Optimal Multiplexing on a Single Link: Delay and Buffer

Requirements
Leonidas Georgiadis * Roch Guérin
Aristotle University of Thessaloniki IBM T. J. Watson Research Center
Dept. of Electrical and Computer Eng. P. O. Box 704
P.O. Box 435 Yorktown Heights, NY 10598

Thessaloniki, 54006 - GREECE
Abhay Parekh !

Sun Microsystems Inc.
2550 Garcia Avenue
Mountain View, CA 94043-1100

Abstract. This paper is motivated by the need to provide per session quality of service guar-
antees in fast packet-switched networks. We address the problem of characterizing and designing
scheduling policies that are optimal in the sense of minimizing buffer and/or delay requirements
under the assumption of commonly accepted traffic constraints. We investigate buffer requirements
under three typical memory allocation mechanisms which represent trade-offs between efficiency
and complexity. For traffic with delay constraints we provide policies that are optimal in the sense
of satisfying the constraints if they are satisfiable by any policy. We also investigate the trade-off
between delay and buffer optimality, and design policies that are “good” (optimal or close to) for
both. Finally, we extend our results to the case of “soft” delay constraints and address the issue of
designing policies that satisfy such constraints in a fair manner. Given our focus on packet switch-
ing, we mainly concern ourselves with non-preemptive policies, but one class of non-preemptive
policies which we consider is based on tracking preemptive policies. This class is introduced in this
paper and may be of interest in other applications as well.

Key Words: Data Networks, Scheduling, Multiplexing, Optimization, Buffer Allocation, Schedula-
ble Regions.

1 Introduction

A key challenge in the design of integrated services networks is to support a large number of
sessions with different performance requirements, while minimizing cost as measured by network
resources. Session performance is mainly characterized by packet delay and loss probability, with

*This work was done while the author was at the IBM T. J. Watson Research Center.
'This work was done while the author was at the IBM T. J. Watson Research Center.

link bandwidth and buffer space being the network resources that must be expended to achieve
performance.

It is clear that buffer requirements and delay are intimately related, since delay is trivially bounded
above by the amount of time it takes to drain a switch with full buffers. Yet, there are more
intricate factors at work when the switch implements scheduling and buffer allocation policies which
discriminate among the sessions. The scheduling policy (usually implemented at the output ports
of the switch) determines the order in which queued packets are served, and the buffer allocation
policy determines the manner in which the buffer space is to be shared among the sessions. It turns
out that for a given requirement on the loss probabilities, the choice of scheduling policy has an
effect on both the delay and the total amount of buffer space required [15, 20, 25], while the choice
of buffer allocation policy has an effect only on the total amount of buffer space required. To make
things more complicated, for a given scheduling policy, the total amount of buffer space required
is also dependent on the buffer allocation policy. These dependencies are not negligible and need
to be examined carefully.

A central contribution of this paper is, therefore, to define a simple analytical model that permits
meaningful evaluations of the delay and buffer requirements of policies, so that they can be properly
compared. We then find policies that are optimal within this analytical model.

Our study is restricted to the case of a single link (multiplexer) and assumes a zero-loss environment,
i.e., buffers are sized so that space is always available to store incoming data, provided the input
traffic satisfies certain constraints. OQur choice of zero-loss is motivated by several considerations.
First, it provides us with a common basis of comparison for how each policy handles various traffic
patterns. Second, it clearly represents a desirable feature, irrespective of whether an application
can tolerate some losses, and we want to emphasize that providing such guarantees is indeed feasible
at a reasonable cost. The traffic constraints we assume in order to be able to ensure zero-loss, are
well-accepted and in-line with the requirements of standard rate control algorithms [2]. Specifically,
we assume that each session has a given average rate p;, an associated maximum burstiness o; (see
Section 2.1 for a more rigorous definition), and a maximum packet size Lpay.

A basic, qualitative outline of the paper is the following: In Section 2, we define our model,
introduce the scheduling policies (including a new class of policies known as Tracking policies) we
are going to be using in the rest of the paper, and give a few preliminary results. In Section 3
we examine various buffer allocation policies and for each, show specific scheduling policies to be
buffer-optimal, i.e., they require the minimal possible amount of buffer to ensure zero-loss, over
all scheduling policies. Section 4 considers the corresponding problem of designing delay optimal
scheduling disciplines, and among the class of delay optimal policies identifies those that result in
low buffer occupancy as well. Here we find that the more flexible the buffer allocation policy, the
lower the buffer requirements for the “best” delay optimal policy. In the last major section of the
paper, Section b, we define delay requirements differently, in that we allow packets to miss their
deadlines, and design policies in which the “lateness” is distributed fairly among the sessions.

1.1 Results

In Section 3, we study three buffer structures, Flexible, Semi-flexible and Fixed, that represent
different trade-offs between efficiency and complexity, and design buffer optimal policies for each.
The analysis shows the surprising result that improving the complexity of the buffer structure may
not improve the efficiency significantly.

However, the advantage of a more complex and, therefore, more flexible buffer allocation scheme
becomes apparent in Section 4, where we show that the added flexibility results in significant
advantages when delays also need to be optimized. In this section, we identify the schedulable region
of the multiplexer and characterize delay optimal policies, i.e., those with maximal schedulable
region. In keeping with our focus on packet switching, we design non-preemptive policies, as
opposed to preemptive ones. We show that both a standard Non-Preemptive Earliest Deadline
First policy (NPEDF) and a Tracking policy based on the Preemptive Earliest Deadline First
policy (I'(PEDF)) are delay-optimal among the class of non-preemptive policies. Based on our
knowledge of policies which are optimal for either buffer or delay requirements, we proceed next in
Section 4.2 with a policy which is delay-optimal and has small (near optimal) buffer requirements.

In Section 5, we consider two separate figures of merit. The first is that of minimizing the maxi-
mum lateness over all packets under any arrival pattern. We establish that under NPEDF and
T(PEDF) maximum lateness is no more than L.,/r time units greater than what it is under
PEDF, which is known to be optimal with respect to minimizing maximum lateness [11], where
Lpax/7 is the transmission time of a maximum size packet over a link of speed . Thus NPEDF
and T(PEDF) are very close to being optimal. The second, and stronger figure of merit is the
degree to which the packet lateness vector is close to being lezicographically minimal. We show
that a particular version of PEDF, which we call PEDF”* is lexicographically optimal among all
preemptive policies. Further, we show that the tracking policy, T(PEDF*), is close to being lexi-
cographically optimal in that under T(PEDF*) no packet is delayed by more than Ly.,/7 beyond
what it experiences under PEDF*.

1.2 Earlier Work

Buffer-optimal policies under the fixed allocation method have been studied in [22, 7, 4, 13, 5] and
the buffer optimal policy for o; = 0 was presented in [21]. While the case of the flexible allocation
method is straightforward, our results for the semi-flexible allocation case are new. In addition,
our result linking the schedulable region and buffer requirements under fixed allocation is new, as
is our result on how to construct delay-optimal policies that have small buffer requirements.

The problem of scheduling tasks has received significant attention in the context of (real-time)
computing systems, where important results on optimal scheduling policies and the associated
schedulable region have been obtained. However many of these results assume more restrictive
arrival patterns than those used in this paper: The optimality of the PEDF for the class of
preemptive policies was first shown in [19] for periodic arrivals and in [11] for general arrival
patterns; in [16, 17] the delay-optimality of NPEDF among the class of non-preemptive policies
is established for periodic and so-called sporadic arrivals; the schedulable regions for NPEDF
and PEDF have been derived in [26] for arrival streams characterized by a minimum inter-packet
arrival time that is independent of packet size. The merit of using schedulable regions to guarantee
quality of service in networks was recognized in [18]. The NPEDF policy has been proposed
in [12, 23, 24] as a link scheduling policy in a scheme designed to provide per session real-time
guarantees in packet-switched networks.

Tracking policies have been proposed and studied in the context of Generalized Processor Sharing
in [20, 10]. Theorems 1 and 2 appear in [20] but have been extended in this paper to include all
tracking policies that obey a specific Ordering Property. The T(PEDF) and T(PEDF”) policies
are new as are all of the results pertaining to these policies. Finally, while the optimality of
PEDF for the criterion of minimizing the maximum lateness of packets was established in [11], the

Multiplexer

Sessions
1 .
2 -
Output Link
n . - Memory
N_l 5 o
N >

Figure 1: The multiplexer model

relationship between PEDF and N PEDF in this context is new. The lexicographic optimality of
PEDF* is new as well.

2 Model, Definitions and Preliminary Results

2.1 Multiplexer and Traffic Models

Assume traffic flows from N sessions arrive into a multiplexer (see Figure 1) and the flow of each
session is partitioned into discrete entities or packets. A packet may be arbitrarily small, but can
be no larger than L., bits. Arriving packets are stored in the memory of the multiplexer until
they are transmitted on the output link, which is assumed to be of speed r. The multiplexer is
of store-and-forward type, i.e., a packet becomes eligible for transmission only after its last bit
has arrived at the multiplexer. Since there may be several eligible packets at any given time, the
multiplexer has a scheduler which implements a service policy. This policy decides which of the
eligible packets to transmit on the output link and then transmits this packet non-preemptively.
In this paper, we assume a First-In-First-Out order of service for packets from a given session, so
that the service policy only arbitrates transmission between the head-of-the-line packets from each
session.

For definiteness, in the following we assume that if a packet arrives, i.e., its last bit is received, at
the multiplexer at time ¢, it is also available for transmission at the scheduler at time ¢. Therefore,
the scheduler takes into account the packet arrival at time ¢ when making a scheduling decision at ¢.
Also, when a packet is being transmitted, we say that the packet is “being served”. By convention,
at the time instant at which the transmission ends, the packet is not in service. So, if a packet is
transmitted from time ¢; to ¢y > ¢;, the packet is being served in the interval [¢;,15).

Let I;(7,t) be the number of bits (traffic) generated by the source of session ¢ in the interval [7,¢+7).
Set I;(t,t+7) = 0 for ¢ < 0. Unless specified otherwise, assume that there exist o;, p; such that

L(r,t+71)<o0;+pt, t>0. (1)

This model for the generated traffic is identical to the one proposed by Cruz [8] [9], and consistent
with the constraints imposed by rate control algorithms that have been accepted by standard bodies
[2, 1]. We refer to p; and o; as the session traffic rate and burstiness respectively.

Let r; be the speed of the input link over which traffic from session 7 is sent to the multiplexer.
Since we are dealing with a store-and-forward multiplexer, a packet has to be completely received
before it is delivered to the scheduler. It can then be shown using the techniques in [8] that the
amount of (packetized) traffic from session ¢ delivered to the scheduler in the interval 7,7 + ¢),
A(r,T 4+ t), satisfies,

A(1T,t 4+ 7) < Lpax + min {r;t,0; + p;t}, t > 0. (2)

Therefore, assuming infinite input link speeds (and using for consistency the convention co x 0 = 0
when ¢ = 0), we have,
Ai(T,t+7) < Lyax + 05 + pit, t > 0. (3)

To keep the discussion simple, we will mainly deal with constraints of the form (3) in this paper, and
wherever possible we will mention interesting results that can be derived for more general constraints
using similar arguments. More general constraints of the form of piecewise linear concave functions
are presented in [8] while constraints of the form A;(7,t+ 7) < A;(t), t > 0, where 4,(t), t > 0,
is a nondecreasing sub-additive function, are also possible [6]. We call A;(¢) the “envelope” of
A;(r,t + 7). For simplicity, whenever there is no possibility for confusion, we will write 4; to

denote A;(7,t4 7).

Note: The following general remark regarding the validity of the results under finite input link
speeds can be made. Under constraint (3), the session traffic pattern A4;(0,t) = Lyax+ s +p:(t—7),
1=1,---,N,is feasible. This traffic pattern, which we refer to as the “greedy” pattern, will be used
in the various arguments in the sequel. Since, however, the greedy pattern is not consistent with
(2), results depending on it will not hold in general for finite input link speeds. On the other hand,
since (2) is stronger than (3), results that depend only on the inequality A;(7,t+7) < Lpax+0; +pit,
will also hold for finite input link speeds. For example, upper bounds on buffer size will generally
hold, while lower bounds may not.

In the sequel and unless otherwise specified, we make the stability assumption

Zpi < (4)

We denote by C(p,) the set of vectors of session traffic arrivals, A= {A;, -+, Ay} that are
constrained by (3) and (4), with rate and burstiness vectors p'and & respectively.

Next, we introducg some notation needed in the rest of the paper. Let the sch(iduler implement
policy 7 and let A be the session traffic arrival vector. We denote by S7(7,¢, A) the number of
session ¢ bits served in the interval [7,t) and by Q7 (t, fT) the number of session 7 bits stored at time
t. Define M[(p,G) as the largest amount of bits from session ¢ that can be stored in the memory
under policy 7 and under any traffic vector A € C (7, 7), i.e.,
MT(p,d) =sup sup QF (t,ff) .

120 dec(5,5)

(3)

The delay of a packet is defined as the time it spends in the system, i.e., the sum of the time spent
waiting in the memory since its last bit arrives and the time taken to transmit it on the output

link. The maximum delay experienced by packets in session ¢ under any traffic vector Aec (7, 0),
is denoted by DI (7, 7).

For notational convenience, when there is no possibility for confusion we may not indicate explicitly
the dependence of the quantities defined above on p, &, 4 or 7.

2.2 Tracking Service Disciplines

In this section we introduce the notion of Tracking Service Disciplines which is used in several
instances in the following sections. This notion was introduced in [20] for the purpose of tracking
the Generalized Processor Sharing (GPS) discipline. It turns out that the fundamental properties
of these policies (see Theorems 1 and 2 below) hold for tracking policies other than GPS, and this
enables us to prove the delay and buffer optimality of various tracking service disciplines.

Given a preemptive policy 7, the notion of tracking is to derive a work-conserving, non-preemptive
policy T'(r) that operates as follows: Let f7(t) be the time at which packet p departs from a
multiplexer that implements policy 7 assuming that there are no arrivals after time ¢. Then at
each decision epoch ¢ of T'(7), the server schedules a packet with the minimum value of fJ(¢) over
all eligible packets present in the system at time ¢. Thus, T(7) attempts to preserve the order
in which packets depart under the preemptive system. At each decision epoch ¢, the T'(7) server
picks the next packet that would depart from the system under the preemptive system if no more
packets were to arrive after time ¢. Since more than one packet may leave the preemptive system
simultaneously, ties are broken arbitrarily.

When 7 obeys the following Ordering Property, we can establish a tight coupling between the
sample paths of 7 and T'(7):

Let packets p and p’ both be in the system at time 7 and suppose that packet p completes
service before packet p’ if there are no arrivals after time 7. Then packet p will also
complete service before packet p’ for any pattern of arrivals after time 7. Further, if
p and p’ leave the system simultaneously when there are no arrivals after time 7, then
they leave the system simultaneously for any pattern of arrivals after time 7.

The ordering property essentially requires that future arrivals do not modify the relative priorities
of packets waiting to be transmitted. A consequence of the ordering property is that if the tracking
server schedules a packet p at time 7 before another packet p’ that is also backlogged at time 7,
then packet p cannot leave later than packet p’ in the preemptive system.

This leads to the following results (first developed in the context of Generalized Processor Sharing
in [20]). Let f, be the time at which packet p departs from the preemptive system and let f, be
the time it departs from the tracking system. Then:

Theorem 1 Suppose the ordering property holds for the preemptive system. For all packets p,

r Lmax
Hh—f5h< .

(6)

r

Proof. The proof follows along the lines of the proof of Theorem 1 in [21]. We present it here
for the convenience of the reader.

Since both the preemptive and tracking systems are work conserving disciplines, their busy periods
coincide, i.e., the preemptive system server is in a busy period iff the tracking server is in a busy
period. Hence it suffices to prove the result for each busy period. Consider any given busy period
and denote the time that it begins as time zero. Let L; be the length of the kth packet (packet k)
to depart under the tracking server and let a; be its arrival time. We now show that for £ = 1,2, ...:

Lmax
r

ﬁc < fe +
Let m be the largest integer that satisfies both 0 < m <k —1and f,, > f;. Thus
fm > fo> fi form<i<k. (7)

Then packet m is transmitted before packets m+1...., &k in the tracking system, but after all these
packets in the preemptive system. If no such integer m exists then set m = 0. Now for the case
m > 0, packet m begins transmission at f,, — Z=, so from the Ordering Principle:

P

.) Lm
min{@mi1, ..., @} > fn — — (8)

Since packets m + 1,...,k — 1 arrive after fm — LT—"‘, they receive all their service in the preemptive

system after time fm — LT—"‘ Also, from (7), they receive all their service before packet k departs at
time f,. Thus

1 .
fr > ;(Lm-l—l +.ooF Lya+ Ly_1+ L) + min{ani1, ..., ar}
-~ L, 1
> fo— T + ;(Lm-l—l + oo+ Lo+ Ly_1+ Ly).

Since the right hand side of the above inequality is equal to fk — L,,/r, we finally obtain,

Lmax

ﬁc<fk‘|’LTm§fk‘|‘ (9)

If m = 0, then py,...,pr_1 all leave the preemptive system before packet k does, and since the
tracking server is work-conserving,

. . L,
kafk>fk_T-

a

Theorem 2 Suppose the ordering property holds for the preemptive policy m: Then for all times
t > 0 and for each session 1:

Q?(W)(t) - er(t) < Lmax. (10)
Proof. Follows from Theorem 1 and identical arguments as in Theorem 2 of [21] O

3 Buffer Allocation Mechanisms and Buffer Requirements

In this section, we address the problem of designing scheduling policies with minimal buffer re-
quirements. We will assume that the session burstiness vector & (or the supremum over all the

session burstiness vectors) is known and fixed, and that the rate vector g, while known, can vary as
long as it satisfies the stability condition (4). An important factor that affects the design of such
policies and the corresponding buffer sizes, is the flexibility of the buffer allocation mechanism (the
function of assigning memory locations to arriving packets) used in the multiplexer. We consider
three natural ways in which the multiplexer can structure its buffers:

1. Flexible Allocation (FL): Packets from all arrival streams share a common pool of memory,
i.e. buffers are not allocated by session. This provides the most efficient use of memory, but
may be difficult to implement since the multiple input links require that multiple parallel
writes be implemented by a single control logic. In addition, a dynamic linked list structure
is also needed to maintain packet order. In this case, the minimum multiplexer buffer size
needed when policy 7 is implemented, B%;, is,

N

B%;, = supsup sup ZQf (t,ff) . (11)

P t20 fec(5,3) i=1

2. Semi-Flexible Allocation (SE): There are b] bits of buffer allocated to packets from session <.
The value of b7 cannot be changed after ¢ = 0, however, the multiplexer is allowed to allocate
the buffers based on the knowledge of 5 and &. This limits the amount of memory sharing,
but only requires the multiplexer to be programmable so that the allocations can match the
session traffic characteristics. The link list structure then becomes simpler to implement than
with a flexible allocation. Also, the multiple parallel writes can now be implemented through
separate control logic modules. In this case,

N N
Big = squsup sup Q7 (t,ff) = Su,pZMiw(ﬁa 7). (12)

P i=1 120 Aecc(p,3) Foi=1

3. Fixed Allocation (FI): There are b7 bits of buffer allocated to packets from each session i that
should be sufficient for all 5 consistent with (4), i.e.,

bT > supsup sup Q7 (t,ff) .
F 120 dec(p,3)

Therefore,
N
B%; = Zsup sup sup Q7 (t,ff) . (13)
i=1 P 120 dec(p,d)

Note that knowledge of p' is not useful in the design of a Fixed Allocation policy since,
according to the definition, the allocated buffer space b is fixed and sufficient to accommodate
all possible p' consistent with (4).

Clearly, we have that
By, < Bsg < Bpr,

while the complexity and cost of implementation reduces from FL to SE to FIL

Given a € {Flexible, Semi-Flexible, Fixed}, policy 7* is buffer-optimal policy among the class of
admissible policies C, if
B™ < B", forall 7’ €C.

o ?

We also define,
B, = 1I€1£ B. (14)

Unless otherwise specified, in the following, the class of admissible policies, C, will be the class of
work-conserving non-preemptive policies.

3.1 Buffer-Optimal Multiplexers

In this section we address the issue of determining B, (as defined in (14)) and the scheduling
policies that achieve B,, for flexible, semi-flexible and fixed buffer allocation multiplexers.

Proposition 1 For flezible allocation, Bry — N Ly + Ef\rzl o;, and this value is achieved by any
work-conserving service policy.

Proof. Suppose 7 is some work-conserving policy. Consider an arbitrary busy period that starts
at 7o and ends at 7;. Notice that the maximum number of bits from session 7 that can enter the
system in the interval [7o,1), 7o < ¢ < 71,18 Lax + 0; + p:(t — 70), i.€., the maximum number of bits
that can be in the system corresponds to the greedy traffic pattern, starting from time 74. Since =
continuously serves packets in [7o,t), we have,

max ZQZ(t) < NILpax + Z (o + p:(t —70)) — 7(t — 7o)

To<t< Ty % s
i= =1

Constraint (4) implies that the right hand side in the previous inequality reaches its maximum at
time ¢t = 7. Thus

N
BFL S NLmax ‘I’ Zai-

i=1
This bound is achieved under the greedy traffic pattern. |

Note: The previous argument can be extended in a straightforward fashion if session ¢ has envelope
Loy + min {r;t, o; + p;t}. Let 7 > 0 be the earliest time at which the slope of the function
Efy:l min {r;t, o; + p;t} becomes less than or equal to . Then, observing that the maximum of

N
N Ly + Zmin {r:(t = 70), 0s + ps(t — 70)} — 7(t — 7o)

i=1

occurs at time ¢t = 75 + 7 and following identical arguments we conclude that

N
BFL = NLmax + Zmln {Ti?v o5 + 101?} —TT.

i=1

Next, we investigate the buffer requirements of the semi-flexible allocation.

Proposition 2 For semi-flexible allocation, Bsg > Lmax(2N — 1) + Ef\rzl o;.

Proof. Fix an integer K > 1, and consider the following arrival rates.

K
K~y i=1,...,N -1,
IOZ (1‘|‘K)l
and
K<71 r
ION —= (1—|—K)N_1 .

We assume that all packets are of size L = L.,. Let T = L/r be the time taken to transmit a
packet. Let the system operate under a scheduling policy 7= and denote by G the following traffic
pattern. A packet of length L from session N arrives at time 0, and no more traffic from session
N arrives afterwards. The greedy traffic patterns from sessions 1 to N — 1 arrives at time 0*. By
time 0T we mean “immediately after”, i.e., at time ¢ > 0, where ¢ is arbitrarily small. Thus, since
7 is work-conserving and non-preemptive, the packet from session N will be transmitted in the
interval [0,T). We will use this notation in the sequel, but will avoid the incorporation of ¢, since it
would complicate the discussion unnecessarily. Note also that although the packets are of constant
length, the greedy pattern of each session can still appear at the input link to the multiplexer.
However, the number of packets from session ¢ that will be delivered to the scheduler at time 07 is
|(L + 0;)/L]. The rest of the bits, L + o; — [(L + 0;)/L| L must wait in memory until a complete
packet is formed.

Define
M7 (",) = sup Q7 (¢, G).
>0
Note the difference between M[(5%,&) and M](5%,7): in the latter we take in addition the
supremum over all arrival patterns consistent with (3) and (4). We will show that

N-1 N-1 K
M (p%,3) > (N - 1)L i+ (N —-1)———=L. 15
3 M(,7) > (N =1L+ Y ok (N = 1) s (15)
Since we clearly have that M (5%,&) > M7 (p%,5) and M% > L 4 oy , (15) implies that for any
K,
K

N N
M (p%,5)> NL ; N-1)——L
; z(p 70)— —I_;O-l—l_()K_I_l

and letting K — oo we conclude that

N N
. . T/ oK =
es 2 in (1 53076%,9) 2 0 -0+ Yo,

as desired.

For simplicity in the notation, we will drop the dependence on p¥ and & in the rest of this proof.
To show (15), let us consider the following slightly more general system II, that consists of sessions
1 to N — 1. The buffer content of session ¢, 1 < ¢ < N — 1, at time 0 is Q,(0) and session ¢,
1 <4< N —1, sends traffic greedily at rate pX after time 0, but it cannot use the server in the
interval [0,T"). Counsidering the traffic of sessions 1 to N — 1 only, the original system differs from
IT only in the initial conditions (in the original system we have the special case Q;(0) = L + o;).
Note that under both systems, the traffic from sessions 1 to N — 1 cannot use the server in the

interval [0,7") (by definition in system II, while in the original system a packet from session N is
served in [0,7))

10

Setting n = N — 1, we will show that for system II, under any policy (including idling) ,,

n . n K
M > . — L 1
; ; _;Qz(O)JrnKJrl , (16)

which is equivalent to (15).

For the proof of (16) we will use induction on n. For n = 1, (16) is clearly true since session 1
will have to wait at least until time 7' before it is served (notice that session 1 will have to wait
even longer if @;(0)+ K /(K + 1)L < L since there will be no complete packet in the multiplexer.)
Assume now that (16) is true for n. Consider a system II consisting of n + 1 sessions and let 7 be
the first time that session n 4 1 is served under an arbitrary policy 7,,;. Note that since by the
definition of system II no session can use the server in [0,7'), we have that T < 7. The following
two possibilities arise.

1. 7 > (K 4+ 1)*T. Consider policy 7, that serves only packets from session 1 to n in exactly
the same manner as policy 7,,;. Whenever 7, serves a packet from session n + 1, 7, idles.
Note that 7, satisfies the requirements of the inductive hypothesis for n. Therefore, using
the fact that M = M, 1 < i < n, we have

- Tl T K
XIIM DI zZQi<0>+nK+1L-

Since session n 4 1 was not served in the interval [0,7), we have also

_— K K
M7 > Qnya(0) + 77 g Qnt1(0)+ ———L

(K +1) K+1
and therefore (16) holds for n + 1.

2. T <7 < (K +1)"T. The traffic served from sessions 1 to n in the interval [0,7) is at most
r7 — L (it may be less if there are no packets from sessions 1 to n to be served at some time
in [T,7) or the server idles). Therefore, the sum of the buffer contents of sessions 1 to n at

time 7 is
YL QP () > Y Qu(0) 47 Xy e — (77— L)
S Qi(0) + 77 (1- gy) — (77— L) (17)
= T Q0)+ L - 15
Since a packet from session n+1 is served in the interval [7,74+T'), we can apply the inductive
hypothesis to the policy 7, that schedules only packets from sessions 1 to n after time 7 in

exactly the same manner as 7,1, and with initial buffer contents Q;"**(7), 1 < ¢ < n. Using
also (17) we get

YL M > YL QU (r) + n L
> Y, Qi0)+ (n+ 1)FESL+ 4,
where K
A— rT

— L
(K+1)» K+1
Since the buffer requirements of session n + 1 are at least

rTK

Qn+1(0) + E 1y

11

we finally have that

n+1~ n+1 K
M > (0 1)——L+ B,
XII ; _;Q(H(H Vel T
where . .
B = L—(K_I_l)n—K—_I_lIf—I-W

= L-wmow —wol

Since by assumption 7 < (K + 1)"T, we have 77 /(K 4+ 1)*** < L/(K + 1) and, therefore,
B > 0. Hence, the induction hypothesis holds for n 4 1. |

Before dealing with the fixed allocation case, we present a preemptive service policy called Rate
Proportional Processor Sharing (RPPS) that was introduced in [21]. Recall that under our model,
bits of a packet p are only eligible for service once the last bit of packet p has arrived. Let a
session be backlogged at time t, if a positive amount of eligible session ¢ traffic is queued at time
t. Then the RPPS server ensures that for any session 1, if session ¢ is continuously backlogged in
the interval [7,t], then

Si(1,1) S P

Si(r,t) = py’
Notice that if ¢ and j are both continuously backlogged in the interval, then (18) is met with
equality. Also note that the RPPJS policy obeys the Ordering Property discussed in Section 2.2.
The following result is adapted from [21].

i=1,2,..,N. (18)

Proposition 3 For fized allocation, Br; = 2N L. + Ef\rzl 0;, and this value is achieved by
T(RPPS).

Proof. We show first that the buffer requirements of session ¢ under any policy 7 are at least
2L ax + 0;. Consider the following arrival pattern. The system is empty at time 0. A packet of
length L., from session j # ¢ arrives at time 0. At time 0% traffic from session 7 arrives greedily.
Since 7 is work-conserving and non-preemptive, the packet from session j begins service at time 0
and the traffic from session 7 cannot begin service before time L., /7. Therefore, the queue size of
session ¢ at the time ¢ when traffic from session 1 is first served is at least

Lmax
er(t) Z r P + Lmax + g;.

Letting p; — r, we conclude that the buffer requirements of session ¢ are at least 2L ., + 0;, and
this implies that

N
BFI Z 2JVLmax ‘I’ Zai-

i=1

To see that T(RPPS) meets this bound note that since under RPPS the rate of service received
by session 1 is at least p;, [21],
QzRPPS(t) S g; ‘I’ Lmax-

Applying Theorem 2 and summing over ¢, we get the desired result. |

Since Bgrr > Bsg, from Propositions 2 and 3 we immediately get the following result.

12

Corollary 1 2N L., + Ef\rzl 0; = Brr > Bsg > Lyax(2N — 1) + Ef\rzl o;
Notes.

1. Although Corollary 1 indicates that the semi-flexible allocation does not provide significant
savings in terms of buffer requirements compared to the fixed allocation, we will see in the
next sections that when packet delays are also considered, the semi-flexible allocation provides
the flexibility of designing delay-optimal policies with low buffer requirements. This remark
not withstanding, it should be pointed out that the T(RPPS) policy, which from Proposition
3 has low buffer requirements under fixed allocation, is also capable of providing low, albeit
not optimal, delay bounds.

2. In [4], it was shown that when 0; = 0,7 =1,..., N, and when the First-Come-First-Served
(FCFS) policy is employed,

Qz(t) S Lmax <1 - &> + &NLmax-
r

r

By summing over all 7, we conclude that BE$F® < (2N — 1)Liax. Together with Proposition
2, this implies that when o; = 0,7 = 1,..., N, the FCFS is buffer-optimal for semi-flexible
allocation. However, this is not true for general o;, as the following example shows.

Consider the following arrival pattern. A packet of length L., together with a burst of size
o; arrives from each of the sessions j # ¢ at time 0. At time 0% a packet p from session 7 of
length L., arrives, followed immediately by a burst of packets of total size ;. After time 0,
traffic from session ¢ arrives at rate p;. Assume also that Ef\rzl p; = 7. It is easy to see that
at the time ¢ when packet p enters service,

ot = (O tan

r

) ,Oz ‘I’ Lmax ‘I’ a;.

Summing over ¢ we see that

N

N N
BESFS > (2N —)lmax+2) 00— 3 270 > (2N = 1) Imax +2)00 — max o,
i=1 i=1 i=1 - -

which by Corollary 1 can be larger than Bgsg in general.

4 Buffer requirements v/s Delay. Delay Optimal Policies

In this section, we address the issue of designing scheduling policies that provide predetermined
delay bounds to each of the sessions and have low buffer requirements. We start with a result that
we need later and which is of independent interest. It expresses the relationship that exists between
bounds on the delays and buffer requirements.

Recall the definition of D] (p,d) and M (p, o) from Section 2. In Theorem 3, we establish a useful

—

lower bound on D7 (p,d) as a function of M (7,) and the characteristics (o, p;) of session <.

Theorem 3 For any zero-loss multiplezer implementing policy © that serves packets from session
1 i a FCFS order, it holds,

Mz?r(ﬁv 5:) —0; — Lmax
Pi

Di(p,d) = (19)

13

Proof. We drop the superscript of 7 and the dependence on p,& for notational convenience.
Consider the traffic pattern under which the supremum in the definition of M; (see eq. (5)) is
achieved and let ¢* be such that @;(¢*) = M, under this traffic pattern (since M; is a supremum,
it may not be achieved at any time, however the same argument as the one that follows can be
used by using appropriate “epsilons”). We focus on the first complete packet present in the queue
of session ¢ at time ¢* (since the multiplexer is of store-and-forward type, M; > L.y and therefore
there is always a complete packet in the queue of session ¢ at time ¢*). Let t < t* be the arrival
time of that packet (recall that the arrival time of the packet is the time the last bit of the packet
arrives to the scheduler). Then, since packets from session ¢ are served in a FCFS order,

pz(t* - /) ‘I’ g; ‘I’ Lmax Z Mz
or,

Mi - Lmax — 0;
Pi
where we have used the fact that due to the FCFS property, the amount of traffic stored in the
buffer at time t* is at most the amount of work that session 7 can generate in the time interval

[f, t*] which in turn is bounded by and p;(t* — 3 + 05 + Lmax. Letting d be the delay of the packet
at the head of the queue at time ¢*, we have from (20)

t—t> : (20)

Mi - Lmax — 03
Pi '

d>

Notes:

1. One of the reviewers suggested the following bound on the delay. Consider the last complete
packet in the queue of session ¢ at time ¢*. The amount of traffic that needs to be transmitted
in order for this packet to be sent on the output link is at least M; — L ... Therefore, even if
the scheduler is allocated solely to session 7, the delay of the this last packet will be at least
(M; — Lax)/7. Therefore, we have another bound

Di(p,6) > — (21)
In general, the bounds (19) and (21) do not imply each other and therefore a tighter bound
can be obtained by taking the maximum of the two. For our purposes, bound (19) is sufficient.

2. Clearly, bound (21) holds for general traffic envelopes. Bound (19) can also be extended to
general envelopes. Indeed consider that the session envelope is 4;(t), where A,(t) is (strictly)
increasing and sub-additive. Then, repeating the arguments in the proof of Theorem 3 we
conclude that

DI (5,3) 2 ATV (M (5,),

where A{""(z) is the inverse of A;(t). If A;(¢) is nondecreasing, a similar formula can be
given by going through the obvious modifications to account for intervals where A;(¢) is not
strictly increasing.

14

4.1 Delay-Optimal Policies

In this section, we address first the issue of designing delay-optimal policies. In the next section, we
address the issue of designing policies that are delay-optimal and also have low buffer requirements.

To proceed, we need some notation and definitions. Let the non-negative vector D= (D4, ..., Dy)
be a list of required upper bounds on delay so that no session 7 packet is delayed by more than D;
time units in the multiplexer. The deadline of packet p from session ¢ that arrives at time a, is
defined as d, = a, + D,. If f, is the finishing time of p, its latenessis defined as [, = f, —d,. Given
a zero-loss multiplexer that implements service policy 7, the vector D= (D1, ..., Dy) is schedulable
under 7 if for all arrival patterns consistent with (3) and (4), and for all sessions ¢, no session ¢
packet is delayed by more than D; time units. The schedulable region Q™ of the policy 7 is the set
of all vectors schedulable under 7. Given a class of admissible policies C, the schedulable region of
Cis Uree " and a vector is schedulable in C if it belongs to the schedulable region of C. We define
a scheduling policy 7* to be delay-optimal in C if

Qrco” (22)

for all policies 7 € C.

It has been shown in [11], that under any arrival pattern the Preemptive Earliest Deadline First
(PEDF), i.e., the policy that at any instant schedules the packet with the smallest deadline first
(ties are resolved by picking one of the packets with equal minimal deadlines in an arbitrary
fashion), minimizes the maximum lateness of all the packets. This implies that the PEDF policy
is delay-optimal among all scheduling policies. To see this, assume there that the vector D is
schedulable under a policy w. Then the lateness of every packet under 7 is nonpositive, and
therefore the maximum lateness of all packets is nonpositive under 7. But then, the same conclusion
is true for PEDF (since it minimizes the maximum lateness) and therefore the lateness of all
packets under PEDF is nonpositive. This means of course that the vector D is schedulable under
PEDF, which implies that the schedulable region of PEDF is a superset of that of 7. For non-
preemptive policies, no policy is known that minimizes the maximum lateness of all packets over
all arrival patterns. However, we will show that under constraints (3) and (4) the non-preemptive
EDF (NPEDF) (i..e., the policy that behaves like PEDF but it takes decisions only at packet
transmission completions or upon arrival of a new packet in an empty system) and the PEDF
tracking policy (T(PEDF')) are delay-optimal. We will also provide the schedulable region of these
non-preemptive policies. We note that in general N PE D F may differ significantly from T(PEDF).
This is demonstrated in Example 1 of Section 5.2, where we also show that in the important special
case of fixed size packets, T(PEDF) and N PEDF behave identically.

We now proceed to show the optimality of both the NPEDF and T(PEDF) policies.

Theorem 4 The NPEDF and T(PEDF) policies are delay-optimal among the class of non-
preemptive policies. The schedulable regions of NPEDF and T(PEDF) consists of the set of
vectors which satisfy the constraints

(k‘I']-) max‘I’EfL:lUin Dik(r_zn 1pzn)+2n 1,Ozn in? 1§k§N_1
max‘l’ E 1Uzn S DiN (T - 271:7 11 ,Ozn) ‘I’ En 1 ,Oanzna

whenever D;, < D, <...< D,

IN"

IN

15

The Theorem is a conclusion of the following two lemmas. The first one establishes the necessary
conditions for a vector to be schedulable under any non-preemptive policy, and the second demon-
strates the sufficiency of these constraints for schedulability under NPEDF and T(PEDF). Let
U(t)=11if t > 0 and 0 otherwise.

Lemma 1 Let D; < Dy < ... < Dy. If the vector {D;,..., Dy} is schedulable under a non-
preemptive policy then necessarily,

L
=== S D17 (23)
r
Y L
Z(Lmax ‘I’ g; ‘I’ pz(t - Dz))U(t - Dz) —I_ Lmax S Tta I;lax S t < DN7 (24)
i=1
and
N
D (Lmax +0i + pi(t — D;)) < 7t, t> Dy. (25)
i=1

Proof. = We follow the method of proof in [26]. Assume that all packets meet their deadlines
under a non-preemptive policy. Clearly, we should have (Lyax/7) < Dy, since otherwise maximum
length packets from any session are not schedulable. Consider the following arrival pattern. At
time 0 the last bit of a packet of maximum length from session N, together with a burst of bit-size
packets of total size oy arrives in the system. At time 0% the last bit of a packet of maximum
length from session ¢, 1 < ¢ < N — 1, together with a burst of bit-size packets of total size o;
arrives. Afterwards, packets from session 7, 1 < 7 < N, arrive in bit-size at fixed rate p;. Let
(Lmax/7) <t < Dy. Since all packets meet their deadlines at time ¢, all packets from session ¢ that
arrived before or at time ¢t — D; must be transmitted by ¢t. The number of bits contained in these
packets is (Lmax + 0; + ps(t — D;))U(t — D;). Therefore, the number of bits from sessions 1 to N —1
that must be transmitted by time ¢ is Efvz_ll(l}max + 0, + p:(t — D;))U(t — D;). Since the policy
is non-preemptive and the packet from session N arrives first, the number of bits transmitted by
time ¢ from the rest of the sessions is at most 7t — L.y and this implies (24). To show inequality
(25), let t > Dy and observe as before that the number of bits from all the sessions that can be
transmitted by time ¢t can be at most r{ while the number of bits that must be transmitted is

Ezj'vzl(Lmax‘l'o-i ‘|’pz(t_DZ))U(t— DZ) O

Lemma 2 Let D; < D; < ... < Dy. Any vector {Dy,..., Dy} that satisfies the constraints of
Lemma 1 is schedulable under both NPEDF and T(PEDF).

Proof. Let W(t,d) be the amount of work in the system with deadlines at most d at time ¢
under either NPEDF or T(PEDF). We show that for all ¢ > 0, W(¢,¢) = 0 which implies the
lemma.

If the server is idle at time ¢, then since both policies are work-conserving, we have W (t,¢) = 0.
Assume therefore that the server is serving a packet at time ¢ and define s as follows. If the server
is serving a packet with deadline larger than ¢ at time t, set s = t. Otherwise, let s < t be the
smallest time such that the server is continuously busy serving packets with deadlines at most ¢ in
the interval [s, t). Let P be the set of packets with deadlines at most ¢ that either are served in
[s, t), or are in the system at time t. If P = (J, then clearly W(t,t) = 0 . Assume therefore that
P +# 0 and let e be the packet with the earliest arrival time, a., among the packets in P. Observe

16

that the amount of work of the packets in P is W(¢,t) + 7(t — s) and that all this work arrives at
or after time a.. Notice also that from (23) and the fact that packet e has deadline at most ¢, we
have t — a, > D1 > (Lmax/7).

If @, = s then using the upper bound on the amount of work with deadlines at most ¢ that can
arrive in the interval [s,t), determined in the proof of Lemma 1, we get

N

S (Lunas + 00+ pi(5 — DY)U(5— D)) > W(t,)+ 75, S=t—s=t—a,> ™= (26

i=1 r

If (Lmax/7) < 5 < Dy, (26) and (24) imply that W(¢,t) < 0 and therefore this case cannot occur.
If 5> Dy, (26) and (25) imply that W(¢,¢) = 0.

Assume now a, < s. We will show that this case cannot occur. Let g be the packet that completes
service or is in service at time s and let a, be its arrival time. By the definition of s, packet ¢
has a larger deadline than ¢ which implies that a. > a,. This is so since under both NPEDF and
T(PEDPF) packet e cannot leave later than packet ¢ if a. < a,.

Note that since the deadline of packet ¢ is larger that ¢, we have that t —a, < d, —a, < Dy. Taking
also into account that a. > a,, we have t —a, <t —a, < Dy. Since all the work of the packets in
P arrives at or after time a,, setting § =t — a, we have that

N

Z(Lmax + o+ p(§—D)U(3—D;) > W(t,t)+r(t—s)=W(,t)+75—r(s—a.)

i=1

We will show next that
Lmax
a, >8s— —. (27)
r

which will imply that 357, (Lmax + i + ps(8 — D))U (8 — D;) > W (t,t) + 78 — Linay. This inequality
together with the fact that as discussed above, (Lyax/7) < 8§ < Dy and (24) imply that W(¢,t) < 0
which shows that the case a, < s cannot occur.

To show (27) for NPEDF observe that by the definition of this policy, packet e must have arrived
after packet ¢ entered service and therefore, s — a, is less than the time to transmit a maximum
length packet.

Consider now that the system operates under the T(PEDF) policy. If f, > f., then by the
definition of T(PEDF), packet e must have arrived after packet g entered service and therefore,
(27) is true. If f, < f. then note that from the definition of PEDF:

fe < a., (28)

since d, > d.. Now recall from Theorem 1 that:

L
fo> s Zmex

Combining this with (28) yields (27). O

The schedulable region of PEDF under the arrival patterns considered in this section can be found
using similar arguments as those used to prove Theorem 4. For completeness, we present this result
in the next theorem.

17

r=1

r=.2 rZ:.G

0,=0,=0

Line HC: .2d +.8d,=2L
Line IC: .4d,+.6d,=2L

2L G
mox

ABCDE: Schedulable region for PEDF
FCG: Schedulable region for NPEDF

Figure 2: Schedulable regions for o; = 05 = 0.

Theorem 5 The schedulable region of PEDF consists of the set of vectors which satisfy the con-
straints
k k-1 k-1
kLmax+ZUin SDzk (T_Z,Ozn) ‘|‘Z,01nDln, 1§k§N,
n=1 n=1 i=1

whenever D;, < D, <...< D,,.

In Figures 2 and 3, we show the schedulable regions of PEDF and N PEDF under various parame-
ters. As we see, in both figures the two regions differ by two strips which have width L., /7. In fact,
by examining the schedulable regions it is easy to see that if the vector {D;, ..., Dy} is schedulable
under PEDF, then the vector {D; + Luyax/7, .-y Dn + Limax/7} is schedulable under NPEDF.
As we will see in the next section, this is a consequence of a general result that holds for any arrival
patterns. Also, we see in Figure 2, where oy = 0, = 0, that any schedulable vector under NPEDF
has coordinates larger than 2L..,./7. Since, as is easy to see, the vector {2Lpax/7, 2Lmax/7} is
schedulable under the First-Come-First-Served (FCFS) policy, it follows that in this case from the
point of view of schedulability there is no point in employing another scheduling policy. In fact, as
can be seen from Theorem 4 this is true always when N =2 and o, = 05 = 0.

Note: Lemmas 1 and 2 extend in a straightforward fashion to general session envelopes A(t),
1 <1 < N. Indeed, defining A;(t) = 0 for ¢t < 0, and replacing in the arguments the quantity
(Liax + 05 + pi(t — D;))U(t — D;) with A,(t), we obtain

Theorem 6 Let Dy < D, < --- < Dy. If sessioni, 1 < i < N, has envelope A;(t), then the
NPEDF and T(PEDF) policies are delay-optimal among the class of non-preemptive policies and

18

d, A F
r=1
r=:2, r7:.6
U\ZOZZLmux
Line JC: .2d,+.8d,=4L .
Line KC: .4d,+.6d,=4L
J
B o
C
3L, [
H
ZLmox
D E
K
2o 3L, d

ABCDE: Schedulable region for PEDF
FGCHI: Schedulable region for NPEDF

Figure 3: Schedulable regions for o;, o, # 0.

their schedulable region consists of the set of vectors which satisfy the constraints

max S D]_
Y
aig L
DAt — D)+ Liax < 78, ——= <t < Dy,
T

and

The schedulable region of PEDF under general session envelopes can be similarly derived.

4.2 Delay-Optimal Policies with Low Buffer Requirements

In this section, we address the issue of designing delay-optimal policies with low buffer require-
ments. We propose a policy that is delay-optimal and under semi-flexible allocation has low buffer
requirements. Note that based on Proposition 1, a delay-optimal policy will also have minimum
buffer requirements if a flexible allocation is used. However, we will see that the improvement over
the semi-flexible case is small and may, therefore, not warrant the additional cost and complexity.

We first motivate the use of semi-flexible allocation by showing, that under fixed allocation the
buffer requirements of any delay-optimal policy are at least O(N?).

19

Proposition 4 Let © be any non-preemptive policy that is delay-optimal for all traffic patterns
consistent with (3) and (4). Under fired-allocation,

N
By > NLiax + N> 0.

i=1

Proof. Consider the vector of delays D given as the solution of the following system of equations.

(k+ Dlmax+ Shoy0n = Dy (r—Shlipn) + hZipaDn, 1<k<N -1
N Lyax + Eﬁrzl On = Dy (T - Erjy:_ll pn) + Erjy:_ll prnDn,
The vector D is schedulable in the class of non-preemptive policies. This will follow from Theorem 4

once we show the inequality Dy < Dyyq, k= 1,..., N —1, which is easily seen from the observation
that by the definition of D,

k k k-1 k-1
Dk+1 (T_an) ‘|’anDnZDk (T_an) ‘|’anDn
n=1 n=1 n=1 n=1

Assume that a packet of length L., from session N arrives at time 0 followed by a burst of bit-size
packets of total length oy. At time 0% a packet of length L., together with a burst of bit-size
packets of total length o; arrives from session 2, 1 = 1,..., N — 1. After time 0 session ¢ sends traffic
at rate p;. Let us estimate the buffer content of session N at time Dy_;. Since all the packets

meet their deadlines, the server must have served (N — 1)Lpnax + Y0-) 0, bits from sessions 1 to

N — 1. Therefore, the bits from class N served in [0, Dy_;) are at most

N-1
TDy_1 = (N = 1)Luax — 3, On.
n=1

It follows that

N-1
QWN(DN—l) Z Lmax + ON + DN—le - (TDN—l - (N - 1)Lmax - Z Un) . (29)

n=1

Now let p; = re/(N —1),¢=1,...,N — 1, and py = (1 — €). It can be easily shown that

liI%GDN_l =0

and taking limits as € — 0 in (29) we conclude that

N
MN Z ll_I)I(l)QN(DN—l) Z NLmax‘I’ Zan

n=1

By interchanging the indices we conclude that

N
M] > NLyax+ »_0n, 1=1,...,N

n=1
and summing over ¢ we get the desired result. |

It turns out that even under semi-flexible allocation, the delay-optimal policies NPEDF and
T(PEDF) still have buffer requirements of at least O(N?).

20

Proposition 5 With a € {NPEDF, T(PEDF)},

3 N+1)
BSE— (

max‘l’Z —n—|—10'1,

where 0;, > ... > ;.

Proof. To show this proposition, we need first some definitions and observations. Consider
the following greedy arrival pattern. A packet of size L., together with bit-size packets of total
size o; from session ¢, 2 = 1,..., N arrive at time 0. After time 0, bit-size packets from session
arrive at rate p;. Let the sessions 1 to N be scheduled under a strict (non-preemptive) priority rule
with session 1 having the highest priority. Let 7, > 0 be the first time at which the buffer content
of session ¢ becomes zero and define b; = 7; — 7,_;, where 7o = 0. Note that since the sessions
are served in a strict priority order, at time 7; the buffer contents of sessions 1 to ¢ are zero and
therefore at this time the first packet from session 7 + 1 is scheduled. Let a; be the buffer size of
session ¢ when the first packet from this session is scheduled. We then have
b= — i
T = E;’:l Pj

This is due to the fact that since the scheduler serves the sessions in strict priority and traffic from
sessions 1 to 7 arrives at rate E] 1 Pj, the rate by which the buffer content of session 7 is depleted

isr=r— 2]21 pj. Therefore it will take a;/7’ units of time to empty a buffer content of size a,.
Since traffic arrives greedily and the first packet from session ¢ is served at time 7;,_;, we have

a; = Lyax+o,+7_1p

1—1
= Lmax ‘I’ a; ‘I’ (Z bl) Pi
=1

i—1

a

= Lmax + g; + (7l> Pi (30)
lz:; = E;:l 10.7

Assume next without loss of generality that oy > ... > oy, and consider again the greedy arrival
pattern. Let either the NPEDF or the T(PEDF) policy be applied. Let D; = C and define the
differences D, 1 — D; large enough so that both NPEDF and T(PEDF) schedule the sessions in
a strict priority order (1 to N) in the interval [0, 7y). According to the discussion in the previous
paragraph, the buffer requirements of session ¢ are at least a;.

Let us now assume that p; = ¢71(1 — €)r. Taking € — 0, it can be seen from (30) by an inductive
argument that

i
lim a; = tLpax + E g;.
e—0 n
=1
Therefore,

B;E>21Lm+zza]= N“ m+z it 1)e

i=1j=1
|

The question now arises whether one can design policies for semi-flexible allocation, that have
buffer requirements lower than O(N?). We show next that this is indeed the case. Specifically,

21

we construct delay-optimal policies with buffer requirements O(N). The design is based on the
following lemma.

Lemma 3 Let D = {D;,..., Dy} be a vector that satisfies the conditions of Theorem 4, and in
addition the last inequality is strict:

NLmax+Erjy:1‘7in < Dy (T_En 1 Pzn) —I_En 1 Pi D,

Then, we can find a vector D' = {D4,...,Dy} such that D! < D;, i =1,...,N, and in addition
D' satisfies the conditions of Theorem J with equality for the last constraint.

Proof. Let us assume without loss of generality that D; < ... < Dy. Let K be the smallest
index such that

k-1 k-1
min{k + 1, N}Lmax+zan<Dk (T—an) —I—anDn, K <k<N.

n=1 n=1 n=1

Let

K<k<N

. { Dy, (T - Ei;i pn) + Ei;i pnDpn — (min{k + 1, N} Lpax + 22:1 Un) }
€:= min T > 0.
T = En:l Pn
Define a new vector D) as follows. Dz(l) =D;, 1=1,...,K—1, and Dz(l) =D;—¢,1=K,...,N.
It is easy to see that the vector D) satisfies the inequalities of Theorem 4, and that for some k,
K <k < N, one of them is met with equality. We will show that in addition, Dgl) <...< Dg;).

The case K = 1 is trivial. Assume now that K > 1. Since D; < ... < Dy, it is sufficient to show
that Dg_; < Dk — e. Notice first that from the definition of K we have that

K-1 K-2 K-2
min{K, N} L.+ Z opn =Dg_1 (7’ - Z pn) + Z on D, (31)

n=1 n=1 n=1

If Dg — € < Dg_q, using the definition of € we would have

min{K 4+ 1, N} opax + 5,0, < (Dg —¢) (r - pn) +YE D
< Dk (7’ ~Ynlt pn) + Xnst PnDn,
which contradicts (31).
If
NIpat Xhy0i, = DY (r= 050 i) + 205 DY,

we then set D' = D). Otherwise define K as the smallest integer such that

k k—1
min{k + 1, N} Lo + > 0, < DIV (an) +3 p. DY, KW <k <N,

n=1 n=1 n=1

and create another vector D). Note that since by construction the vector D) satisfies one of the
inequalities with equality for some k, K < k < N, we have that K(!) > K. In general, if in the ith
step the vector D) satisfies

NLmax+ 271:’:1 0, = Dg\lf) (T - En 1 pln) + En 1 IOHDS)7

22

we set D' = D® . Otherwise we define K® analogously and repeat the process to create a vector
DG+, Since K©) is increasing in 4 and is at most N, the iteration will stop in a finite number of
steps and at the end we will have the vector D’. O

Theorem 7 There is a delay-optimal policy ©* among the class of non-preemptive policies such
that for all arrival patterns consistent with (3) and (4),

N
Big <2NLpax+2) 0.

i=1

Proof. Let D be a feasible vector of delays. If D satisfies the conditions of Theorem 4 with
equality for the last constraint, set D’ = D. Otherwise construct the vector D’ as described in
Lemma 3. Therefore, D’ always satisfies,

1

max-l-E =10%i, = DiN(T_En 1pzn)+2n 1 Pi, D 'n'

Let 7* be either the NPEDF or the T(PEDF) policy that uses vector D' as the vector of delays.
Since the vector D’ is schedulable by design, we have,

DT (7,8) < D, < D..
Using also Theorem 3 we conclude that
piDi + s + Linax > M7 (5, 5)
and therefore,

N N N .
ZPID;—I_ZUI—I_NLmaxZ ZM:— (ﬁ’(?) (32)
i=1

i=1 i=1

Taking into account Lemma 3 and the fact that Y1, p; < , we have

XD, < D, (r- zn L) + 205 i D
= max ‘I’ En:l 0.,
Conditions (32) and (33) imply the theorem. O

Note that because of its constructive nature, the proof of Lemma 3 provides a simple algorithm for
constructing policy 7*, which is both delay-optimal and has “low” buffer requirements.

Notes:

1. As it affects the buffer requirements at subsequent nodes, it may be of interest to provide a
characterization of the burstiness and rate of the session’s departing traffic, when an upper
bound, D;, on its delay through the multiplexer is known. From [8, Theorem 2.1], it is known
that the departing traffic of session ¢, B;(7,t+ 7), verifies,

Bi(T7t+ T) < Lmax + o5 + ,OlDl + ,Olt

23

2. From the previous note and assuming a schedulable vector ﬁ, we can then obtain an upper
bound on the burstiness of session ¢ departing traffic. In those cases where D satisfies the
constraints of Theorem 4 with strict inequalities, it is then possible to reduce this bound
following a method similar to that of Lemma 3. The reason is again that in this case, the vector
of actual session delay bounds induced by NPEDF or T(PEDF)is smaller (component-wise)
than D. In fact, assume that all the inequalities in Theorem 4 are strict, and following the
method of Lemma 3, let ¢ > 0 be the largest number such that the vector {D; — c}f.vzl remains
schedulable. The N PEDF policy that operates with parameters {Di}fvzl schedules identically
to the one that operates with parameters {D, — c}f.vzl and, therefore, these policies induce
the same session delays. However, the latter policy induces delay bounds {D; — c}f.vzl since
by the choice of ¢, {D, — c}f,vzl is schedulable. Therefore a bound on the burstiness of session
v traffic is Loy + 0; + p:(D; —).

3. The technique in the previous note cannot be applied to policy 7* since by design the pa-
rameters of this policy will satisfy one of the constraints in Theorem 4 with strict equality.
However, since policy 7* always has smaller delay bounds than the corresponding NPEDF
policy, it will also have smaller burstiness bounds for the departing session traffic.

5 Optimality Criteria for Soft Deadlines

5.1 Minimization of Maximum Lateness

In the previous section, we provided the schedulable region of NPEDF, T(PEDF) and PEDF
under the assumption that the arriving traffic satisfies certain constraints. In this section, we
consider the problem of designing scheduling policies when the objective is to keep the lateness of
all packets as low as possible. This criterion is of interest in situations where the deadlines represent
a desirable time by which the packets should be transmitted, and it is important to transmit each
packet as early as possible and in a fair manner relative to the transmission times of the rest of the
packets. PEDF is a good policy with respect to this type of objectives in the sense that among all
scheduling policies, it minimizes the maximum lateness of all packets under any arrival pattern [11].
However, it is easy to construct arrival patterns for which the N PEDF policy is not optimal with
respect to the criterion of minimizing the maximum lateness among the non-preemptive policies.
In spite of this, we show in the next Theorem, that N PEDF is still a good policy in the sense that
the maximum lateness under NPEDF is at most Ly,,/7 larger than the maximum lateness under
PEDF for any arrival pattern, i.e., even for traffic streams that do not satisfy the conditions of (3)
and (4). Let a, be the arrival time of packet p. In the rest of this section, to avoid unimportant
technical complications we make the assumption that

pli_)nolo a, = 00. (34)
Let f,, f; be the finishing time of packet p under the PEDF and N PEDF policies respectively
and let d, be its deadline.

Theorem 8 Under any arrival pattern:

r Lmax
S‘;P {fp - dp} < S‘;P {fo—dp}+ o

24

For the proof of Theorem 8, we need the next lemma and some notation. We assume that packet
numbering is according to the order in which packets enter service under the NPEDF policy. Let
ey, €, be the time packet p entered service under the PEDF and NPEDF policies respectively.
Let also W™ (t,d) denote the amount of work (in bits) with deadline less than or equal to d at time
t in a system that employs scheduling policy 7. Finally, if under the N PEDF policy, at time ¢ the
server is idle or the packet in service has deadline at most d set wF#PF (¢ d) = 0. Otherwise let
wNPEDF(1) be the remaining length (in bits) of the packet that is in service at time ¢-which by
definition must have deadline larger than d.

Lemma 4 For every t and d, and every policy ,
WEEPE (1, d) < W™ (t,d) (35)

WNPEDF(t’d) 1 wNPEDF(t’d) < WPEDF(t’d) 4+ Lonax (36)

Proof. To show (35), note that W™ (¢,d) = A(0,t,d)— S™(0,t,d), where A(7,t,d)is the amount
of work with deadline at most d that arrived in the interval [7,t), and S™(7,¢,d) is the amount of
work with deadline at most d served under policy 7 in the interval [7,t). It therefore suffices to
show that

SFEPF(Q ¢ d) > S7(0,t,d).

Define as the supremum of times ¢ < ¢ such that at time t', PEDF serves traffic with deadline
larger than d or does not serve any traffic, and 7 serves traffic with deadline at most d. If there
is no such time, i.e., in the interval [0,¢) PEDF serves traffic with deadline at most d whenever 7
does so, set £ = 0. At time ¢ sufficiently close but smaller than £, there is no backlogged traffic with
deadline at most d under PEDF (otherwise, by definition PEDF would be serving such traffic).
Therefore, SFEPF(0,1-,d) = A(0,t,d) > S™(0,t7,d). In the interval [{,t), PEDF always serves
packets with deadline at most d whenever 7 does so. Note also that PEDF', by definition, is serving
these packets at the highest rate (link rate). Therefore, SFZPF(¢,¢,d) > S™(¢,¢,d). We conclude
that

SPEDF(O,t, d) SPEDF(O,'E_, d) _I_ SPEDF(_E’t’ d)
S™(0,t7,d) + S™(¢,t,d)
S7(0,t,d).

v

We use induction on the instants at which packets begin service under NPEDZF to prove (36) as
follows. We assume that the first packet arrives in the system at time 0 and, therefore, e; = é; = 0.
Relation (36) holds trivially at time é;. Assuming that (36) holds up to time ¢ = é, and for all d, we
will show that it holds for all ¢ in the interval (é,, é,,] and all d, and therefore up to time ¢t = é,,
and for all d. Since by (34) lim,_,, é, = oo, we will conclude that (36) holds for all ¢ and d. It fact,
it is sufficient to show (36) only for ¢ in (é,, f,] since by definition w"PFPF (&, 1, d) < Lpay and
cither f, = é,44 or, if f, < é,11, then under both policies, WFEPF (¢, d) = WNPEDF (¢ d) = 0 for
t € [fp, py1) and WPEPF(g .\ d) = WNPEDF (s .\ d) (since both policies are work-conserving.)

Furthermore, notice that we need to show (36) only for ¢ € (é,, fp). Indeed if fp < éy41, from
the argument of thg previous paragraph we conclude that (36) holds for ¢t = f, and a}l d. If
on the other hand f, = é,,1, denoting W(¢™) := lim,_,,- W(s), we will have W¥NPEPF(f~ d) <

WPEDF(fp_,d) + Lmax (the limits exist since both functions of ¢ are piecewise linear) since (36)

25

holds for ¢ € [é,, fp). Since any arrival that might occur at time fp will increase the corresponding
workload under both policies by the same amount, we have

WNPEDF(fp, d) S WPEDF(]EP’ d) + Lmax.

If the next packet to enter service under NPEDF, packet p+ 1, has deadline at most d, (36) holds
for t = £, since then wNPEDF(fp,d) = 0. If on the other hand packet p + 1 has deadline larger
than d, then from the operation of NPEDF and (35) we conclude that 0 = WNPEDF(f) >
WFEDF({ d) =0 and (36) follows since wNPPPF(¢, 1 d) < Loy

Let therefore, t € [é,, fp). Under NPEDF, the packet with deadline d, is continually served in
the interval [é,, fp). That is, for any d > d,, the amount of work in the system with deadline at
most d, is depleted at the highest rate under non-preemptive EDF. Therefore, (36) holds for d > d,
for all t € [é,, fp) provided that it is true at é,.

Let now d < d,. Since d, is the smallest deadline in the system under the non-preemptive EDF
policy at time é,, by (35), 0 = WNPEDF (g d) > WPEDF (¢ d) > 0, i.e., there is no work in the
system with deadlines less than d, at time é,, under both policies. Then since the same amount of
work arrives in the system under both policies and no work with deadline at most d is served by
the non-preemptive EDF, we have

WNPEDE(4.d) = WPEPE(4,d) + SPEPF(&,,1,d)
WPFEDF (t d) 4+ (f, — &,)r — (f, — t)r

WFPEDE (¢ d) + (t — é,)r
WPEDF(t, d) _I_ Lmax _ wNPEDF(t)‘
O

IACIA

Proof of Theorem 8. Assume first that U := sup, {f, — d,} > 0. Since no deadline is missed
by more than U under PEDF, the scheduler must be able to transmit all the traffic backlogged
at time d, with deadlines at most d, within an interval of length U. Therefore WXFP¥(d, d,) <
Ur, and from (36) we conclude that WNFEPF (4 d.) + wNFEPF(d d)) < Ur + Lpa,. Packets
that arrive after time d, have deadlines larger than d, and therefore they cannot be scheduled
before packet p under NPEDF. Therefore, the maximum delay of packet p after time d, is
(WNFPEDE(q d,) + wNPEPE(d, d,))/r which implies that for any packet p,

r Lmax
fp _dp <U+—,

as desired.

Assume next that U < 0. Consider the PEDF and N PE D F policies that operate with packet delay
bounds D;, = D, + U. Notice that these are valid bounds, i.e., D;, > 0, since clearly D, > d, — f,
and, therefore,

vV

D, > inlf{dq_fq}
— sup {fq - dq} =-U

Let d; =a,+ D;, =d,+U. Observe that since all delay bounds are decreased by the same amount,
the new PEDF and N PEDF policies behaves identically to the original ones and therefore, the
finishing times of the packets do not change. Also,

1

U ::s%p{fq—dlq}:U—UZO.

26

Therefore, applying the argument corresponding to the case U > 0, we have

L L . :
max — max > _ d
r v+ r fo P
= fp—d,-U
i.e., we again have fp —dy S U + Lipax/7 O

Corollary 2 If under any arrival pattern the vector of packet deadlines {d;}$2, is schedulable under
PEDF, then the vector {d; + (Lmax/7)}2, is schedulable under NPEDF.

Proof. Applying Theorem 8 to the N PEDF policy that operates with deadlines {d;+(Lmax/7)}521,
we have that

: L
sup {fi —d; — %} < sup {fi —d; —

K

Lmax Lmax
}—I— =sup{f; —d;} <O0.
r r i

The first inequality follows from Theorem 8 and the fact that the PEDUF policy that operates
with deadlines {d; + (Lmax/7)}2; schedules identically as the PEDF policy that operates with
deadlines {d;}2,. The equality that follows is simply a mathematical equality, while the second

inequality is an immediate consequence of the assumption that the vector of packet deadlines {d;},
is schedulable under PEDF. |

5.2 Lexicographic Optimization.

A stronger optimality criterion than minimizing the maximum lateness, one which relates closer to
fairness, is the criterion of lexicographic optimization of packet lateness, which is defined below.

Let {l,}]_,, {w:},_,, be two n-dimensional vectors and let m;(¢), m,(¢), be index permutations such
that
Iy 2 -+ 2 lryn), Uny(1) 2+ -+ 2 Uny(n)-

The vector {I;}’_, is called lezicographically smaller than the vector {u;};_, , denoted as {/;},_, <i.s
{ui }?:1) if

L lra) < Uy 1)

2. lr,(s) > Ur, () for some ¢ = 2,...,n implies that I ;) < ur, () for some j < 1.

Let V be a set of n-dimensional vectors. Vector {I7} , € V is lexicographically optimal in V if
{3}, <o {w},_, for all {u;},_, € V. Note that condition 1 implies that a lexicographically
optimal point is also a point that minimizes its maximum coordinate. The opposite is not always
true.

The property of the lexicographically optimal vector that relates to fairness is that if one attempts
to reduce coordinate 7 by picking another vector in V), then necessarily another coordinate that is
larger than coordinate 7 will have to be increased (see [3, Section 6.5.2]).

It turns out that if preemptions are allowed, one of the PE DF policies is lexicographically optimal.
Specifically, let P E D F* be the policy that serves preemptively the packets with the earliest deadline

27

first, and that among the packets with the earliest deadline serves first the packets with the shortest
remaining service time, i.e., time to transmit at rate » the remaining bits in the packet. Among
packets with the same deadline and the same remaining service time, PEDF* selects one in an
arbitrary fashion. To provide a precise formulation of the optimality of PEDF*, we will assume
that the number of arrivals in finite intervals is finite and

A(0,t
lim sup M

t— 0o T

<1,

where A(0,t) is the work that arrives to the system up to time ¢. These constraints imply that the
busy periods of any work-conserving policy, as well as the number of packets served within a busy
period are finite.

Theorem 9 Among all policies, PEDF* minimizes lexicographically the lateness vector of the
packets that arrive during any busy period.

Before proving this Theorem we need the next lemma which is a direct consequence of the above
definition of lexicographical ordering.

Lemma 5 If {;}7 <o {w;},_,, and {I}}, <1ox {ui}l.,, then

i=1 i=1
TN 2 R O W 3
Let us now define

8,1 Service time of packet p.

3;‘-(7'): remaining service time of packet p at time 7 under policy .

Also, for a given policy 7, recall the notations e] (service start time), f; (service completion time)
and [7 (lateness) of packet p.

Proof of Theorem 9. It is known [11], that for every policy 7’ one can find a work-conserving
(non-idling, preemptive) policy 7 such that l;’ > [y for every p. Therefore, from now on we
concentrate on work-conserving policies. The proof is based on the following lemma.

Lemma 6 Let w be a work-conserving policy and suppose that at time T during a busy period there
are packets p, g, in the system such that either d, < d, or, d, = d, and s,(7) < s,(7) and policy 7
schedules packet q first. Then there is a policy ' such that

o 7! schedules identically to 7 in the interval [0, 7)
o after time T, policy m! never schedules packet q while packet p is in the system

. {l;l} <itew {[7 }, where {l;l}, {l7} are the lateness vectors of the packets that arrive during
the busy period under policies ' and 7, respectively.

28

Proof. To show this, we argue as follows. Denote by [7,%), k> 1,7 =71 <1 < Ty <ty < -+,
the maximum intervals of time, after time 7, during which 7 schedules either one of packets p or
q. Consider the policy n! that rearranges only the scheduling of packets p, ¢ in the intervals
[Tr,t), & > 1 by scheduling first packet p until it is completely transmitted, and then packet g.
Policy 7! satisfies the first two conditions of the lemma. To show that it also satisfies the third
condition, consider the following cases. Note that by construction we have qul > fr-

1. qul = f7- IEI this case, l;rl =1 . I-{owe;rer, by construction of 7!, we have f;rl < f; and
therefore, [7 < I7. It follows that {l;,r y U7 } <iew {l;, l;r} Since the lateness of the rest of the
packets in the busy period do not change, the result follows from Lemma 5.

2. fq7r1 > f; - In this case, qul = f, and f;rl < fy . We need to distinguish two sub-cases.

a) d, < d,. Then, I” = f~ —d, < fr —d, = I7. Also, clearly I” < I7 . Therefore, we
P g q q g P 4 P P P
again have {l;l, l;rl} <tz 107, 17}

b) d, = d,. In this case, [™ = [*. However, since the remaining service time of packet p
P q g » &

does not exceed that of packet g at time 7, we have f;rl < f;,ie, l;l < l7. We conclude
again that {I7", I} <., {I7, I7}.

Using now repeatedly the proposition, it can be shown that if policy 7 does not schedule packet p
according to PEDF” in the busy period, one can construct a policy that schedules p according to
PEDF* and is no worse than 7 in the lexicographic sense. Repeating this procedure for all packets
within the busy period, we eventually obtain the PEDF* policy, which by construction is no worse
than 7 in the lexicographic sense. |

The next observation, which follows directly from Theorem 1, shows that T(PEDF*) is “almost”
lexicographically optimal.

Corollary 3 Let {t,}7_; and {l,}7_, be the lateness vectors for a given set of arrivals when the
service policy is PEDF* and T(PEDF*) respectively. Then for each packet arrival p:
Lmax

” .

I, <t, +

The natural question to ask at this point is the performance of NPEDF with respect to the
lexicographic criterion. The following example shows that for certain arrival patterns the policy is
far from being lexicographically optimal.

Example 1. Assume that the server works at rate 1(bits/unit of time) and let packets arrive as
follows: At time 0 a maximum size packet with deadline M L., arrives and at time 0%, K (< Lpax)
1-bit packets with deadline M L_ . arrive. Thereafter, at each time t = Lyax, 2Lmaxs -« -y M Lijax, @
maximum size packet with deadline ¢t + L., arrives. Under PEDF* the K 1-bit packets will be
transmitted upon arrival and will depart from the system by time K, and under both NPEDF and
T(PEDF*) the packet arriving at time 0 goes into service upon arrival and stays in service until it

departs at time L..,. The difference between the two non-preemptive policies manifests itself after
time LE. ., when T(PEDF*) serves the K 1-bit packets, while NPEDF serves the packet with

max?

deadline 2L,.,. Observe that in fact under N PEDF, all 1-bit packets leave the system after time
(M — 1)Lyax. Under PEDF* the K 1-bit packets will be transmitted consecutively starting from

29

time 0 and, therefore, their lateness is a most —(M L.y — K). Under T(PEDF*), the lateness of
these packets is at most —(M Lyax — K) + Lmax, as guaranteed by Corollary 3. However, under any
of the NPEDF policies, the lateness of the K packets is at least — L.y, i.e., the lateness of all the
K 1-bit packets has increased by at least (M — 1)Ly — K relative to the lateness provided by the
(lexicographically optimal) PEDF* policy. O
The example notwithstanding, N PEDF is almost lexicographically optimal for fixed size packets
since as we show in the next proposition, in this case T(PEDUF*) behaves like NPEDF. Note
that in general two N PEDF policies may differ only by the rules by which packets with the same
deadlines are selected for transmission. When, however, all packets have the same length, the
resulting packet lateness are identical in value (although may differ by packet indices) under any
N PEDF policy and, therefore, all these policies have the same performance as far as lexicographic
optimization is concerned.

Proposition 6 For all arrival patterns, T(PEDF*) behaves behaves like N PEDF when all packet
sizes are fized at L.

Proof. Suppose not. Then for some sequence of arrivals, there must exist packets p and g with
d, > d,, such that the following two conditions hold:

T(PEDF* T(PEDF*
i.e., packet p departs before packet ¢ under the tracking policy; and
0, < [IPEDE) [, (38)

i.e., both packets have arrived before either is scheduled by the tracking policy (a unit service rate
is assumed).

Now if ffEDF* > fqPEDF*, then from (38) the tracking policy must schedule packet ¢ before packet
p which contradicts (37). If fPEPF" < fPEDF" then by the definition of PEDF* we must have,

a, > fPEPE (39)

Combining (38) and (39):

f:EDF* < pr(PEDF*) ~ I,

which contradicts Theorem 1. O

6 Conclusions and Extensions

This paper was motivated by the need to support multiple sessions with varying traffic character-
istics and performance requirements in fast packet-switched networks. It addressed the problem
of characterizing and designing policies that are optimal in the sense of minimizing buffer and/or
delay requirements, under the assumption of commonly accepted traffic constraints. Buffer opti-
mal policies were investigated for three typical memory allocation methods, that represent different
trade-offs between efficiency and complexity. The aspect of also minimizing delay was then taken
into account, and it was shown that delay and buffer requirements could not be jointly optimized

30

unless some level of flexibility was available in allocating memory. Delay optimal policies were
investigated and the results were used to construct policies that are both delay-optimal and have
low (near-optimal) buffer requirements. Finally, the important problem of designing fair policies for
users with soft deadlines was also addressed, and optimal or near optimal policies were identified.

The main conclusions of this paper are the following. If the only objective is to have low buffer
requirements the fixed allocation mechanism is adequate in practice. If however, good delay per-
formance is also required, fixed allocation leads to large buffer requirements. In contrast, under
the semi-flexible allocation, delay-optimal policies with low buffer requirements can be designed.
While it is easier to implement NPEDF than T(PEDF), T(PEDF) may be the policy of choice
if it is desirable to apportion lateness in packet finishing times in a fair manner.

The class of tracking policies that was introduced in this paper may be of independent interest in
other applications. The natural direction in which the results should be extended is to multiple
nodes. This has been the focus of [14], which partially addresses some of these issues.

Acknowledgments

We are grateful to the associate editor, Prof. R. L. Cruz, for many suggestions that not only
enhanced the overall presentation of the paper, but also helped clarify and improve numerous
subtle arguments in the proofs.

References
[1] Framework for providing additional packet mode bearer services. CCITT recommendation
1.122, CCITT Subworking Party XVIII/1-2, 1988.
[2] ATM UNTI specification version 3.1. Technical report, ATM Forum, September 1994.
[3] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, second edition, 1992.

[4] A. Birman, P. C. Chang, J. S.-C. Chen, and R. Guérin. Buffer sizing in an ISDN frame relay
switch. Technical Report RC 14386, IBM Research, IBM T. J. Watson Research Center, P.O.
Box 704, Yorktown Heights, NY 10598, August 1989.

[6] A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal service policy
for buffer systems. Journal of the ACM, 42(3):641-657, May 1995. (See also IBM Research
Report RC 16641, April 1991).

[6] C.-S. Chang. Stability, queue length and delay of deterministic and stochastic queueing net-
works. IEEE Transactions on Automatic Control, 39(5):913-931, May 1994.

[7] I. Cidon, I. Gopal, G. Grover, and M. Sidi. Real-time packet switching: A performance
analysis. IEEE J. Sel. Areas Commun., SAC-6(9):1576-1586, December 1988.

[8] R. L. Cruz. A calculus of delay, Part I: Network element in isolation. IEEE Trans. Inform.
Theory, IT-37(1):114-131, January 1991.

[9] R. L. Cruz. A calculus of delay, Part II: Network analysis. IEEE Trans. Inform. Theory,
IT-37(1):132-141, January 1991.

[10] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm.
Internetworking Research and Exzperience, 1(1), 1990.

31

[11] M. L. Dertouzos. Control robotics: The procedural control of physical processes. In Proc.
IFIP Cong., 1974, pages 807-813, 1974.

[12] D. Ferrari and D. C. Verma. A scheme for real-time channel establishment in wide-area
networks. IEEFE Journal Sel. Areas Comm., SAC-8:368-379, April 1990.

[13] H. R. Gail, G. Grover, R. Guérin, S. L. Hantler Z. Rosberg, and M. Sidi. Buffer size require-
ments under longest queue first. Performance Evaluation, 18(2), September 1993. (See also
Proc. Perf. Dist. Syst. Integr. Commun. Sys., 1992).

[14] L. Georgiadis, R. Guérin, V. Peris, and K. Sivarajan. Efficient network QoS provisioning based
on per node traffic shaping. IEEE/ACM Transactions on Networking, 4(4):482-501, August
1996.

[15] S. J. Golestani. Duration-limited statistical multiplexing of delay sensitive traffic in packet
networks. In Proceedings of IEEE INFOCOM’91, 1991.

[16] K. Jeffay and R. Anderson. On optimal scheduling of periodic and sporadic tasks. Technical
Report TR 88-11-06, University of Washington, University of Washington, Dept. Comput.
Science FR-35, Seattle, WA 98195, November 1988.

[17] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of periodic and
sporadic tasks. In Proc. Real-Time Systems Symposium, pages 129-139, San Antonio, TX,
1991. IEEE.

[18] A. Lazar and G. Pacifici. Control of resources in broadband networks with quality of service
guarantees. IEEE Communications Magazine, September 1991.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the Association for Computing Machinery, 20(1):46-61, 1973.

[20] A.K.Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Services
Networks. PhD thesis, Department of Electrical Engineering and Computer Science, MIT,
February 1992.

[21] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing approach to flow control in
Integrated Services Networks—The Single Node Case. ACM/IEEE Transactions on Networks,
1(3):344-357, June 1993.

[22] G. Sasaki. Input buffer requirements for round robin polling systems. In Proc. Allerton
Conference on Communication, Control and Computing, 1989.

[23] D. Verma, H. Zhang, and D. Ferrari. Delay jitter control for real-time communication in a
packet switching network. In Proc. TRICOMM’91, pages 35—46, Chapel Hill, North Carolina,
April 1991.

[24] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High Speed Networks,
3(4):389-412, 1994.

[25] L. Zhang. A New Architecture for Packet Switching Network Protocols. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, MIT, August 1989.

[26] Q. Zheng. Real-time Fault-tolerant Communication in Computer Networks. PhD thesis, Uni-
versity of Michigan, 1993.

32

