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Abstract

There are various techniques for adapting the transmission rate of an application
while maintaining the perceived quality at the receiver at acceptable levels. Shared
channel systems can use this rate adaptation capability to increase the number of
concurrent applications in the system. This can be achieved by appropriately modi-
fying the rate of the already running applications when a new connection arrives in
the system. In this paper we present an analytical model for a class of algorithms
for channel sharing by rate adaptive applications. We provide means for calculating
performance measures related to the quality of reception of an application. We also
present the design of algorithms that ensure fair channel sharing while keeping the
application performance within acceptable levels.
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1 Introduction

As network capacities increase, user demand for supporting multi-
media applications increases as well. Multimedia applications have stringent
Quality of Service (QoS) requirements (guaranteed bandwidth, delay, jitter,
loss). To support these requirements, new standards have been and are be-
ing developed by international standards organizations (ATM, ITU-T, IETF
etc.).
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The efficient transport of multimedia applications requires new network
capabilities, such as appropriate link scheduling mechanisms, traffic shaping,
new routing protocols etc. Besides, the capability of applications to adapt to
changing network conditions provides a promising means for using network
resources efficiently while providing the required application QoS.

Multimedia application adaptation can be done at several layers of the
network protocol stack [16]. In this work we concentrate on adaptation at the
application layer. Adaptation at this layer consist of the capability of the ap-
plication to adjust its bandwidth (rate) requirements. This can be achieved
by various coding techniques such as layered coding [4], [13] and adaptation
of compression parameters [3], [2], [15], as well as bandwidth smoothing [3],
etc. Depending on the technique, rate adaptation can take one of a number of
discrete values, or it can take any value within a specific range. In particular,
wavelet coding [15] is particularly well suited for continuous rate adaptation.
Rate adaptation implies some variability in the perceived quality of the ap-
plication. There is a relatively large class of applications that can tolerate
this variability, such as, video teleconferencing, interactive training, low-cost
information distribution such as news, and even some entertainment video.

Using rate adaptation applications can adapt their transmission rate to
changing network conditions in order avoid congestion [8], [11], [12]. On the
other hand, there are proposals where Variable Bit Rate (VBR) connections
request Constant Bit Rate (CBR) service from the network depending on their
current needs [5].

The ability of applications to adapt their transmission rate is particularly
useful in shared-channel environments such as Hybrid Fiber Coax (HFC) net-
works and broadband wireless cellular networks. These channels are shared by
a number of users. The advantage of channel sharing is that when the num-
ber of active users is small they can share all the available bandwidth and
hence receive very good QoS. The disadvantage is that as the number of users
that share the same bandwidth increases, if the system is left uncontrolled,
the perceived quality of multimedia applications reduces significantly. How-
ever proper admission control, combined with application rate adaptation has
the potential of guaranteeing acceptable quality of reception while achieving
large system utilization. With this approach, when the number of active users
is small, applications are admitted by the system with their maximum re-
quested rate, while as the system load increases the application transmission
rate is reduced, while still remaining within acceptable levels, so that more
connections can be admitted. This process is facilitated by the existence of
controllers (headend in HFC networks [1] and base stations in wireless cellu-
lar networks) that can convey feedback to the already running applications
through the downstream channel (see Figure 1), in order to reduce their rate
accordingly.
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Fig. 1. CATV System

In this paper we address the issue of modeling and analysis of mechanisms for
sharing a common channel by applications that can adapt their transmission
rate within a certain range. Hence, the application rate is generally dependent
on the system load. We concentrate on evaluating by analytical means met-
rics that affect the quality of reception of multimedia traffic. Several metrics
related to the perceived quality of reception have been proposed and their
development is still a subject of research [6], [7], [17], [14]. Experiments in
[9] have shown that Perceptual Distortion Metrics (PDM) depend on the en-
coding method and increase as the average allocated rate to the connection
increases, albeit nonlinearly. The study of particular PDMs and their relation
to encoding methods is beyond the scope of this paper. Instead we concentrate
on evaluating metrics related to allocated rate. These then can be combined
with the particular encoding method to obtain the desired PDM. In addition
to evaluating the average allocated rate, we develop methods for evaluating
the frequency of rate adaptation that occur during the lifetime of a connec-
tion. While these are important metrics, there appears to be little literature
on the subject. In [3] algorithms were designed to take into account quality of
video reception under a different framework than ours, and their performance
was studied by simulations and experiments. Our contribution consists in pro-
viding analytical means for evaluating the performance of a shared channel in
the presence of rate adaptive applications.

The rest of the paper is organized as follows. In Section 2 we provide a
model for channel sharing under a class of sharing algorithms and we analyze
the system behavior under various performance measures. In Section 3 we
examine specific channel sharing algorithms that fall into the class studied in
Section 2 and provide numerical results. We conclude with Section 4 where
we summarize our results and discuss directions for further research.
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2 System Model and Analysis

We consider a communication link of capacity C. Connections arrive for trans-
mission over the link as a Poisson process with rate λ. The connection holding
times are exponential random variables independent of each other and inde-
pendent of the arrival process. The average holding time of a connection is
1/µ. We define the system utilization ρ = λ/µ. The assumption of exponen-
tial holding times, while not always realistic, allows for the detailed analysis of
various performance metrics and provides insight to system operation. More-
over, we note that one of the main results of the paper, i.e., Theorem 1, holds
for general holding time distributions.

The class of rate allocation algorithms that we consider is the following.
If there are k connections in the system at time t, then the rate allocated to
each connection is bk. This assumes that each connection knows bk. For HFC
or wireless cellular systems this can be achieved by broadcasting bk to the
downstream channel. Alternatively, the sequence {bk} may be known to all
connections a priori, in which case k needs to be broadcasted. Algorithms in
this class provide the same rate to each connection in the system and are simple
to implement. Moreover, as will be seen in Section 3, bk can be chosen so that
desirable performance metrics are obtained. More sophisticated algorithms
where bandwidth is not necessarily allocated equitably among connections is
a subject of further research.

We assume that bk is decreasing with k. This assumption is not essential
to the subsequent development and is made in order to simplify the nota-
tion. In any case, this is a reasonable assumption which is likely to hold in
practical systems. Let Kmax be the maximum number of connections that can
be simultaneously active in the system. Clearly, the following inequality must
hold

Kmax ≤
$

C

bKmax

%
.

If an arriving connection finds Kmax connections in the system it is rejected.
Otherwise, it is accepted. Hence, as far as connection admission is concerned
we have an M/M/Kmax loss system [18].

We are interested in deriving performance measures related to the manner in
which rate is allocated to a connection throughout its holding time. One such
measure is the mean rate allocated to a connection. One wishes to keep the
mean allocated rate as high as possible. Another measure of interest is the fre-
quency by which rate adaptation is taking place [3]. In Section 2.1 we examine
in detail a method of deriving various metrics related to the mean allocated
rate. In Section 2.2 corresponding measures are derived for the frequency of
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rate adaptation.

2.1 Mean Allocated Rate

Assume that connection request c arrives at time t = 0 and is accepted
(hence it findsK ≤ Kmax−1 other connections in the system). The connection
holding time is H. Let BK(t) be the rate allocated to the connection at time
t. The mean rate allocated to the connection while in the system is

bBK(H) =

RH
0 BK(t)dt

H
. (1)

We are interested in evaluating

B = E
n bBK(H)

o
,

as a measure of the overall performance of the connection as far as allocated
rate is concerned. Another measure of interest is

Bk = E
n bBK(H)

¯̄̄
K = k

o
,

which is useful when it is desirable to know the expected performance of
the connection when it finds the system at a given state. Clearly, these two
measures are related as follows.

B = E
n bBK(H)

o
= E

n
E
n bBK(H)

¯̄̄
K
oo

=
Kmax−1X
k=0

Bkqk, (2)

where qk, 0 ≤ k ≤ Kmax−1, is the probability that the number of connections
in the system found by connection c upon arrival is k. In steady state, it is
known from the Poisson Arrivals See Time Averages (PASTA) property, [18],
that the distribution of the number of connections found in the system by
an arriving connection is equal to the time average distribution, πk, of the
number of connections in the system. Since the system under consideration
behaves as a loss system as far as connection admission is concerned, we have
that

πk =
ρk/k!PKmax
l=0 ρl/l!

, 0 ≤ k ≤ Kmax. (3)

Since connection c is also accepted by the system, the number of connections
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that it finds in the system must be at most Kmax − 1. Hence, we have

qk =
πkPKmax−1

l=0 πl

=
ρk/k!PKmax−1

l=0 ρl/l!
, 0 ≤ k ≤ Kmax − 1. (4)

Observe that qk is the distribution of connections in a loss system that accepts
up to Kmax − 1 connections.

When the holding time of a connection is known a priori, the following mea-
sures may also be of interest

B(h) = E
n bBK(H)

¯̄̄
H = h

o
Bk(h) = E

n bBK(H)
¯̄̄
K = k, H = h

o
,

which are related as follows

B(h) =
Kmax−1X
k=0

Bk(h)qk. (5)

We start by providing means for evaluating Bk(h) and Bk. Let us define

IK(H) =
Z H

0
BK(t)dt.

Hence, bBK(H) = IK(H)/H. Denote Ik(h) , E {IK(H)|K = k, H = h} .

The analysis proceeds by setting up the basic recurrences of system evolution
and then using Laplace transform approach to extract average values of ba-
sic performance metrics. More specifically, the analysis results in a system of
equations, with the unknowns representing Laplace transforms, whose dimen-
sionality is the maximum number of connections that can be admitted to the
channel. By transform inversion, one then obtains the numerical quantities
needed to evaluate performance.

Consider the first time, XK , (after time t = 0 ) at which a new connection
arrives or one of the K connections found by c upon arrival departs. It is
well known that given K, XK is an exponential random variable with rate
λXK

= λ+Kµ. The form of IK(H) depends on whether XK occurs before or
after connection c leaves the system. Indeed,

• If XK ≥ H (see Figure 2, (a)), then no rate adaptation occurs during the
connection’s holding time and hence IK(H) = bK+1H (note that since there
are in total K + 1 connections in the system, the connection is allocated
rate bK+1).
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• If XK < H then up to time XK the connection is allocated rate bK+1 and
hence we can write

IK(H) = bK+1Xk +GK(H),

where GK(H) =
RH
XK

BK(t)dt. The statistics of GK(H) depend on whether
a departure or an arrival occurs at time XK .

If a departure occurs at XK (hence K ≥ 1, see Figure 2 (b)), then
the number of connections in the system, other than connection c, becomes
K − 1. In this case, due to the statistical assumptions about connection
arrival and holding times, GK(H) has the same distribution as IK−1(H −
XK).

If an arrival occurs at XK and K ≤ Kmax−2 (see Figure 2 (c)), then
the new connection is accepted by the system. By a similar reasoning we
conclude that GK(H) has the same distribution as IK+1(H −XK).

If an arrival occurs at XK and K = Kmax − 1 (see Figure 2 (d))
then the new connection is rejected and GK(H) has the same distribution
as IK(H −XK).

0 tH

1kb +

kX : next event

c : connection  request

0 tH

1kb +

2kb +

… 

0 tH

1kb +

2kb +

… 

arrival 

departure

(a) 

kb

1kb +

…

0 H
(b)

t

(c) (d)

( )HIk  ( )HIk

( )HIk  ( )HIk

Fig. 2. Evolution of IK (H)

Let us define

Ik(h, xk) = E{IK(H)|K = k,H = h,Xk = xk}.

From the previous discussion we conclude the following:
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• For 1 ≤ k ≤ Kmax − 2,

Ik(h, xk) =


bk+1h xk ≥ h

bk+1xk + Ik+1(h− xk) arrival at xk < h

bk+1xk + Ik−1(h− xk) depart. at xk < h

(6)

• For k = 0 (no departure can occur at this state),

Ik(h, xk) =

 bk+1h xk ≥ h

bk+1xk + Ik+1(h− xk) arrival at xk < h
(7)

• For k = Kmax−1 (if an arrival occurs at this state andXK ≤ h, it is rejected
since there are Kmax active connections in the system),

Ik(h, xk) =


bk+1h xk ≥ h

bk+1xk + Ik(h− xk) arrival at xk < h

bk+1xk + Ik−1(h− xk) depart. at xk < h

(8)

Note that the events “arrival occurs at Xk” and “departure occurs at Xk”
have respective probabilities

pa =
λ

λ+ kµ
, pd =

kµ

λ+ kµ
.

Moreover, due to the statistical assumptions about the arrival and departure
processes, these events are independent of the event {Xk ≤ h } .

Let us define

fXk
(x) = (λ+ kµ) e−(λ+kµ)x,

FXK
(x) = 1− e−(λ+kµ)x, F c

Xk
= e−(λ+kµ)x.

Also, denote by ⊗ the convolution between two functions g1(h), g2(h), h ≥ 0,
i.e.,

(g1 ⊗ g2) (x) =
Z h

0
g1(h− x)g2(x)dx.

Averaging the recursive formulas (6), (7), (8), with respect to Xk, and setting
for convenience I−1(h) ≡ 0, we have for 0 ≤ k ≤ Kmax − 2,
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Ik(h) =
Z ∞
0

Ik(h, x)fXk
(x)dx

= bk+1hF
c
Xk
(h) + bk+1

Z h

0
xfXk

(x)dx

+
λ

λ+ kµ

³
Ik+1 ⊗ fXk

´
(h)

+
kµ

λ+ kµ

³
Ik−1 ⊗ fXk

´
(h), (9)

and for k = Kmax − 1

Ik(h) = bk+1hF
c
Xk
(h) + bk+1

Z h

0
xfXk

(x)dx

+
λ

λ+ kµ

³
Ik ⊗ fXk

´
(h)

+
kµ

λ+ kµ

³
Ik−1 ⊗ fXk

´
(h). (10)

Taking the Laplace transform of (9) and (10) we have respectively,

Ik(s) = bk+1F
d
k(s) +

λ

λ+ kµ
Ik+1(s)Fk(s)

+
kµ

λ+ kµ
Ik−1(s)Fk(s), 0 ≤ k ≤ Kmax − 2, (11)

Ik(s) = bk+1F
d
k(s) +

λ

λ+ kµ
Ik(s)Fk(s)

+
kµ

λ+ kµ
Ik−1(s)Fk(s), k = Kmax − 1, (12)

where Ik(s) is the Laplace transform of Ik(h) and

Fk(s) =
λ+ kµ

s+ λ+ kµ
, (13a)

Fd
k(s) =

1

s (s+ λ+ kµ)
. (13b)

For each s, (11) and (12) constitute a system of Kmax equations in Kmax

unknowns, Ik(s), 0 ≤ k ≤ Kmax − 1. Hence Ik(s) can be calculated. By nu-
merically inverting the Laplace transforms, one can determine Ik(h), 0 ≤ k ≤
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Kmax − 1. It is then straightforward to compute

Bk(h) = E
n bBK(H)

¯̄̄
K = k, H = h

o
=

Ik(h)

h
.

Consider now Bk = E
n bBK(H)

¯̄̄
K = k

o
. We have

Bk = E

(
IK(H)

H

¯̄̄̄
¯K = k

)
=

= E

(
E

(
IK(H)

H

¯̄̄̄
¯H = h,K = k

)¯̄̄̄
¯K = k

)

=
Z ∞
0

Ik(h)

h
µe−µhdh, (14)

where we used the fact that K (the number of connections in the system when
connection c arrives) is independent of the holding time of connection c. Hence,
the computation can be performed once Ik(h) has been determined. However,
this process is tedious since it requires that we first invert the Laplace trans-
form of Ik(h) and next compute the integral. An alternative more efficient
process can be obtained, which requires the integration of the Laplace trans-
form directly, thus avoiding the inverse Laplace transform. This can be done
as follows.

Define

eIk(h) = Ik(h)e
−µh.

From (9) it follows that for 0 ≤ k ≤ Kmax − 2,

eIk(h) = bk+1hF
c
k(h)e

−µh + bk+1e
−µh

Z h

0
xfX(x)dx

+
λ

λ+ kµ

³eIk+1 ⊗ ³fXk
e−µx

´´
(h) (15)

+
kµ

λ+ kµ

³eIk−1 ⊗ ³fXk
e−µx

´´
(h),

while for k = Kmax − 1, (10) becomes
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eIk(h) = bk+1hF
c
k(h)e

−µh + bk+1e
−µh

Z h

0
xfX(x)dx

+
λ

λ+ kµ

³eIk ⊗ ³fXk
e−µx

´´
(h) (16)

+
kµ

λ+ kµ

³eIk−1 ⊗ ³fXk
e−µx

´´
(h).

Taking the Laplace Transform of (15) and (16) we get

eIk(s) = bk+1 eFd
k(s) +

λ

λ+ kµ
eIk+1(s)eFk(s)

+
kµ

λ+ kµ
eIk−1(s)eFk(s), 0 ≤ k ≤ Kmax − 2, (17)

and

eIk(s) = bk+1 eFd
k(s) +

λ

λ+ kµ
eIk(s)eFk(s)

+
kµ

λ+ kµ
eIk−1(s)eFk(s), k = Kmax − 1, (18)

where

eFk(s) =
λ+ kµ

s+ λ+ (k + 1)µ
, (19a)

eFd
k(s) =

1

(s+ µ) (s+ λ+ (k + 1)µ)
. (19b)

Now, if the Laplace transform of f(h) is F(s), then it holds [10],Z ∞
0
F(s)ds =

Z ∞
0

f(h)

h
dh.

Therefore, from (14) we conclude that

Bk = µ
Z ∞
0

eIk(s)ds. (20)

Hence, the algorithm for computing Bk is the following.

(1) For a given s, eIk(s) are calculated by the solution of the linear system of
equations (17) and (18).

(2) Since we can compute eIk(s) for any s from step 1, we can use a numerical
method of integration to compute Bk based on (20).

11



The following example illustrates the process developed above.

Example 1.

Let us consider the case Kmax = 2. Then, we have from (11) and (12).

 I0(s)
I1(s)

 =
 1 − λ

s+λ

− µ
s+λ+µ

s+µ
s+λ+µ


−1  b1

s(s+λ)

b2
s(s+λ+µ)


=

 s+µ
s2(s+λ+µ)

b1 +
λ
s2

b2
s+λ+µ

µ
(s+λ+µ)s2

b1 +
1
s2
(s+ λ) b2

s+λ+µ

 .
Inverting the Laplace transform we get,

I0(h) =
b1

λ+ µ

³
1− e−h(λ+µ)

´
+

µb1

(λ+ µ)2

³
−1 + (λ+ µ)h+ e−h(λ+µ)

´
+

λb2

(λ+ µ)2

³
−1 + (λ+ µ)h+ e−h(λ+µ)

´
, (21)

and

I1(h) =
µ

(λ+ µ)2
³
−1 + (λ+ µ)h+ e−h(λ+µ)

´
b1

+
b2

λ+ µ

³
1− e−h(λ+µ)

´
+

λb2

(λ+ µ)2
³
−1 + (λ+ µ)h+ e−h(λ+µ)

´
. (22)

Hence,

B0(h) =
I0(h)

h
, B1(h) =

I1(h)

h
,

and

B(h) = B0(h)q0 +B1(h)q1 = b1
1

(ρ+ 1)
+ b2

ρ

(1 + ρ)
. (23)

Similarly, from (15) and (16) we have

 eI0(s)eI1(s)
 =

 1 − λ
s+λ+µ

− µ
s+λ+2µ

s+2µ
s+λ+2µ


−1  b1

(s+µ)(s+λ+µ)

b2
(s+µ)(s+λ+2µ)


=

 s+2µ

(s+µ)2(s+λ+2µ)
b1 +

λ
(s+µ)2

b2
s+λ+2µ

µ

(s+λ+2µ)(s+µ)2
b1 +

s+λ+µ

(s+µ)2
b2

s+λ+2µ

 .
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Integrating the previous Laplace transforms we get from (20)

B0 = µ
Z ∞
0

eI0(s)ds
= b1

1

(ρ+ 1)
+ b2

ρ

(1 + ρ)
(24)

+ (b1 − b2)
ρ ln (ρ+ 2)

ρ2 + 2ρ+ 1
,

and

B1 = µ
Z ∞
0

eI1(s)ds
= b1

1

(ρ+ 1)
+ b2

ρ

(1 + ρ)
(25)

− (b1 − b2)
ln (ρ+ 2)

ρ2 + 2ρ+ 1
.

Of course, we could obtain (24) and (25) from (14) but this would be more
tedious. Finally, from (24), (25) and (2) we have

B = b1
1

(ρ+ 1)
+ b2

ρ

(1 + ρ)
. (26)

We observe from (21), (22), (23) and (26) that

lim
h→∞

I0(h)

h
= lim

h→∞
I1(h)

h
= B(h) = B =

1

1 + ρ
b1 +

ρ

1 + ρ
b2.

In fact, these formulas hold for general Kmax and general holding time distri-
butions. This is expressed in the following theorem.

Theorem 1 For 0 ≤ k ≤ Kmax − 1, any h > 0 and general holding time
distributions the following relations hold.

lim
h→∞

Bk(h) = B = B(h) =
Kmax−1X
k=0

bk+1qk.

The proof of this theorem is given in the Appendix. According to the theorem,
the evaluation of B (B(h)) is straightforward and does not need the knowledge
of Bk (Bk(h)) as is implied by (2) ((5)). Moreover, the theorem states that the
average rate allocated to a connection is equal to the expected rate allocated
to the connection at the moment it arrives to the system and independent
of its holding time. The latter is an interesting and desirable property of the
studied method of bandwidth allocation. Note that this property is not true if
we condition on the number of connections found on arrival, i.e., for Bk(h). As
the theorem states, the average rate allocated to an accepted connection that
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finds k other connections in the system is only asymptotically (as h → ∞)
equal to the average rate allocated to a connection upon arrival, which is
intuitively clear.

2.2 Frequency of Rate Adaptation

Assume again that connection c with holding time H finds K other connec-
tions in the system upon arrival. Let SK(H) be the number of times rate
adaptation takes place during the lifetime of a connection. The frequency of
rate adaptation is then

bRK(H) =
SK(H)

H
.

As in Section 2.1 we develop formulas for the calculation of analogous measures
related to average adaptation rates. These measures are

R = E
n bRK(H)

o
,

Rk = E
n bRK(H)

¯̄̄
K = k

o
,

R(h) = E
n bRK(H)

¯̄̄
H = h

o
,

Rk(h) = E
n bRK(H)

¯̄̄
K = k, H = h

o
.

Let us define

r+k =

 1 if bk+1 6= bk

0 otherwise
, 1 ≤ k ≤ Kmax − 1, (27a)

r−k =

 1 if bk−1 6= bk

0 otherwise
, 2 ≤ k ≤ Kmax. (27b)

It will be convenient to also define

r+Kmax
= 0, r−1 = 0.

Observe that if connection c is in the system together with k other connections
and there is a new arrival, then rate adaptation will take place if bk+2 6= bk+1
(recall that before the new arrival the rate allocated to connection c is bk+1).
Similarly, if one of the k connections leaves the system, rate adaptation will
take place if bk 6= bk+1. Based on this observation and following the reasoning
of section 2.1, we have for Sk(h) , E {SK(H)|K = k,H = h} and Sk(h, xk) =

E
n
SK(H)|K = k,H = h,Xk = xk

o
:
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• For 1 ≤ k ≤ Kmax − 2,

Sk(h, xk) =


0 xk > h

r+k+1 + Sk+1(h− xk) arrival at xk ≤ h

r−k+1 + Sk−1(h− xk) depart. at xk ≤ h

(28)

• For k = 0

Sk(h, xk) =

 0 xk > h

r+k+1 + Sk+1(h− xk) arrival at xk ≤ h
(29)

• For k = Kmax − 1,

Sk(h, xk) =


0 xk > h

Sk(h− xk) arrival at xk ≤ h

r−k+1 + Sk−1(h− xk) depart. at xk ≤ h

(30)

These recursions are similar to those in (6), (7) and (8). We can therefore
parallel the approach taken in Section 2.1. Define for 0 ≤ k ≤ Kmax − 1.

rk+1 = λr+k+1 + kµr−k+1.

The Laplace transform of Sk(h) satisfies the following equations.

Sk(s) = rk+1F
d
k(s) +

λ

λ+ kµ
Sk+1(s)Fk(s)

+
kµ

λ+ kµ
Sk−1(s)Fk(s), 0 ≤ k ≤ Kmax − 2, (31)

Sk(s) = rk+1F
d
k(s) +

λ

λ+ kµ
Sk(s)Fk(s)

+
kµ

λ+ kµ
Sk−1(s)Fk(s), k = Kmax − 1. (32)

where Fk(s), Fd
k(s) are given by (13a) and (13b) respectively.

We observe that (31), (32) are essentially the same as (11), (12), the only
difference being that bk is replaced by rk. Hence the analysis of the previous
section holds in this case as well.

15



Note: If it is desired to count only the times when reduction of bandwidth
occurs during the lifetime of an accepted connection, then we can simply set
r−k = 0 for all values of k.

3 Algorithms and Numerical Results

In this section we present examples of algorithm design for rate adaptation, as
well as numerical examples of system performance. In Section 3.1 we present a
basic algorithm for adapting the connection rate in a fair manner while mak-
ing maximum use of the available channel capacity, while in Section 3.2 we
present the design of an algorithm that reduces the frequency of rate adapta-
tion without adversely affecting the allocated rate.

3.1 An Algorithm for Rate Adaptation

Let us assume that the connection rate can be adapted in a continuous manner
within the range [bmin, bmax] and that the link capacity is C. Hence, if there
are at most Kmin = bC/bmaxc connections in the system, they can all receive
the maximum rate bmax, while if the number of connections is larger than
bC/bmaxc, then the connection rate must be reduced. In the latter case, we
make the “fair” choice to adapt the rate of all currently running connections
to the same value. With this choice, the maximum number of connections
that can be accepted by the system is Kmax = bC/bminc. Hence, we have the
following values for bk.

bk =

 bmax if k ≤ Kmin

C/k if Kmin < k ≤ Kmax

.

With this choice, applications either receive the maximum rate for best quality,
or they share the channel capacity equitably while still receiving rate larger
than the minimum specified. Since the rate can be adapted to any value within
the specified range, the whole channel capacity is used by the connections
whenever possible.

We consider a channel with capacityC = 2MBps and assume bmax = 0.5Mbps,
bmin = .2Mbps, µ = 1. Hence, Kmin = 4 and Kmax = 10. We vary the arrival
rate (and hence the utilization ρ) from 0.2 to 7.0. When ρ = 7.0. the connec-
tion blocking probability is about 0.1, which is at the upper limit of acceptable
values.
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Fig. 3. Average allocated rate Bk as a function of k, for various values of ρ.

Fig. 4. Frequency of rate adaptation Rk as a function of ρ, for various values of k.

In Figure 3 we plot the values of average allocated rate, Bk, as k varies, for
various values of ρ. As expected, for given ρ the average bandwidth decreases
as k increases. Moreover, for a given k, Bk fluctuates by at most 0.05Mbps
as ρ varies from 0.2 to 7.0. Therefore, the average allocated bandwidth is not
heavily dependent on the system utilization ρ. In figure 4 where we plot the
frequency of rate adaptation, Rk, as ρ varies, for various values of k. We see
that the maximum value of frequency of rate adaptation is 12. In the same
figure we also plot the average value of the frequency or rate adaptation, R,
as a function of ρ. We observe that the R is negligible ρ < 1 and increases
sharply for ρ > 2.

Another interesting observation in Figure 4 is that R9 becomes smaller than
R8, R7, R6, as ρ increases. This is explained as follows. A rate adaptation
may occur either when a new arrival or a departure occurs during the lifetime
of a connection. The higher k is, the higher the likelihood that a departure
occurs. For small utilization where the likelihood of new arrivals is small,
rate adaptation is due mainly to departures and hence R9 is larger than Rk
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for k ≤ 8. As the utilization increases the likelihood of new arrival causing
a rate adaptation is increased. However, when k = 9, the total number of
connections in the system is 10, and new arrivals will be rejected thus causing
no rate adaptation. Hence R9 is not affected by the increased likelihood of
arrivals and eventually it becomes smaller than Rk for k ≤ 8.

3.2 Reducing the Frequency of Rate Adaptation

Consider now that we would like to reduce the frequency of rate adaptation
observed in the previous setup. This could be achieved by setting bk = bk+1 =
..bk+n for some values of k and n, and hence avoiding rate adaptation for
certain state changes. Trivially, one could set b1 = ... = bKmax = bmin so that
no rate adaptation occurs. However, this way the connection rate will always
be minimal. Hence, there is a trade-off between frequency of rate adaptation
and average rate consumed by a connection. In addition, it is desirable to avoid
abrupt rate adaptation, ensuring that the difference between two consecutive
rate adaptations is always smaller than a given number a.

The previous considerations lead to the following design. We assume that the
connection rate can again be adapted in a continuous manner. We also assume
that C/bmax is integer

(1) Set bk = bmax for k ≤ Kmin.
(2) Set K = Kmin, l = 0
(3) Until K ≥ Kmax do
(4) For k = K + 1, ...,max {K + l,Kmax} set bk = C

max{K+l,Kmax} , where l is
determined from the requirement that bK − bK+l ≤ a, i.e.,

l =

$
aK2

C − aK

%
.

(5) K ← K + l
(6) end /* Until do loop */

In order to ensure that l ≥ 1 in the previous algorithm, the value of a must
satisfy

a ≥ C

Kmin +K2
min

.

In Figure 5 we plot the values of bk for various values of a, including the
original algorithm in Section 3.1 (denoted as “cont” in the figure). We see
that as expected, as a increases there are larger flat areas in the resulting
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Fig. 5. Plots of bk for various for various values of a.

curves. In figure 6 we plot the frequency of rate adaptation as k varies, for
various values of ρ and for a = .15. We see that the maximum frequency of
rate adaptation is 6.5 while for the algorithm of Section 3.1 the corresponding
value is 12.

In Figures 7 and 8 we present the average allocated rate and frequency of rate
adaptation as ρ varies, for various values of a. We see that for high utilization
the frequency of rate adaptation can be reduced significantly at the expense
of a moderate decrease in average allocated rate.

Fig. 6. Frequency of rate adaptation Rk as a function of k for various values of ρ.

4 Conclusions

We provided a model and analysis for a class of algorithms for channel
sharing by rate adaptive applications. The developed formulas provide closed
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Fig. 7. Average allocated rate, B, as a function of ρ, for various values of a.

Fig. 8. Frequency of rate adaptation R as a function of ρ for various values of a.

form solutions for small systems, while for larger systems the measures of
interest can be computed numerically. The formulas for the average allocated
rate and the frequency of rate adaptation are very simple and hold for general
service time distributions. We also showed how the results can be used in the
design and evaluation of channel sharing algorithms.

There are several directions in which the current work can be extended.
Regarding the generality of the results, it is desirable to understand the effect
of more general service time distributions on system performance, for the rest
of the measures studied in this paper. As far as the system model is concerned,
we addressed in the current work the case of a single service class where all
applications have the same holding times and performance requirements. It is
interesting to study in this context the case of multiple service classes with
different QoS requirements, as well as other bandwidth allocation algorithms.
The inclusion of VBR connections which may need to alter their rate in ad-
dition to adjusting to system request is also an important issue. Also another
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issue is the extension of the current approach to multi-hop networks.
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5 APPENDIX A

5.1 Proof of Theorem 1

We restate the theorem here.

Theorem 1: For 0 ≤ k ≤ Kmax − 1 , h > 0 and for general service time
distributions the following relations hold.

lim
h→∞

Ik(h)

h
= B = B(h) =

Kmax−1X
k=0

bk+1qk.

We will need the following general theorem for M/G/c Loss Systems [18].
Consider an M/G/c system where the service (holding) time distribution is
G(x) = P (S ≤ x) with average service rate µ. Let N be the steady-state
number of customers (connections) in the system and Sri the steady-state re-
maining service times of each of these customers. Let also πk be the probability
distribution given by (3) and Ge the equilibrium distribution of G, that is,

Ge = µ
Z x

0
(1−G(x))dx.

Theorem (Erlang’s Loss Formula). For an M/G/c loss system with arrival
rate λ and service rate µ, 0 < µ < ∞, the joint limiting and stationary
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distribution of (N,Sr1, ..., SrN) is

P (N = n, Sri ≤ xi, i = 1, ..., n) = πn
nY
i=1

Ge(xi).

Proof. Consider first

lim
h→∞

Ik(h)

h
=

Kmax−1X
k=0

bk+1qk. (33)

Once an arriving connection is accepted by the system, then, throughout the
connection’s holding time, the system behaves as a loss system Q that can
accept Kmax−1 connections. The newly arriving connection receives a reward
rate of bk+1 when the system Q is at state k (since there are in total k + 1
connection in the original system). From the general theory of regenerative
processes [18] it is known that the long term time-average reward (left hand
side of (33) is equal to the steady-state average reward (right hand side of (33))
-recall from (4) that the qk is the steady-state distribution of the number of
connections in system Q.

We now prove that

B(h) =
Kmax−1X
k=0

bk+1qk.

Let an arriving connection be accepted, i.e., it finds K = k ≤ Kmax − 1
connections in the system and let bSri , i = 1, ..., k be the remaining service
time of the connections in the system found upon arrival. We have for 0 ≤
k ≤ Kmax − 1.

P (K = k, bSri ≤ xi, i = 1, ..., k
¯̄̄
K ≤ Kmax−1) = P (K = k, bSri ≤ xi, i = 1, ..., k)

P (K ≤ Kmax − 1) .

Applying now PASTA and Erlang’s Loss Formula we have

P (K = k, bSri ≤ xi, i = 1, ..., k)

P (K ≤ Kmax − 1) =
P (N = k, Sri ≤ xi, i = 1, ..., k)

P (N ≤ Kmax − 1)
=

πkPKmax−1
i=1 πi

kY
i=1

Ge(xi)

= qk
kY
i=1

Ge(xi).

That is,

P (K = k, bSri ≤ xi, i = 1, ..., k
¯̄̄
K ≤ Kmax − 1) = qk

kY
i=1

Ge(xi).
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From the last formula we see that after a given connection is admitted in the
system and throughout its holding time, the system behaves as aM/G/ (Kmax − 1)
system in steady state. Therefore, if the connection holding time is h, then for
any time t ≤ h we have

E {BK(t)|H = h} =
Kmax−1X
k=0

bk+1qk.

It follows that

E {IK(H)|H = h} = E

(Z h

0
Bk(t)dt

¯̄̄̄
¯H = h

)

=
Z h

0
E {Bk(t)dt|H = h} dt

= h
Kmax−1X
k=0

bk+1qk,

and

B(h) = E

(
IK(H)

H

¯̄̄̄
¯H = h

)
=

Kmax−1X
k=0

bk+1qk.

Finally, B = E
n
B(H)

o
=
PKmax−1

k=0 bk+1qk.
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