the maximum of this number.

As discussed in Section 3.1.3, the Dynamic Programming algorithm can be
implemented in such a manner that its memory requirements are mainly de-
termined by the total number of elements in the arrays Ab[n], n ∈ N, i.e., the
total number of discontinuities. Hence we consider this number as the memory
requirements of the DP algorithm. Notice however, that we did not use this
implementation in our simulations. Hence, the DP running times using this
implementation will be even higher than those reported earlier.

In the figures 7-10 we show the memory requirements of Algorithm I versus
those of the DP algorithm, for Random Uniform and Power Law Networks.
The results for the real network, are similar to the case where the ratio |L| / |N |
is equal to 4.

We see from these figures that the memory requirements of Algorithm I in-
crease relative to those of the DP approach as the ratio |L| / |N | increases,
however, they remain reasonable for all the tested values. Note that real net-
works have ratio |L| / |N | 3 to 4, in which case the difference in memory
requirements is very small.

23

 Random Uniform Networks (Nodes=1200)
cost correlated to delays

7130,4 8661,1

27121
22692,913630,8

82445,2

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

4 8 16
Ratio Edges/Nodes

M
em

or
y

Re
qu

ire
m

en
t

DP (sum of discontinuities) AlgI, AlgII

Fig. 8. Memory Requirements for Random Uniform Networks with cost correlated
to delays.

 Power Law Networks (Nodes=1200)
cost independent of delays

10399,7

60704,8

8146,5
5404 7608,8

22247,1

0

10000

20000

30000

40000

50000

60000

70000

4 6 8
Ratio Edges/Nodes

M
em

or
y

Re
qu

ire
m

en
t

DP(sum of discontinuities) AlgI, AlgII

Fig. 9. Memory Requirements for Power Law Networks with cost independent of
delays.

 Power Law Networks (Nodes=1200)
cost correlated to delays

15721,1
8570,4

24541,8

9747,6

31724,1

92028,9

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

4 6 8
Ratio Edges/Nodes

M
em

or
y

Re
qu

ire
m

en
t

DP(sum of discontinuities) AlgI, AlgII

Fig. 10. Memory Requirements for Power Law Networks with cost correlated to
delays.

24

5 Conclusions

In this paper we addressed the QoS routing problem. We provided two al-
gorithms for finding the optimal solution. The basic idea of the proposed
algorithms consists in finding in an iterative fashion the discontinuities of the
functions C∗n(d). The algorithms operate under nonnegative link costs and
delays and do not require any integrality assumptions on the delays.

We saw that the running time of the proposed algorithms is satisfactory even
for relatively large network sizes. However, in principle the algorithms make
take a large time. If it is desirable to provide worst-case running time guar-
antees, then one must resort to existing polynomial time approximation algo-
rithms, [10], [6]. However, the proposed algorithms can be useful in this case
as well. Indeed both algorithms in [10], [6] use the dynamic programming re-
cursions as a subroutine for obtaining approximately optimal solutions. This
subroutine can be replaced by the algorithms proposed in this paper. Based
on the simulation results presented above, we can conclude that this change
will improve the average running times of these approximation algorithms.

The algorithms can be extended to the case where multiple constraints on the
paths exist (e.g., maximum delay and loss probabilities).

Acknowledgement 3 We would like to thank the anonymous referees for
their comments that helped to significantly improve the presentation of the
paper.

The code for generating Power Law Networks was downloaded from site [17],
and the data for the Real Network from [18]. We would like to thank the authors
of these sites.

References

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, 1993.

[2] David Blokh, Gregory Gutin. “An Approximation Algorithm for Combinatorial
Optimization Problems with Two Parameters,” IMADA preprint PP-1995-14,
May 1995.

[3] S. Chen and C. Nahrstedt. “On Finding Multi-constrained Paths,”
International Journal of Computational Geometry and Applications, 1998.

[4] M.L. Fredman, and R.E. Tarjan: “Fibonacci Heaps and Their Uses in Improved
Network Optimization Algorithms”. Journal of the ACM, Vol. 34, 596-615, 1987.

25

[5] M.R. Garey and D.S. Johnson. “Computer and Intractability: A guide to the
theory of NP-completeness,” Freeman , San Francisco, 1978.

[6] Ashish Goel,K.G. Ramakrishnan, D. Kataria, and D. Logothetis. “Efficient
Computation of Delay-sensitive Routes from One Source to All Destinations,”
In Proceedings of IEEE INFOCOM’01, Anchorage, AK, April 2001.

[7] R. Guerin, A. Orda, “Computing Shortest Paths for Any Number of Hops,”
IEEE/ACM Transactions on Networking, vol 10, no 5, October 2002, pp 613-
620.

[8] R. Hassin, “Approximation Schemes for the Restricted Shortest Path Problem,”
Mathematics of Operations Research, vol. 17(1), pp.36-42, February 1992.

[9] T. Korkmaz, M. Krunz and S. Tragoudas, “An Efficient Algorithm for Finding
a Path Subject to Two Additive Constraints,” Computer Communications
Journal, Vol. 25, No. 3, pp. 225-238, Feb. 2002.

[10] Dean H. Lorenz, Danny Raz. “A Simple Efficient Approximation Scheme for
the Restricted Shortest Path Problem.” Operations Research Letters, vol. 28,
No. 5, pp. 213-219, June 2001.

[11] D.H. Lorenz, A. Orda, D. Raz, and Y. Shavitt. “Efficient QoS Partition
and Routing of Unicast and Multicast.” In Proceedings IEEE/IFIP IWQoS,
Pittsburgh, PA, June 2000.

[12] Q. Ma and P. Steenkiste, “Quality of Service Routing for Traffic with
Performance Guarantees.” IWQoS’97, May 1997.

[13] Kurt Mehlhorn, Stefan Naher, Leda:A Platform for Combinatorial and
Geometric Computing, Cambridge University Press, 2000.

[14] Q. Sun and H. Langendorfer, “A New Distributed Routing Algorithm with
End-to-end Delay Guarantee,” IWQoS’97, May 1997.

[15] Z. Wang and J. Crowford, “QoS Routing for Supporting Resource
reservation,”IEEE JSAC, vol.14(7), pp.1228-1234, September 1996.

[16] Q. Warburton, “Approximation of Pareto Optima in Multiple Objective
Shortest Path Problems,” Operations Research,vol. 35, pp. 70-79, 1987

[17] The Power Law Simulator, http://www.cs.bu.edu/brite.

[18] The Real Networks, http://moat.nlanr.net/Routing/rawdata.

26

