
1

Algorithms for Precomputing Constrained Widest
Paths and Multicast Trees

Stavroula Siachalou, Leonidas Georgiadis

Abstract–We consider the problem of precomputing con-
strained widest paths and multicast trees in a communi-
cation network. Precomputing and storing of all relevant
paths minimizes the computational overhead required to de-
termine an optimal path when a new connection request ar-
rives. We present three algorithms that precompute paths
with maximal bandwidth (widest paths), which in addition
satisfy given end-to-end delay constraints. We analyze and
compare the algorithms both in worst case and through sim-
ulations using a wide variety of networks. We also show how
the precomputed paths can be used to provide computation-
ally efficient solutions to the constrained widest multicast
tree problem. In this problem, a multicast tree is sought
with maximal bandwidth (widest multicast tree), which in
addition satisfies given end-to-end delay constraints for each
path on the tree from the source to a multicast destination.

Keywords– Precomputation, QoS Routing, Multicast
Trees, Widest Paths, Widest Trees, Bottleneck Paths,
Graph Theory.

I. Introduction

In today’s communication networks, transmission of
multimedia traffic with varying performance requirements
(bandwidth, end-to-end delay, packet loss, etc.), collec-
tively known as Quality of Service (QoS) requirements, in-
troduces many challenges. In such an environment, where
a large number of new requests with widely varying QoS
requirements arrive per unit of time, it is important to de-
velop algorithms for the identification of paths that satisfy
the QoS requirements (i.e. feasible paths) of a given con-
nection request, with the minimal computational overhead.
Minimization of the overall computational overhead can be
achieved by computing a priori (precomputing) and storing
all relevant paths in a data base.
While a large number of studies addressed the Con-

strained Path Routing Problem (see [2], [4], [10], [12], [17]
and the references therein) there are relatively few works
dealing with the specific issues related to precomputing
paths with QoS constraints [6], [8], [14]. In [8], the prob-
lem of precomputing optimal paths under hop-count con-
straints, is investigated. They propose an algorithm that
has superior performance than Bellman Ford’s algorithm
in terms of worst case bounds. In [14], by considering the
hierarchical structure which is typical in large scale net-
works, an algorithm which offers substantial improvements
in terms of computational complexity is presented. These
studies concentrated on the hop-count path constraint. In
[9] Guerin, Orda and Williams presented the link available
bandwidth metric as one of the information on which path
selection may be based. They mentioned that the leftover

S. Siachalou and L. Georgiadis are with Electrical and Computer
Engineering Dept., Aristotle University of Thessaloniki, Thessaloniki,
Greece. E-mails: stavroula@psyche.ee.auth.gr, leonid@eng.auth.gr

minimum bandwidth on the path links after connection ac-
ceptance must be as large as possible in order to accept as
many requests as possible.
In this paper we focus first on the problem of precomput-

ing paths with maximal bandwidth (path bandwidth is the
minimal of the path link bandwidths), which in addition
must satisfy given, but not known a priori, end-to-end delay
requirements. We present three algorithms that provide all
relevant paths. The first algorithm is an application in the
specific context of the algorithm developed in [17] for the
Constrained Path Routing Problem. The second is based
on an implementation of the basic algorithmic steps in [17]
using data structures that take advantage of properties of
the problem at hand. The third algorithm is based on an
approach whereby iteratively relevant paths are determined
and links that are not needed for further computation are
eliminated. We analyze and compare the algorithms both
in worst case and through simulations. The analysis con-
siders both computation times and memory requirements
and shows the trade-offs involved in the implementation of
each of the algorithms.
Next, we consider the constrained widest multicast tree

problem. In this problem, a multicast tree is sought with
maximal bandwidth (tree bandwidth is the minimal of the
tree link bandwidths), which in addition satisfies given end-
to-end delay constraints for each path on the tree from the
source to a multicast destination. We show that using the
precomputed constrained widest paths, an algorithm can
be developed that computes very efficiently the required
tree.
The rest of the paper is organized as follows. The prob-

lem is formulated in Section II. We present the three al-
gorithms in Section III and in Section IV we examine the
algorithms in terms of worst case running time and mem-
ory requirements. In Section V we show how the precom-
puted paths can be used to provide efficient computation
of the constrained widest multicast tree problem. Section
VI presents numerical experiments that evaluate the per-
formance of the proposed algorithms. Conclusions of the
work are presented in Section VII.

II. Model and Problem Formulation

In this section we formulate the problem related to the
precomputation of constrained widest paths and define
some notation that will be used in the rest of the paper.
A network is represented by a directed graph G = (V,E),

where V is the set of nodes and E is the set of edges (links).
Let N = |V | and M = |E|. A link l with origin node u
and destination node v is denoted by (u, v). A path is a
sequence of nodes p = (u1, u2, ..., uk), such that ui 6= uj for

2

all 1 ≤ i, j ≤ k, i 6= j, and k − 1 is the number of hops of
p. By p we also denote the set of links on the path, i.e.,
all links of the form (ui, ui+1), i = 1, ..., k − 1. By Vin (u)
and Vout (u) we denote respectively the set of incoming and
outgoing neighbors to node u, that is

Vin (u) = {v ∈ V : (v, u) ∈ E} ,
Vout (u) = {v ∈ V : (u, v) ∈ E} .

respectively.
With each link l = (u, v), u, v ∈ V there is an associated

width wl ≥ 0 and a delay δl ≥ 0. We define the width and
the delay of the path p respectively,

W (p) = min
l∈p

{wl} , D (p) =
X
l∈p

δl.

The set of all paths with origin node s, destination node
u and delay less than or equal to d is denoted by Pu(d).
The set of all paths from s to u is denoted by Pu.
In a computer network environment, wl may be inter-

preted as the free bandwidth on link l and δl as the link
delay. Assume that a connection request has bandwidth
requirements b and end-to-end delay requirement d. Upon
the arrival of a new connection request with origin node
s and destination node u, a path must be selected that
joins the source to the destination, such that the connec-
tion bandwidth is smaller than the free bandwidth on each
link on the path, and the end-to-end delay of connection
packets is smaller than the path delay. It is often desirable
to route the connection through the path with the largest
width in Psu(d); this ensures that the bandwidth require-
ments of the connection will be satisfied, if at all possible,
and the delay guarantees will be provided. Moreover, the
leftover minimum bandwidth on the path links after con-
nection acceptance will be as large as possible. We call
such a path "constrained widest path".
According to the previous discussion, upon the arrival

of a new connection request with end-to-end delay require-
ment d, we must select a path p∗ ∈ Pu(d) that solves the
following problem.
Problem I: Given a source node s, a destination node u
and a delay requirement d, find a path p∗u ∈ Pu(d) that
satisfies

W (p∗u) ≥W (p) for all p ∈ Pu(d).
Note that when δl = 1 for all l ∈ E, Problem I reduces

to the problem addressed in [8], i.e., the problem of finding
a widest path with hop count at most d. Let us assume
that the source node s is fixed. In principle, in order to be
able to select the appropriate path for any delay require-
ment one must precompute for each destination u and each
delay d, an appropriate optimal path p∗u(d). At first this
may seem rather formidable, both in terms of running time
and in terms of space requirements. However, the situation
is greatly simplified by the observation that one needs to
precompute the paths p∗u(d) for only a subset of the delays.
Indeed, let W ∗u (d) be the value of the solution to Problem
I (if no solution exists set W ∗u (d) = −∞). It can be eas-
ily seen using similar arguments as in [17] that W ∗u (d) is

a piecewise constant, left continuous, non-decreasing func-
tion with a finite number of discontinuities. Hence, to de-
termine the function W ∗u (d), we only need to know the
values of W ∗u (d) at these discontinuities (we also need the
paths that cause these discontinuities - see Section III-A
). A discontinuity of W ∗u (d) will also be referred to as a
discontinuity of node u.
In fact, from the route designer’s perspective, the pairs

(dk,W
∗
u (dk)), where dk is a discontinuity point of W

∗
u (d)

are the most interesting ones, even if one takes into ac-
count routing requirements different than those considered
in Problem I - in Section V we present such a situation.
Specifically, under our interpretation of path width and
delay, among pairs (D(pi),W (pi)), pi ∈ Pu, i = 1, 2, there
is a natural "preference relation". That is, we would like
to obtain paths that have as small delay as possible and as
large width as possible. We are thus lead to the following
natural definition of dominance
Definition I (Dominance Relation): We say that

pair (D(p1),W (p1)) dominates pair (D(p2),W (p2)) (or
that path p1 dominates path p2) if either {W (p1) > W (p2)
and D(p1) ≤ D(p2)}, or {W (p1) ≥ W (p2) and D(p1)
< D(p2)}.
Hence, the pairs of interest under our setup are those

for which no other dominating pair can be found for the
same origin-destination nodes. This set of paths is gener-
ally known as the non-dominated or the Pareto-optimal set
[3], [12]. From a precomputation perspective, it is desirable
to determine for each destination u, the non-dominated set
of pairs (and the associated paths). It can be shown that
this set is exactly the set of discontinuities ofW ∗u (d), u ∈ V .
In the next section we present three algorithms for

precomputing the discontinuities of the functions W ∗u (d),
u ∈ V .

III. Algorithm Description

The problem of determining the function discontinuities
when link widths and delays are both additive costs (i.e.,
the cost of a path is the sum of its link costs) has been
addressed in [17]. In the current setup, the main difference
is that the path width is the minimum of its link widths
(rather than the sum). However, the general algorithms
in [17] can be adapted to the problem under considera-
tion with minor modifications, as outlined in Section III-
A. In Sections III-B and III-C we present two additional
algorithms that take into account the particular form of
the problem under consideration. The first is an imple-
mentation of the algorithm in [17] that uses efficient data
structures. The second uses a "natural" approach that
eliminates successively unneeded graph edges and uses a
dynamic version of Dijkstra’s algorithm to determine all
function discontinuities. Our intend is to compare these
algorithms in terms of worst case, average running times
and space requirements.

A. Algorithm I (ALG I)

The algorithms proposed in [17] are based on the follow-
ing facts, which carry over to the situation at hand. In

3

the discussion that follows we assume for convenience that
W ∗u (d) is defined for any real d, W

∗
u (d) = −∞, d < 0, and

W ∗s (d) =∞ , d ≥ 0. Hence by convention the source node
s has a discontinuity at zero.
• For any u ∈ V − {s}, if W ∗u (d) is discontinuous at d,
then there is a v ∈ Vin(u) such that W ∗v (d) is discontin-
uous at d − δvu and W ∗u (d) = min {W ∗v (d− δvu), wvu}.
We call the pair (d,W ∗u (d)) the successor discontinuity of
(d−δvu,W ∗v (d−δvu)). Also, (d−δvu,W ∗v (d−δvu)) is called
the predecessor discontinuity of (d,W ∗u (d)). If it is known
that the pair (d,W ∗v (d)) is a discontinuity point, then its
“possible” successor discontinuities are pairs of the form

(d+ δvu,min {W ∗v (d), wvu}), u ∈ Vout(v).
• IfW ∗u (d) is discontinuous at d then there is a path p

∗(d) ∈
Pu(d) such that

W (p∗(d)) =W ∗u (d), D(p
∗(d)) = d.

• Suppose that we impose a lexicographic order relation
between discontinuity pairs (ḋi,Wi), i = 1, 2, as follows:

(d1,W1) ≺ (d2,W2) iff

either d1 < d2 or (d1 = d2 and W1 > W2).

Suppose also that among all the discontinuities of the func-
tions W ∗u (d), u ∈ V we know the set of the k smallest ones
(with respect to the lexicographic order). Call this set bD .
Let bD(u) be the discontinuities in bD that belong to node
function W ∗u (d). Hence bD = ∪u∈E bD(u). The set of possi-
ble successor discontinuities of those in bD is denoted by bP .
Let (d,W) be a smallest element of bP and let u be the node
to which this possible discontinuity belongs. Then (d,W)
is a real discontinuity for node u if and only if

W > max
n
Wm : (dm,Wm) ∈ bD(u)o .

Based on these facts, we can construct an algorithm for
determining all the node discontinuities as described be-
low. In the following we will need to know the node u to
which a real or possible discontinuity (d,W) belongs. For
clarity we denote this discontinuity by (d,W, u). For ini-
tialization purposes we set bD(u) = {(−∞,−∞, u)} , u ∈ V
and bD(s) = {(0,∞, s)} .The generic algorithm is presented
in Table I.
In [17] two implementations of the generic algorithm

were proposed, which differ mainly in the manner in which
the set bP is organized. In the current work we pick the
implementation that was shown to be more efficient both
in worst case and average case analysis. For our purposes,
it is important to note that the sets bD(u) are implemented
as FIFO queues, and that the elements (d,W, u) in these
queues are generated and stored in increasing order of both
d and W as the algorithm proceeds. Furthermore, in our
implementation of Algorithm I, we introduce an additional
optimization that is based on the following observation in
[8]: whenever a real discontinuity (d,W, u) is found and
the possible discontinuities caused by (d,W, u) are created,

Generic Algorithm I
Input: Graph G with link widths wuv and delays δuv.
Output: The queues bD(u), ∀u²V .
1. /* Begin Initialization
2. bD(u) = {(−∞,−∞, u)} ; u ∈ V, bP = ∅;
3. bD(s) = {(0,∞, s)} ; (d,W, u) = (0,∞, s);
4. /*End Initialization*/
5. Create all possible successor discontinuities of (d,W, u)
(i.e., the set {(d+ δuv,min {W,wuv} , v), v ∈ Vout(u)}
and add them to bP);
6. If bP is empty, then stop;
7. Among the elements bP (possible successor discontinu-
ities), find and extract (i.e., delete from bP) the mini-
mum one in the lexicographic order. Denote this element
(d,W, u);

8. If W ≤ max
n
wm : (dm,Wm, u) ∈ bD(u)o , then go to

step 6. Else,
9. bD(u)← bD(u) ∪ {(d,W, u)} ;
10. go to step 5;

TABLE I

Generic Algorithm for Solving Problem I

then links (v, u), v ∈ Vin(u) with wvu ≤ W can be re-
moved from further consideration. This is so, since these
links cannot contribute to the creation of new disconti-
nuities for node u. Indeed, any newfound discontinuity
(d1,W1, v) at node v, will create a possible discontinuity
(d1 + δvu, min(W1, wvu), u). But min(W1, wvu) ≤ W and
hence this possible discontinuity cannot be a real one for
node u.
As usual, in order to be able to find by the end of the

algorithm not only the discontinuities, but paths that cor-
respond to these discontinuities, one must keep track of
predecessor discontinuities as well. That is, in the im-
plementation we keep track of (d,w, u, predecessor_disc),
where for the source node s, predecessor_disc = null,
and for any other node u, predecessor_disc is a pointer
to the predecessor discontinuity of (d,w, u). To simplify
the notation, in the description of all algorithms we do not
explicitly denote predecessor_disc, unless it is needed for
the discussion.

B. Algorithm II (ALG II)

The generic algorithm in Table I works also when lexi-
cographic order is defined as

(d1,W1) 2 (d2,W2) if

either W1 > W2 or (W1 =W2 and d1 < d2).

In this case, the elements (d,W, u) in the FIFO queuesbD(u) are generated and stored in decreasing order of both
d and W as the algorithm proceeds.
Algorithm II uses the lexicographic order 2, and is based

on an extension of ideas presented in [7] to speedup com-
putations. The basic observations are the following.

4

• Suppose that link widths take K ≤ M different values
g1 < g2 < ... < gK . If for link l it holds wl = gi, set r(wl) =
i. If one uses r(wl) instead of the link’s actual width in the
calculations, the resulting discontinuities occur at the same
delays and for the same paths as if the actual widths were
used.
• Path widths always take one of the values in the set
{wvu, (v, u) ∈ E}, i.e., they take at most K different val-
ues. Hence the same holds for the values of W ∗u (d) and the
widths of all possible discontinuities.
We use these observations to speed up the computations

of Generic Algorithm I as follows. First, we use r(wl) in
place of the link widths. Next we organize the set of possi-
ble discontinuities bP as follows. We create an array A[u, k],
1 ≤ u ≤ N, 1 ≤ k ≤ K, where A[u, k], if nonnull, denotes a
possible discontinuity of the form (d, k, u). We also create
K heapsH[k], 1 ≤ k ≤ K . HeapH[k] contains the nonnull
elements of A[u, k], 1 ≤ u ≤ N and uses as key the delay d
of a possible discontinuity. Reference [5] contains various
descriptions of heap structures. For our purposes we need
to know that the following operations can be performed on
the elements of a heap structure.
• create_heap(H): creates an empty heap H.
• insert(e,H): inserts element e to H.
• get_min(e,H): removes and returns an element e in H
with the smallest key.
• decrease_key(enew, e,H): replaces in H element e with
enew, where element enew has smaller key than e.
With these data structures, we implement steps 5 and 7

of Generic Algorithm I in Table I as follows. For an element
e = (d,W, u) we denote e.delay = d, e.width =W .
• Step 5: Create all possible successor discontinuities of
(d,W, u) and add them to bP .
/* let k0 = r(W), hence we have available the discontinuity
(d, k0, u) */
1. For v ∈ Vout(u) do
(a) enew = (d+δuv,min {k0, r(wuv)} , v); k = enew.width;
(b) If A[v, k] is null {A[v, k] = enew; insert(enew,H[k])}.
Else {
(c) If enew.delay < e.delay then{
i. e = A[v, k];A[v, k] = enew;
ii. decrease_key(enew, e,H[k])}};
2. end do
In step 1b, if A[v, k] is null, there is no possible discontinu-
ity for node v with width k. Hence a new possible disconti-
nuity for node v with width k is created and placed both in
A[v, k] and H[k]. In step 1c, when enew.delay < e.delay we
know that the old possible discontinuity for node v cannot
be a real discontinuity since enew dominates e and therefore
in step 1(c)i we replace the e with enew both in A[v, k] and
H[k]. These last two steps avoid inserting unnecessary el-
ements in the heap H[k], thus increasing the time that the
get_min operation takes in step 7 of Generic Algorithm I
in Table I. The trade-off is extra memory space require-
ments due to array A[v, k]. We discuss this issue further in
Sections IV and VI.
• Step 7: Among the elements bP , find and extract the
minimum one in the lexicographic order. Denote this ele-

ment (d,W, u).
/* let k0 = r(W), hence we have available the discontinu-
ities (d, k0, u) */
The heaps H[k] are scanned starting from the largest in-
dex and moving to the smallest. The index of the heap
currently scanned is stored in the variable L which is ini-
tialized to K.
1. Find the largest k0 ≤ L such that the heap H[k0] is
nonempty;
2. get_min(e,H[k0]); (d, k0, u) = e;
3. Set A[u, k0] to null;
4. L = k0;
The scanning process (largest to smallest) works since

whenever a possible discontinuity (d, k, u) is removed frombP , any possible discontinuities that already exist or might
be added later to bP are larger (with respect to 2) than
(d, k, u) and thus will have width at most k. Notice that
this would not be true if the order ≺ were used. Table
II presents the pseudocode for Algorithm II. The real dis-
continuities bD(u), u ∈ V are again implemented as FIFO
queues.
It is worth noting that if the widths wl, l ∈ E take

integer values and the range of these values is, say [a, b],
then one can use k = wl−a+1 as an index for placing the
discontinuities in the structures A[v, k] and H[k]. In this
case, step 4 of Algorithm II in Table II is not needed and
computations can be saved, provided that b − a is small
compared toM. In any case, step 4 is not the major source
of computations.

C. Algorithm III (ALG III)

The third algorithm we consider is based on the idea of
identifying discontinuities, eliminating links that are not
needed to identify new discontinuities and repeating the
process all over again. Specifically, the algorithm performs
iterations of the basic steps shown in Table III. AgainbD(u), u ∈ V are implemented as FIFO queues.
This algorithm produces all discontinuities in bD as the

next theorem shows.
Theorem 1: Algorithm III produces all discontinuities inbD.
Proof: We will show by induction that at iterationm,

all discontinuities in bD with width at most W ∗m (defined in
step 2 of Algorithm III in Table III) have been determined.
Assume this to be true up to iteration m (the arguments

for m = 1 are similar). For any node u ∈ V, any other real
discontinuity will necessarily have larger width than W ∗m.
Hence the removal of links with width at most W ∗m in step
2 cannot result in elimination of a path pu that causes real
discontinuities.
We claim that at iteration m + 1, the pairs

(D(pu),W (pu)) found at step 2 are the real dis-
continuities having width W ∗m+1. Indeed, observe
first that (D(pu),W (pu)) cannot be dominated by any
(D(qu),W (qu)), qu ∈ Pu, with W (qu) ≤ W ∗m, since
W (pu) = W ∗m+1 > W ∗m. We show next that
(D(pu),W (pu)) is not dominated by any (D(qu),W (qu))
with W (qsu) > W ∗m. Assume the contrary. Notice first

5

Algorithm II
Input: Graph G with link widths wuv and delays δuv.
Output: The queues bD(u), ∀u²V .
1. /*Begin Initialization*/
2. bD(u) = {(−∞,−∞, u)} , u ∈ V ;
3. bD(s) = {(0,∞, s)} ; (d, k0, u) = (0,∞, s);
4. Determine r(wl) and K.
5. Create A[v, k], H[k] and initialize to null.
6. For v ∈ Vout(s) do
(a) enew = (d+δsv,min {k0, r(wsv)} , v); k = enew.width;
(b) A[v, k] = enew; insert(enew,H[k]);
7. endo
8. Determine the largest index k0 such that H[k0] is
nonempty;
9. get_min(e,H[k0]), (d, k0, u) = e;
10. Set A[u, k0] to null;
11. L = k0;
12. /*End Initialization */
13. For v ∈ Vout(u) do
(a) enew = (d + δuv,min {k0, r(wuv)} , v); k =
enew.width;
(b) If A[v, k] is null {A[v, k] = enew; insert(enew,H[k])}.
Else{
(c) If enew.delay < e.delay then {
i. e = A[v, k]; A[v, k] = enew;
ii. decrease_key(enew, e,H[k])}}
14. endo
15. If L = 1 and H[1] is empty, then stop. Else
16. Find the largest k0 ≤ L such that the heap H[k0] is
nonempty
17. get_min(e,H[k0]); (d, k0, u) = e;
18. Set A[u, k0] to null;
19. L = k0;
20. If d ≥ dm where (dm, km, u) is the last element of bD(u)
then go to step 16. Else,
21. add e to bD(u);
22. go to step 13;

TABLE II

Pseudocode of Algorithm II

Algorithm III
Input: Graph G with link widths wuv and delays δuv.
Output: The queues bD(u), ∀u²V .
1. Find the widest-shortest paths from s to all nodes in
G. That is, for any node u ∈ V , among the shortest-delay
paths find one, say pu, that has the largest width.
2. LetW ∗ be the minimum among the widths of the paths
pu, u ∈ V − {s}. For any u ∈ V , if W (pu) = W ∗, add
(D(pu),W (pu)) at the end of queue bD(u).
3. Remove from G all links with width at most W ∗.
4. If s has no outgoing links, stop. Else go to step 1.

TABLE III

Iteration Steps of Algorithm III

that the graph G in step m + 1 contains path qu because
W (qu) > W

∗
m and hence all links of qu belong to G in step

m+1. Since pu is a shortest path in G at step m+1, it is
impossible that D(qu) < D(pu). Hence for domination we
must have

W (qu) > W (pu) and D(qu) = D(pu).

However, this latter condition is impossible also, since ac-
cording to step 1, pu is a widest-shortest path in a graph
G at step m+ 1.
The widest-shortest path problem can be solved by a

modification of Dijkstra’s algorithm [15]. In fact, after the
removal of the links of G in Step 3, paths whose width is
larger than W ∗ will still remain the widest-shortest paths
when the algorithm returns to step 1. Hence the computa-
tions in the latter step can be reduced by taking advantage
of this observation. Algorithms that address this issue have
been presented in [13] and we pick for our implementation
the one that was shown to be the most efficient.

IV. Worst Case Analysis

In this section we examine the three algorithms proposed
in Section III in terms of worst case running time and mem-
ory requirements. Let R(u) be the number of discontinu-
ities of W ∗u (d) and denote Rmax = maxu∈V {R(u)}. Notice
that since W ∗u (d) takes only the values wl, l ∈ E, we have
Rmax ≤ M . Let also N in

max be the maximum in-degree of
the nodes in V, that is,

N in
max = max

u∈V
{Vin(u)} .

Clearly, N in
max ≤ N . In all three algorithms we assume a

Fibonacci heap implementation [5]. In such implementa-
tion of a heap H, all operations except get_min(e,H) take
O(1) time. Operation get_min(e,H) takes O(logL) time,
where L is the number of elements in the heap.
Algorithm I
The analysis of this algorithm has been presented in [17].

According to this analysis the following hold.
Running Time: The worst case running time of the algo-
rithm is, O(Rmax

¡
N logN +M logN in

max

¢
) and in terms of

the network size, O(MN logN +M2 logN) .
Memory Requiremens: The memory requirements of the
algorithm are O(MRmax) or O(MN).
Algorithm II
Running Time: The process of determining r(wl), l ∈ E
(step 4 of Algorithm II) amounts to sorting the elements
of E. Hence with a comparison based sorting, this process
takes O(M logM) = O(M logN) time. Each of the heaps
H[k] contains at most N elements and the get_min op-
eration is applied at most once to each element. Hence
the computation time to process the get_min operations
on heap H[k] is at most O(N logN). The total compu-
tation time to process the possible discontinuities at the
outgoing neighbors of all nodes in heap H[k] (lines 13-14
of Algorithm II in Table II), is O(M). Since all the rest
of the operations during the processing of the elements
of heap H[k] take time O(N), the computation time to

6

process the kth heap is O(N logN +M). Since there are
at most M heaps, the total worst-case computation time
is O(MN logN +M2), including the time needed to sort
r(wl), l ∈ E.
Memory Requirements: The size of A[v, k] is NM . Each
of the H[k] heaps contains at most N elements, and since
there are at most M such heaps, the total heap memory
space needed is O(NM). Since each of the queues bP (u) ,
u ∈ V can contain up to M discontinuities, the mem-
ory space needed to store the discontinuities, is at most
O(NM). Therefore the total memory space requirements
are O(NM).
Algorithm III
Running Time: At each iteration of steps 1 to 4 of Algo-
rithm III in Table III, the dynamic version of Dijkstra Algo-
rithm is used to find the widest-shortest paths. While this
dynamic version reduces significantly the average running
time of the algorithm, it does not reduce its worst case run-
ning time [13]. Hence the worst-case time bound for step 1
of the algorithm at each iteration is O(N logN +M). The
rest of the operations at each iteration are of smaller order
than O(N logN +M). Since there can be at most M iter-
ations, the total worst-case running time of the algorithm
is O(MN logN +M2).
Memory Requirements: This algorithm needs a single heap
of size at most N . It also needs O(NM) space to hold the
real discontinuities. Hence its space requirements are in
the worst case, O(NM).
Table IV summarizes the worst case running time and

space requirements of the proposed algorithms. All three
algorithms have the same worst case memory requirements.
ALG II and ALG III have the same worst case running
time, which is slightly better than the worst case running
time of ALG I. Hence based on these metrics, all three al-
gorithms have similar performance. However, worst case
analysis alone is not a sufficient indicator of algorithm per-
formance. For example, as discussed above, the perfor-
mance of ALG I depends on Rmax, which in many networks
is much smaller than M . A more detailed analysis of ALG
II will also reveal that its performance depends on Rmax as
well. Regarding ALG III, the number of iterations of the
basic algorithmic steps may be significantly smaller than
M . As for memory requirements, ALG II has in general
the most requirements due to the array A[v, k]. ALG III has
the least requirements which are dominated by the neces-
sary space to hold all node discontinuities. The simulation
results in Section VI will reveal the performance difference
of the algorithms in several networks of interest.

Running Times Memory
ALG I O(MN logN +M2 logN) O(MN)
ALG II O(MN logN +M2) O(MN)
ALG III O

¡
MN logN +M2

¢
O(MN)

TABLE IV

Worst Case Runnining Times and Memory Requirements

Since M can be of order O(N2), the worst case space

Fig. 1. Example of a network with Ω(N3) memory requirements.

requirements of all three algorithms is O(N3). For this
to happen, most of the functions W ∗u (d) should have a
large number discontinuities and it is not immediately clear
whether this can happen. Next we present an instance
where indeed the memory requirements are Ω(N3).
Consider a network consisting of n nodes and the follow-

ing edges

(1, i), i = 2, ..., n

(i+ 1, i), i = 2, ..., n− 1
(i, j), i = 2, ..., n− 1, j = i+ 1, ..., n

Figure 1 shows an example of such an network with n = 6.
The number of edges in this network is

n− 1 + n− 2 +
n−1X
i=2

(n− i) = 1

2
n2 +

1

2
n− 2

Set
wi+1,i =∞, δi+1,i = 0, i = 2, ..., n− 1 (1)

Pick the rest of the widths and delays so that the follow-
ing inequalities hold.

w1,i > w1,i+1,, δ1,i > δ1,i+1, i = 2, ...n− 1 (2)

w1,2 > w2,j > w2,j+1 > w1,3

δ1,2 > δ2,j > δ2,j+1 > δ1,3, j = 3, ..., n (3)

w1,3 > w3,j > w3,j+1 > w1,4,

δ1,3 > δ3,j > δ2,j+1 > δ1,4, j = 4, ..., n, (4)

and in general

w1,i > wi,j > wj,j+1 > w1,i+1,

δ1,i > δi,j > δi,j+1 > δ1,i+1,

i = 2, ..., n− 1, j = i+ 1, ..., n (5)

7

It is easy to see that widths and delays satisfying relations
(1)-(5) can be specified.
Under these conditions, each node has the following

paths that cause discontinuities.
Node 2: n − 1 paths of the form (1, 2), (1, 3, 2),...

(1, i, i− 1, ..., 3, 2) because of relations (1), (2).
Node 3: 2(n − 2) paths; n − 2 paths of the

form (1, 2, 3), (1, 2, 4, 3), (1, 2, i, i − 1, ..., 4, 3) because
of relations (1), (3) and n − 2 paths of the form
(1, 3), (1, 4, 3), ..., (1, i, i−1, ..., 4, 3) because of relations (1),
(2)
Node 4: 3(n−3) paths; (n−3) paths of the form (1, 2, 4),

(1, 2, 5, 4), (1, 2, i, i−1, ..., 5, 4) because of relations (1), (3) ,
n−3 paths of the form (1, 3, 4), (1, 3, 5, 4)...(1, 3, i, i−1, ...4)
because of relations (1), (4), and n − 3 paths of the form
(1, 4), (1, 5, 4), ..., (1, i, i − 1, ...4) because of relations (1),
(2).
In general, it can be seen that node k+1, k = 1, ..., n−1

has k(n− k) discontinuities and hence the total number of
discontinuities is,

n−1X
k=1

k(n− k) = 1

6
n3 − 1

6
n = Ω

¡
n3
¢

Note that since any precomputation algorithm has to create
all the discontinuities, the previous instance shows also that
the worst case running time of any algorithm is Ω(n3).
All three algorithms have worst case running time at least
O(n4). Whether this gap can be closed is an open problem.
In all three algorithms the node discontinuities bD(u)

were implemented as FIFO queues. Once the algorithms
complete, a discontinuity at node u with a specific property
can be found by searching through the FIFO queues. The
search time will be of the order of the number of elements
in bD(u) which is at most M . In several applications one is
interested in discontinuities of the form: the discontinuity
whose delay is the largest among those whose delay is at
most d. For example, this is the case when one is interested
in providing a solution to Problem I. Since elements of bD(u)
are stored either in decreasing or in increasing order of dis-
continuity delay and width, it is helpful to store bD(u) as
an array. With this implementation we can perform binary
search for discontinuities of the previously described form
and the search time becomes logarithmic in the number of
elements in bD(u), i.e., O(logM) = O(logN). Of course, we
also have to determine the associated path using the point-
ers in predecessor_disc. Since a path contains at most N
nodes, the overall process takes O(N) time in the worst
case.

V. Computation of Constrained Bottleneck
Multicast Trees

In this section we show how the node discontinuities ob-
tained in the previous section can be used to provide quick
solution to a problem related to multicast communication.
We assume that we already obtained the discontinuitiesbD(u), u ∈ V , and that bD(u) is implemented as an array.

Elements of bD(u) are stored in the array either in decreas-
ing or in increasing order of delay and width.
Assume that the source node s needs to establish a mul-

ticast tree session T with a subset U of the nodes. The
multicast transmission bandwidth is b and node u ∈ U has
end-to-end delay QoS bound du. Let dU =

©
du : u ∈ U

ª
and define the width of a tree

W (T) = min
l∈T

{wl} .

Let also TU (dU) be the set of directed trees with source
s spanning set U (i.e., there is a path on the tree from s
to any node in U) and having the following property: the
delay of the path on the tree from s to u ∈ U is at most du.
The analogous problem to Problem I in such a situation is
Problem II: Given a source node s, a destination node
set U and delay requirements dU , find a Tree T ∗U ∈ TU (
dU) that satisfies

W (T ∗U) ≥W (T) for all T ∈ TU (dU).
We describe next an algorithm for determining quickly

an optimal tree for Problem II.
For any node u ∈ U , we can obtain a path p∗u ∈ Pu(du)

that solves Problem I by finding the discontinuity in bD(u)
(if one with finite delay exists) whose delay is the largest
among the delays of the discontinuities in bD(u) not ex-
ceeding du. Assume that the paths p∗u exist of all u ∈ U -
otherwise Problem II does not have a solution. Let

Wmin = min
u∈U

{W (p∗u)} .

Let G be the graph obtained by including the links and
nodes of all the paths p∗u, u ∈ U . The widths and delays of
the links in G are the same as in G. Graph G is not a tree
in general, as the following example shows.
Example 2: Figure 2 shows a network G with the dis-

continuities bD(u) = {(delay, width)} of each node. Next
to each discontinuity is the associated path {path}. We
assume that s = 1, and U = {2, 3, 4}. With di, i = 2, 3, 4
we represent the delay bound for each node i. Graph G
is constructed by finding for every u ∈ U , the discontinu-
ity bD(u) whose delay is the largest among the delays of
the discontinuities bD(u) not exceeding du. For node 2 the
delay constraint is d2 = 13, thus we choose the first dis-
continuity with delay = 10 < d2 which corresponds to the
path {1→ 4→ 3→ 2}. Similarly we choose the following
paths to construct graph G:

{1→ 3}, {1→ 4},
which is definitely not a tree.
Clearly, for the width of G it holds

W (G) = min
l∈G

{wl} = min
u∈U

{W (p∗u)} =Wmin.

Let TU be the tree in G that consists of the shortest-delay
paths from s to all nodes in U . The next lemma shows that
the tree TU solves Problem II and that its width is Wmin.

8

}{

__

__

__

D , d

D , d

D d

^

2

^

3

^

4

(10,5) {1 4 3 2}
(2) (15,10) {1 4 2} 13

(21,15) {1 3 2}

(9,5) {1 4 3}
(3) 25

(20,20) {1 3}

(4) (8,10) {1 4}, 10

→ → → 
 = → → = 
  → →

→ → 
= =  →

= → =

G
_

21

4

3

G

(8,
10
)

(1,
15
)

(1,5)

(7,15)

(20,20)

21

4

3

(8,
10
)

(1,
15
)

(1,5)

(20,20)

}{

__

__

__

D , d

D , d

D d

^

2

^

3

^

4

(10,5) {1 4 3 2}
(2) (15,10) {1 4 2} 13

(21,15) {1 3 2}

(9,5) {1 4 3}
(3) 25

(20,20) {1 3}

(4) (8,10) {1 4}, 10

→ → → 
 = → → = 
  → →

→ → 
= =  →

= → =

G
_

21

4

3

G

(8,
10
)

(1,
15
)

(1,5)

(7,15)

(20,20)

21

4

3

G

21

4

3

G

(8,
10
)

(1,
15
)

(1,5)

(7,15)

(20,20)

21

4

3

(8,
10
)

(1,
15
)

(1,5)

(20,20)

21

4

3

(8,
10
)

(1,
15
)

(1,5)

(20,20)

Fig. 2. Example of a graph G that shows Ḡ is not a tree.

Lemma 3: It holds W (T ∗U) = W (TU) = Wmin. Hence
TU solves Problem II.

Proof: We first show that

Wmin ≥W (T ∗U). (6)

Let u ∈ U. There is a path pu in T ∗U that joins s to node
u ∈ U. By definition of TU (dU) , pu ∈ Pu(du). Since p∗u
solves Problem I with end-to-end delay du, it holds

W (p∗u) ≥W (pu).
Hence

Wmin = min
u∈U

{W (p∗u)} ≥ min
u∈U

{W (pu)} =W (T ∗U).

Next we show that

Wmin ≤W (TU) ≤W (T ∗U), (7)

which together with (6) implies the lemma.
Since there is a path p∗u from s to u ∈ U in G with delay

du and TU is a shortest-delay path tree inG, we are ensured
that the delay of the path in TU from s to u will be at most
du. This implies that TU ∈ TU (dU) and therefore,

W (TU) ≤W (T ∗U).
However, since TU is a subgraph of G we have

Wmin =W (G) ≤W (TU),
and hence (7) is true.
According to Lemma 3, we can obtain a solution to Prob-

lem II by finding the shortest-path tree TU in G. This
process involves constructing first the graph G, which in
the worst case takes time O(n |U |). In addition one has
to still determine the tree TU . A direct application of a
shortest-path algorithm requires time O(N logN +M). It
is possible to take advantage of the structure of G and re-
duce the computation time for determining TU to O(M).

However, we will not examine this approach further, since
as we will show next, based on the knowledge of the value
of the solution to Problem II which according to Lemma
3 is Wmin, and the discontinuities bD(u) , u ∈ V , we can
obtain the required tree in time O(max {|U | logN,N}).
Once we know the valueWmin of the solution to Problem

II, we can determine a corresponding tree T ∗U as follows.
Let (du,Wu), be a discontinuity of bD(u) with the following
property.
Property I: The delay du of discontinuity (du,Wu) is the
smallest one among the delays of the discontinuities of bD(u)
whose width is larger than or equal toWmin. Let bpu be the
path from s to u ∈ U that causes discontinuity (du,Wu).
Let bpu = (i1 = s, i2, ..., ik−1, ik = u). As discussed in

Section III-A with each node in, , 2 ≤ n ≤ k, there is an
associated discontinuity (Din ,Win), where (Din−1 ,Win−1)
is the predecessor discontinuity of (Din ,Win). The follow-
ing Lemma will be useful in the sequel.
Lemma 4: If (du,Wu) satisfies Property I and bpu = (i1 =

s, i2, ..., ik−1, ik = u), then the associated discontinuities at
all nodes in, 2 ≤ n ≤ k, satisfy Property I.

Proof: The proof is by induction from n = k to
n = 1. The statement is true for n = k. Assume that
the associated discontinuity (Din ,Win) of node in, n ≤ k,
satisfies Property I. As (Din−1 ,Win−1) is the predecessor
discontinuity of (Din ,Win) it holds (Din ,Win) = (Din−1 +
δin−1,in ,min{Win−1 , win−1,in}). Since Win ≥ Wmin it also
holds min{Win−1 , win−1,in} ≥ Wmin, hence Win−1 ≥ Wmin

and win−1,in ≥Wmin. This implies that (Din−1 ,Win−1) sat-
isfies Property I. To see this assume the contrary, i.e., that
there is a discontinuity (D0

in−1 ,W
0
in−1) at node in−1 with

W 0
in−1 ≥Wmin and D0

in−1 < Din−1 . Then the possible dis-
continuity (D0

in−1 + δin−1,in ,min{W 0
in−1 , win−1,in}) at node

in must be dominated, or be equal to a real discontinuity
(D0

in
,W 0

in
), i.e.,

D0
in ≤ D0

in−1 + δin−1,in < Din and

W 0
in ≥ min{W 0

in−1 , win−1,in} ≥Wmin.

The latter conditions, show that (Din ,Win) does not satisfy
Property I, which is a contradiction.
Let bG be the graph obtained by including the links and

nodes of all the paths bpu, u ∈ U . We then have the follow-
ing theorem on which we can base the algorithm for finding
a solution to Problem II.
Theorem 5: The graph bG is a tree that solves Problem

II.
Proof: Assume that a node v 6= s in graph bG has

m outgoing neighbors, hence this node belongs to at least
m of the paths bpu, u ∈ U . According to Lemma 4, for
each of these paths, the associated discontinuity (dv,Wv)
on node v is the unique one having Property I. Hence v has
a unique incoming neighbor, namely the predecessor node
of the discontinuity (dv,Wv). Since each node in bG other
than s has a unique incoming neighbor and by construction
there is a path from s to any node in bG, it follows [1] thatbG is a tree.

9

21

4

3

G
^

(8,
10
)

(1,
15
)

(1,5)
21

4

3

G
^

(8,
10
)

(1,
15
)

(1,5)

Fig. 3. Tree Ĝ obtained by the application of Algorithm IV to the
graph G shown in Figure 2.

Algorithm IV
Input: The array D̂(u) and the delay requirements du.
Output: The tree bG.
1. For each node u ∈ U determine the value W (p∗u).
2. Determine Wmin = minu∈U {W (p∗u)} .
3. For each u ∈ U determine the discontinuity (du,Wu)
having Property I.
4. Construct bG using the predecessor node information
that is included in bD(u), u ∈ U .

TABLE V

Algorithm For Computing Constrained Bottleneck

Multicast Trees

By construction, the width of bG is Wmin. Also, since
the path bpu has delay smaller than or equal to that of p∗u
(both paths have width larger than or equal to Wmin andbpu satisfies Property I), we conclude that bG ∈ TU (dU) and
hence it solves Problem II.
According to Theorem 5, to determine the tree bG we can

employ the algorithm shown in Table V. In Figure 3 we
show the tree bG obtained by applying Algorithm IV to the
graph G shown in Figure 2.
Worst Case Analysis of Algorithm IV
Recall that the discontinuities in bD(u) are stored either

in decreasing or increasing order of both width and de-
lay. Hence using binary search, the determination of each
W (p∗u), u ∈ U takes O(logN) time and steps 1, 3 take
time O(|U |N). Step 2 takes O(|U |) time. Finally, step 4
takes O(N) time since bG, being a tree, contains at most
N − 1 links. Hence the overall worst-case running time is
O(max {|U | logN,N}).
Notice that there are no complicated structures involved

in Algorithm IV, and hence the constants involved in the
previous bounds are small.

VI. Simulation Results

We run two sets of experiments. Each set employs dif-
ferent methods of network generation. Thus we generate:
Power Law Networks: This is one of the methods that

attempt to generate network topologies that are "Internet
like". We choose a number of N nodes and a number of

M links (M = αN,α > 1). The links are used to connect
nodes randomly with each other in such a manner that the
node degrees follow a power law [18].
Real Internet Networks: These networks were taken

from [19] and are based on network topologies observed on
the dates 20/09/1998, 01/01/2000 and 01/02/2000.
We also run experiments using "uniform" random net-

works which are formed by picking uniformly a subset ofM
links among the link set of a complete N -node graph. For
this type of networks, for the same N and M , the running
times of the algorithms are smaller than those obtained
for Power Law and Real Internet Networks. However, the
comparative performance of the three algorithms were sim-
ilar with the performance results of Power Law Networks
and therefore are not presented here.
For each experiment the delay of a link is picked

randomly with uniform distribution among the integers
[1, 100]. For the generation of the link widths we use two
different methods.
• Width 1. Each link width wl is picked randomly with
uniform distribution among the integers [1, 100].
• Width 2. In this case link widths are generated in such
a manner that they are correlated to their delays. Thus,
for each link l a parameter βl is generated randomly among
the integers [1, 10]. The width of link l will then be wl =
βl(101− dl).
We generate Power Law Networks with 400, 800 and

1200 nodes and with ratios α = M/N equal to 4, 8, 16.
For each N and α we generate 10 different networks and
for each network we generate the link widths according to
the two methods previously described (Width 1 and Width
2).
The experiments were run on a Pentium PC IV, 1.7GHz,

256MB RAM.
In figures 4-5 we present the average running times (in

seconds) of the three algorithms for Power Law Networks.
We make the following observations.
• For a given algorithm and for fixed number of nodes and
edges we notice that the running time increases when the
width values are generated according to the second method
(Width 2). This is due to the fact that when widths are cor-
related to delays, the number of discontinuities is increased
- see Figures 8 and 9.
• Algorithm II has the best running time performance, and
Algorithm III the worst.
• Compared to Algorithm II, the running times of Algo-
rithm I and Algorithm III are found to be up to 1.5 times
and 6 times larger, respectively.
• Algorithm II performs better than Algorithm I and III
for all experiments and especially for large networks.
The Real Internet Networks have N = 2107, 4120, 6474

nodes and M = 9360, 16568, 27792 links respectively. The
link delays are picked randomly with uniform distribution
among the integers [1, 100] and the link widths are gener-
ated according to the two methods. In these networks we
also performed 10 experiments, where in each experiment
we picked randomly a source node. Figures 6-7 show the
average running time of the three algorithms. We notice

10

Power Law Networks, Width 1

0

0.5

1

1.5

2

2.5

3

3.5

4

1600/400 3200/400 6400/400 3200/800 6400/800 12800/800 4800/1200 9600/1200 19200/1200

Ratio Edges/Nodes

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

AlgI AlgII AlgIII

Fig. 4. Running Time for Power Law Networks with width indepen-
dent of delays.

Power Law Networks, Width 2

0

1

2

3

4

5

1600/400 3200/400 6400/400 3200/800 6400/800 12800/800 4800/1200 9600/1200 19200/1200

Ratio Edges/Nodes

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

AlgI AlgII AlgIII

Fig. 5. Running Time for Power Law Networks with width correlated
to delays.

again that Algorithm II has the best running time perfor-
mance and Algorithm III the worst. The running time of
Algorithm III has been found to be 20 times larger than
that of Algorithm II in some experiments. The perfor-
mance of Algorithm I is worse, but comparable to that of
Algorithm II.
The additional optimization (removal of unneeded links)

in Algorithm I improves its running time but not by much.
Specifically for the Real Network with N = 6474 nodes,
M = 27792 edges and Width 2 the running time with
and without the optimization is respectively 3.1 and 2.89
seconds.
Next we look at the memory requirements of the algo-

rithms. The memory space needed to store the network
topology is common to all algorithms and is not presented
in the Figures below.
The additional memory requirements of the three algo-

rithms at any time during their execution, are determined
mainly by the total number of elements in the queues bD(u),
u²V as well as: a) the heap size bP of possible discontinu-
ities for Algorithm I, b) the heaps H[k], k ∈ K and the
array A[u, k], 1 ≤ u ≤ N, 1 ≤ k ≤ K for Algorithm II and
c) the heap size to run the dynamic version of Dijkstra’s
algorithm for Algorithm III. For each experiment we de-
termined the maximum of memory space needed to store
the previously mentioned quantities. This space depends
on the particular network topology for Algorithm I and III,
while for Algorithm II it is already of order O(KN) due to
the array A[u, k]. As a result, the memory requirements

Real Internet Networks, Width 1

0.64 0.937
1.703001

0.515 0.781
1.468

2.937

5.094

6.999999

0

2

4

6

8

10

9360/2107 16568/4120 27792/6474

Ratio Edges/Nodes

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

AlgI AlgII AlgIII

Fig. 6. Running Time for Real Internet Networks with width inde-
pendent of delays.

Real Internet Networks, Width 2

2.89 2.203

15.766

28.25
29.969002

0.969
1.938

0.672 1.359
0

10

20

30

9360/2107 16568/4120 27792/6474
Ratio Edges/Nodes

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

AlgI AlgII AlgIII

Fig. 7. Running Time for Real Internet Networks with width corre-
lated to delays.

Power Law Networks, Width 1

80390 80703 81028 120717 120985 121565

16413
42152

7296

26478
11199

4069

11990

2038 4801

404844031340190
127259373714881416704

387228791884
3666

1

100

10000

1000000

1600/400 3200/400 6400/400 3200/800 6400/800 12800/800 4800/1200 9600/1200 19200/1200

Ratio Edges/Nodes

M
em

or
y

Re
qu

ire
m

en
t

AlgI AlgII AlgIII

Fig. 8. Memory Requirements for Power Law Networks with width
independent of delays.

Power Law Networks, Width2

14691

806116 809316 813277 1209407 1214850 1219959

64754
23444

9415

41660

6132
19087

7295
2529

405660404320
402505

1993314832
9399

13259
9302610856484314

2501

1

100

10000

1000000

1600/400 3200/400 6400/400 3200/800 6400/800 12800/800 4800/1200 9600/1200 19200/1200

Ratio Edges/Nodes

M
em

or
y

Re
qu

ire
m

en
t

AlgI AlgII AlgIII

Fig. 9. Memory Requirements for Power Law Networks with width
correlated to delays.

11

Real Internet Networks, Width1

17286 11764 18080
43762

24456

211885
650257413813

28252

1

10

100

1000

10000

100000

1000000

10000000

100000000

9360/2107 16568/4120 27792/6474

Ratio Edges/Nodes

M
em

or
y

Re
qu

ire
m

en
ts

AlgI AlgII AlgIII

Fig. 10. Memory Requirements for Real Internet Networks with
width independent of delays.

Real Internet Networks, Width2

22695 17174 3260436542
55586

4152605 6520409
2124174

46407

1

100

10000

1000000

100000000

9360/2107 16568/4120 27792/6474

Ratio Edges/Nodes

M
em

or
y

Re
qu

ire
m

en
ts

AlgI AlgII AlgIII

Fig. 11. Memory Requirements for Real Internet Networks with
width correlated to delays.

of Algorithm II are significantly larger than those of the
other two algorithms. This is indicated in Figures 8-11
where we present the memory requirements of the three al-
gorithms for Power Law and Real Internet Networks. Algo-
rithm III has the smallest memory, followed by Algorithm
I whose memory requirements are comparable to those of
Algorithm III. Due to the need of array A[u, k], Algorithm
II has significantly larger memory requirements.
Summarizing our observations, Algorithm II has the best

running time, however its memory requirements are signif-
icantly worse than those of the other two algorithms. At
the other end, Algorithm III has the best memory space re-
quirements, however its running time is significantly worse
than that of the other two. Algorithm I represents a com-
promise between running time and space requirements, as
its performance with respect to these measures, while not
the best, is comparable to the best.

VII. Conclusions

We presented three algorithms for precomputing con-
strained widest paths and multicast trees in a communica-
tion network. We analyzed the algorithms in terms of worst
case running time and memory requirements. We also pre-
sented simulation results indicating the performance of the
algorithms in networks of interest. The worst case analysis
showed that all three algorithms have similar performance,
with Algorithm I being slightly worse in case of worst case
running time. However, the simulations revealed signifi-

cant performance differences and indicated the conditions
under which each algorithm is appropriate to be used. Fi-
nally we considered the constrained widest multicast tree
problem. We provided an efficient algorithm that provides
a constrained widest multicast tree using the precomputed
constrained widest paths.

References
[1] Claude Berge, Graphs, North-Holland Mathematical Library,

1991.
[2] D. Blokh, G. Gutin, "An Approximation Algorithm for Combi-

natorial Optimization Problems with Two Parameters", IMADA
preprint PP-1995-14, May 1995.

[3] K. Deb, Multi-Objective Optimization using Evolutionary Algo-
rithms, Wiley, 2001.

[4] S. Chen, K. Nahrstedt, "On Finding Multi-Constrained Paths",
in Proc. of IEEE International Conference on Communications
(ICC’98), pp. 874-879, Atlanta, GA, June 1998.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to
Algorithms, Mc Graw Hill, 1990.

[6] Yong Cui, Ke Xu, Jianping Wu, "Precomputation for Multi-
Constrained QoS Routing in High Speed Networks", IEEE IN-
FOCOM 2003.

[7] L. Georgiadis, "Bottleneck Multicast Trees in Linear Time", to
be published in IEEE Communications Letters.

[8] Roch Guerin, Ariel Orda, "Computing Shortest Paths for Any
Number of Hops", IEEE/ACM Transactions on Networking,
vol. 10, no. 5, October 2002.

[9] Roch Guerin, Ariel Orda and Williams D., "QoS Routing Mech-
anisms and OSPF Extensions", IEEE INFOCOM 1997.

[10] T. Korkmaz, M. Krunz and S. Tragoudas, "An Efficient Algo-
rithm for Finding a Path Subject to Two Additive Constraints",
Computer Communications Journal, vol. 25, no. 3, pp. 225-238,
Feb. 2002.

[11] Kurt Mehlhorn, Stefan Naher, Leda:A Platform for
Combinatorial and Geometric Computing, Cambridge Uni-
versity Press, 2000.

[12] P. Van Mieghem, H. De Neve and F.A. Kuipers, "Hop-by-hop
Quality of Service Routing", Computer Networks, vol. 37/3-4,
pp. 407-423, November 2001.

[13] Paolo Narvaez, Kai-Yeung Siu, and Hong-Yi Tzeng, "New
Dynamic Algorithms for Shortest Path Tree Computation ",
IEEE/ACM Transactions on Networking, vol. 8, no. 6, Decem-
ber 2000.

[14] A. Orda and A. Sprintson, "QoS Routing: The Precomputation
Perspective", IEEE INFOCOM 2000, vol. 1, pp. 128-136, 2000.

[15] J. L. Sobrino, "Algebra and Algorithms for QoS Path Compu-
tation and Hop-by-Hop Routing in the Internet", IEEE INFO-
COM 2001, Anchorage, Alaska, April 22-26, 2001.

[16] A. Orda and A. Sprintson, "A Scalable Approach to the Par-
tition of QoS Requirements in Unicast and Multicast", IEEE
INFOCOM 2002.

[17] S. Siachalou, L. Georgiadis, "Efficient QoS Routing", IEEE IN-
FOCOM 2003, to be published in Computer Networks Journal.

[18] The Power Law Simulator, http://www.cs.bu.edu/brite.
[19] The Real Networks, http://moat.nlanr.net/Routing/raw-data.

