
Optimal Multiplexing on a Single Link� Delay and Bu�er

Requirements

Leonidas Georgiadis �

Aristotle University of Thessaloniki

Dept� of Electrical and Computer Eng�

P�O� Box ���

Thessaloniki� ����� � GREECE

Roch Gu	erin

IBM T� J� Watson Research Center

P� O� Box 
��

Yorktown Heights� NY ����


Abhay Parekh y

Sun Microsystems Inc�

���� Garcia Avenue

Mountain View� CA ����������

Abstract� This paper is motivated by the need to provide per session quality of service guar�
antees in fast packet�switched networks� We address the problem of characterizing and designing
scheduling policies that are optimal in the sense of minimizing bu�er and�or delay requirements
under the assumption of commonly accepted tra�c constraints� We investigate bu�er requirements
under three typical memory allocation mechanisms which represent trade�o�s between e�ciency
and complexity� For tra�c with delay constraints we provide policies that are optimal in the sense
of satisfying the constraints if they are satis�able by any policy� We also investigate the trade�o�
between delay and bu�er optimality� and design policies that are �good	 
optimal or close to� for
both� Finally� we extend our results to the case of �soft	 delay constraints and address the issue of
designing policies that satisfy such constraints in a fair manner� Given our focus on packet switch�
ing� we mainly concern ourselves with non�preemptive policies� but one class of non�preemptive
policies which we consider is based on tracking preemptive policies� This class is introduced in this
paper and may be of interest in other applications as well�

Key Words� Data Networks� Scheduling� Multiplexing� Optimization� Bu�er Allocation� Schedula�
ble Regions�

� Introduction

A key challenge in the design of integrated services networks is to support a large number of
sessions with di�erent performance requirements� while minimizing cost as measured by network
resources� Session performance is mainly characterized by packet delay and loss probability� with
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link bandwidth and bu�er space being the network resources that must be expended to achieve
performance�

It is clear that bu�er requirements and delay are intimately related� since delay is trivially bounded
above by the amount of time it takes to drain a switch with full bu�ers� Yet� there are more
intricate factors at work when the switch implements scheduling and bu�er allocation policies which
discriminate among the sessions� The scheduling policy 
usually implemented at the output ports
of the switch� determines the order in which queued packets are served� and the bu�er allocation
policy determines the manner in which the bu�er space is to be shared among the sessions� It turns
out that for a given requirement on the loss probabilities� the choice of scheduling policy has an
e�ect on both the delay and the total amount of bu�er space required �
�� ��� ���� while the choice
of bu�er allocation policy has an e�ect only on the total amount of bu�er space required� To make
things more complicated� for a given scheduling policy� the total amount of bu�er space required
is also dependent on the bu�er allocation policy� These dependencies are not negligible and need
to be examined carefully�

A central contribution of this paper is� therefore� to de�ne a simple analytical model that permits
meaningful evaluations of the delay and bu�er requirements of policies� so that they can be properly
compared� We then �nd policies that are optimal within this analytical model�

Our study is restricted to the case of a single link 
multiplexer� and assumes a zero�loss environment�
i�e�� bu�ers are sized so that space is always available to store incoming data� provided the input
tra�c satis�es certain constraints� Our choice of zero�loss is motivated by several considerations�
First� it provides us with a common basis of comparison for how each policy handles various tra�c
patterns� Second� it clearly represents a desirable feature� irrespective of whether an application
can tolerate some losses� and we want to emphasize that providing such guarantees is indeed feasible
at a reasonable cost� The tra�c constraints we assume in order to be able to ensure zero�loss� are
well�accepted and in�line with the requirements of standard rate control algorithms ���� Speci�cally�
we assume that each session has a given average rate �i� an associated maximum burstiness �i 
see
Section ��
 for a more rigorous de�nition�� and a maximum packet size Lmax�

A basic� qualitative outline of the paper is the following� In Section �� we de�ne our model�
introduce the scheduling policies 
including a new class of policies known as Tracking policies� we
are going to be using in the rest of the paper� and give a few preliminary results� In Section �
we examine various bu�er allocation policies and for each� show speci�c scheduling policies to be
bu�er�optimal� i�e�� they require the minimal possible amount of bu�er to ensure zero�loss� over
all scheduling policies� Section � considers the corresponding problem of designing delay optimal
scheduling disciplines� and among the class of delay optimal policies identi�es those that result in
low bu�er occupancy as well� Here we �nd that the more �exible the bu�er allocation policy� the
lower the bu�er requirements for the �best	 delay optimal policy� In the last major section of the
paper� Section �� we de�ne delay requirements di�erently� in that we allow packets to miss their
deadlines� and design policies in which the �lateness	 is distributed fairly among the sessions�

��� Results

In Section �� we study three bu�er structures� Flexible� Semi��exible and Fixed� that represent
di�erent trade�o�s between e�ciency and complexity� and design bu�er optimal policies for each�
The analysis shows the surprising result that improving the complexity of the bu�er structure may
not improve the e�ciency signi�cantly�
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However� the advantage of a more complex and� therefore� more �exible bu�er allocation scheme
becomes apparent in Section �� where we show that the added �exibility results in signi�cant
advantages when delays also need to be optimized� In this section� we identify the schedulable region
of the multiplexer and characterize delay optimal policies� i�e�� those with maximal schedulable
region� In keeping with our focus on packet switching� we design non�preemptive policies� as
opposed to preemptive ones� We show that both a standard Non�Preemptive Earliest Deadline
First policy 
NPEDF � and a Tracking policy based on the Preemptive Earliest Deadline First
policy 
T 
PEDF �� are delay�optimal among the class of non�preemptive policies� Based on our
knowledge of policies which are optimal for either bu�er or delay requirements� we proceed next in
Section ��� with a policy which is delay�optimal and has small 
near optimal� bu�er requirements�

In Section �� we consider two separate �gures of merit� The �rst is that of minimizing the maxi�
mum lateness over all packets under any arrival pattern� We establish that under NPEDF and
T 
PEDF � maximum lateness is no more than Lmax�r time units greater than what it is under
PEDF � which is known to be optimal with respect to minimizing maximum lateness �

�� where
Lmax�r is the transmission time of a maximum size packet over a link of speed r� Thus NPEDF
and T 
PEDF � are very close to being optimal� The second� and stronger �gure of merit is the
degree to which the packet lateness vector is close to being lexicographically minimal� We show
that a particular version of PEDF � which we call PEDF � is lexicographically optimal among all
preemptive policies� Further� we show that the tracking policy� T 
PEDF ��� is close to being lexi�
cographically optimal in that under T 
PEDF �� no packet is delayed by more than Lmax�r beyond
what it experiences under PEDF ��

��� Earlier Work

Bu�er�optimal policies under the �xed allocation method have been studied in ���� �� �� 
�� �� and
the bu�er optimal policy for �i � � was presented in ��
�� While the case of the �exible allocation
method is straightforward� our results for the semi��exible allocation case are new� In addition�
our result linking the schedulable region and bu�er requirements under �xed allocation is new� as
is our result on how to construct delay�optimal policies that have small bu�er requirements�

The problem of scheduling tasks has received signi�cant attention in the context of 
real�time�
computing systems� where important results on optimal scheduling policies and the associated
schedulable region have been obtained� However many of these results assume more restrictive
arrival patterns than those used in this paper� The optimality of the PEDF for the class of
preemptive policies was �rst shown in �
�� for periodic arrivals and in �

� for general arrival
patterns� in �
�� 
�� the delay�optimality of NPEDF among the class of non�preemptive policies
is established for periodic and so�called sporadic arrivals� the schedulable regions for NPEDF

and PEDF have been derived in ���� for arrival streams characterized by a minimum inter�packet
arrival time that is independent of packet size� The merit of using schedulable regions to guarantee
quality of service in networks was recognized in �
��� The NPEDF policy has been proposed
in �
�� ��� ��� as a link scheduling policy in a scheme designed to provide per session real�time
guarantees in packet�switched networks�

Tracking policies have been proposed and studied in the context of Generalized Processor Sharing
in ���� 
��� Theorems 
 and � appear in ���� but have been extended in this paper to include all
tracking policies that obey a speci�c Ordering Property� The T 
PEDF � and T 
PEDF �� policies
are new as are all of the results pertaining to these policies� Finally� while the optimality of
PEDF for the criterion of minimizing the maximum lateness of packets was established in �

�� the
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� The multiplexer model

relationship between PEDF and NPEDF in this context is new� The lexicographic optimality of
PEDF � is new as well�

� Model� De�nitions and Preliminary Results

��� Multiplexer and Tra�c Models

Assume tra�c �ows from N sessions arrive into a multiplexer 
see Figure 
� and the �ow of each
session is partitioned into discrete entities or packets� A packet may be arbitrarily small� but can
be no larger than Lmax bits� Arriving packets are stored in the memory of the multiplexer until
they are transmitted on the output link� which is assumed to be of speed r� The multiplexer is
of store�and�forward type� i�e�� a packet becomes eligible for transmission only after its last bit
has arrived at the multiplexer� Since there may be several eligible packets at any given time� the
multiplexer has a scheduler which implements a service policy� This policy decides which of the
eligible packets to transmit on the output link and then transmits this packet non�preemptively�
In this paper� we assume a First�In�First�Out order of service for packets from a given session� so
that the service policy only arbitrates transmission between the head�of�the�line packets from each
session�

For de�niteness� in the following we assume that if a packet arrives� i�e�� its last bit is received� at
the multiplexer at time t� it is also available for transmission at the scheduler at time t� Therefore�
the scheduler takes into account the packet arrival at time t when making a scheduling decision at t�
Also� when a packet is being transmitted� we say that the packet is �being served	� By convention�
at the time instant at which the transmission ends� the packet is not in service� So� if a packet is
transmitted from time t� to t� � t�� the packet is being served in the interval �t�� t���

Let Ii
�� t� be the number of bits 
tra�c� generated by the source of session i in the interval ��� t����
Set Ii
�� t� �� � � for t � �� Unless speci�ed otherwise� assume that there exist �i� �i such that

Ii
�� t� �� � �i � �it� t � �� 

�
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This model for the generated tra�c is identical to the one proposed by Cruz ��� ���� and consistent
with the constraints imposed by rate control algorithms that have been accepted by standard bodies
��� 
�� We refer to �i and �i as the session tra�c rate and burstiness respectively�

Let ri be the speed of the input link over which tra�c from session i is sent to the multiplexer�
Since we are dealing with a store�and�forward multiplexer� a packet has to be completely received
before it is delivered to the scheduler� It can then be shown using the techniques in ��� that the
amount of 
packetized� tra�c from session i delivered to the scheduler in the interval ��� � � t��
A
�� � � t�� satis�es�

Ai
�� t� �� � Lmax � min frit� �i � �itg � t � �� 
��

Therefore� assuming in�nite input link speeds 
and using for consistency the convention �� � � �
when t � ��� we have�

Ai
�� t� �� � Lmax � �i � �it� t � �� 
��

To keep the discussion simple� we will mainly deal with constraints of the form 
�� in this paper� and
wherever possible we will mention interesting results that can be derived for more general constraints
using similar arguments� More general constraints of the form of piecewise linear concave functions
are presented in ��� while constraints of the form Ai
�� t� �� � Ai
t�� t � �� where Ai
t�� t � ��
is a nondecreasing sub�additive function� are also possible ���� We call Ai
t� the �envelope	 of
Ai
�� t � ��� For simplicity� whenever there is no possibility for confusion� we will write Ai to
denote Ai
�� t� ���

Note� The following general remark regarding the validity of the results under �nite input link
speeds can be made� Under constraint 
��� the session tra�c pattern Ai
�� t� � Lmax��i��i
t����
i � 
� � � � � N � is feasible� This tra�c pattern� which we refer to as the �greedy	 pattern� will be used
in the various arguments in the sequel� Since� however� the greedy pattern is not consistent with

��� results depending on it will not hold in general for �nite input link speeds� On the other hand�
since 
�� is stronger than 
��� results that depend only on the inequality Ai
�� t��� � Lmax��i��it�
will also hold for �nite input link speeds� For example� upper bounds on bu�er size will generally
hold� while lower bounds may not�

In the sequel and unless otherwise speci�ed� we make the stability assumption

NX
i��

�i � r� 
��

We denote by C 
	�� 	�� the set of vectors of session tra�c arrivals� 	A � fA�� � � � � ANg that are
constrained by 
�� and 
��� with rate and burstiness vectors 	� and 	� respectively�

Next� we introduce some notation needed in the rest of the paper� Let the scheduler implement
policy 
 and let 	A be the session tra�c arrival vector� We denote by S�

i 
�� t� 	A� the number of

session i bits served in the interval ��� t� and by Q�
i

�
t� 	A

�
the number of session i bits stored at time

t� De�ne M�
i 
	�� 	�� as the largest amount of bits from session i that can be stored in the memory

under policy 
 and under any tra�c vector 	A � C 
	�� 	��� i�e��

M�
i 
	�� 	�� � sup

t��
sup

�A�C�������

Q�
i

�
t� 	A

�
� 
��

The delay of a packet is de�ned as the time it spends in the system� i�e�� the sum of the time spent
waiting in the memory since its last bit arrives and the time taken to transmit it on the output
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link� The maximum delay experienced by packets in session i under any tra�c vector 	A � C 
	�� 	���
is denoted by D�

i 
	�� 	���

For notational convenience� when there is no possibility for confusion we may not indicate explicitly
the dependence of the quantities de�ned above on 	�� 	�� 	A or 
�

��� Tracking Service Disciplines

In this section we introduce the notion of Tracking Service Disciplines which is used in several
instances in the following sections� This notion was introduced in ���� for the purpose of tracking
the Generalized Processor Sharing 
GPS� discipline� It turns out that the fundamental properties
of these policies 
see Theorems 
 and � below� hold for tracking policies other than GPS� and this
enables us to prove the delay and bu�er optimality of various tracking service disciplines�

Given a preemptive policy 
� the notion of tracking is to derive a work�conserving� non�preemptive
policy T 

� that operates as follows� Let f�p 
t� be the time at which packet p departs from a
multiplexer that implements policy 
 assuming that there are no arrivals after time t� Then at
each decision epoch t of T 

�� the server schedules a packet with the minimum value of f�p 
t� over
all eligible packets present in the system at time t� Thus� T 

� attempts to preserve the order
in which packets depart under the preemptive system� At each decision epoch t� the T 

� server
picks the next packet that would depart from the system under the preemptive system if no more
packets were to arrive after time t� Since more than one packet may leave the preemptive system
simultaneously� ties are broken arbitrarily�

When 
 obeys the following Ordering Property� we can establish a tight coupling between the
sample paths of 
 and T 

��

Let packets p and p� both be in the system at time � and suppose that packet p completes
service before packet p� if there are no arrivals after time � � Then packet p will also
complete service before packet p� for any pattern of arrivals after time � � Further� if
p and p� leave the system simultaneously when there are no arrivals after time � � then
they leave the system simultaneously for any pattern of arrivals after time � �

The ordering property essentially requires that future arrivals do not modify the relative priorities
of packets waiting to be transmitted� A consequence of the ordering property is that if the tracking
server schedules a packet p at time � before another packet p� that is also backlogged at time � �
then packet p cannot leave later than packet p� in the preemptive system�

This leads to the following results 
�rst developed in the context of Generalized Processor Sharing
in ������ Let fp be the time at which packet p departs from the preemptive system and let �fp be
the time it departs from the tracking system� Then�

Theorem � Suppose the ordering property holds for the preemptive system� For all packets p�

�fp � fp �
Lmax

r
� 
��

Proof� The proof follows along the lines of the proof of Theorem 
 in ��
�� We present it here
for the convenience of the reader�
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Since both the preemptive and tracking systems are work conserving disciplines� their busy periods
coincide� i�e�� the preemptive system server is in a busy period i� the tracking server is in a busy
period� Hence it su�ces to prove the result for each busy period� Consider any given busy period
and denote the time that it begins as time zero� Let Lk be the length of the kth packet 
packet k�
to depart under the tracking server and let ak be its arrival time� We now show that for k � 
� �� ����

bfk � fk �
Lmax

r

Let m be the largest integer that satis�es both � � m � k � 
 and fm � fk� Thus

fm � fk � fi for m � i � k� 
��

Then packet m is transmitted before packetsm�
� � � � � k in the tracking system� but after all these
packets in the preemptive system� If no such integer m exists then set m � �� Now for the case
m � �� packet m begins transmission at bfm � Lm

r
� so from the Ordering Principle�

minfam��� ���� akg � bfm �
Lm

r

��

Since packets m� 
� ���� k� 
 arrive after bfm � Lm
r
� they receive all their service in the preemptive

system after time bfm � Lm
r
� Also� from 
��� they receive all their service before packet k departs at

time fk� Thus

fk �



r

Lm�� � � � �� Lk�� � Lk�� � Lk� � minfam��� ���� akg

� bfm � Lm

r
�



r

Lm�� � � � �� Lk�� � Lk�� � Lk��

Since the right hand side of the above inequality is equal to bfk � Lm�r� we �nally obtain�

bfk � fk �
Lm

r
� fk �

Lmax

r
� 
��

If m � �� then p�� ���� pk�� all leave the preemptive system before packet k does� and since the
tracking server is work�conserving�

fk � bfk � bfk � Lm

r
�

�

Theorem � Suppose the ordering property holds for the preemptive policy 
� Then for all times
t � � and for each session i�

Q
T ���
i 
t��Q�

i 
t� � Lmax� 

��

Proof� Follows from Theorem 
 and identical arguments as in Theorem � of ��
� �

� Bu�er Allocation Mechanisms and Bu�er Requirements

In this section� we address the problem of designing scheduling policies with minimal bu�er re�
quirements� We will assume that the session burstiness vector 	� 
or the supremum over all the

�



session burstiness vectors� is known and �xed� and that the rate vector 	�� while known� can vary as
long as it satis�es the stability condition 
��� An important factor that a�ects the design of such
policies and the corresponding bu�er sizes� is the �exibility of the bu�er allocation mechanism 
the
function of assigning memory locations to arriving packets� used in the multiplexer� We consider
three natural ways in which the multiplexer can structure its bu�ers�


� Flexible Allocation 
FL�� Packets from all arrival streams share a common pool of memory�
i�e� bu�ers are not allocated by session� This provides the most e�cient use of memory� but
may be di�cult to implement since the multiple input links require that multiple parallel
writes be implemented by a single control logic� In addition� a dynamic linked list structure
is also needed to maintain packet order� In this case� the minimum multiplexer bu�er size
needed when policy 
 is implemented� B�

FL� is�

B�
FL � sup

��

sup
t��

sup
�A�C�������

NX
i��

Q�
i

�
t� 	A

�
� 


�

�� Semi�Flexible Allocation 
SE�� There are b�i bits of bu�er allocated to packets from session i�
The value of b�i cannot be changed after t � �� however� the multiplexer is allowed to allocate
the bu�ers based on the knowledge of 	� and 	�� This limits the amount of memory sharing�
but only requires the multiplexer to be programmable so that the allocations can match the
session tra�c characteristics� The link list structure then becomes simpler to implement than
with a �exible allocation� Also� the multiple parallel writes can now be implemented through
separate control logic modules� In this case�

B�
SE � sup

��

NX
i��

sup
t��

sup
�A�C�������

Q�
i

�
t� 	A

�
� sup

��

NX
i��

M�
i 
	�� 	��� 

��

�� Fixed Allocation 
FI�� There are �b�i bits of bu�er allocated to packets from each session i that
should be su�cient for all 	� consistent with 
��� i�e��

�b�i � sup
��

sup
t��

sup
�A�C�������

Q�
i

�
t� 	A

�
�

Therefore�

B�
FI �

NX
i��

sup
��

sup
t��

sup
�A�C�������

Q�
i

�
t� 	A

�
� 

��

Note that knowledge of 	� is not useful in the design of a Fixed Allocation policy since�
according to the de�nition� the allocated bu�er space �b�i is �xed and su�cient to accommodate
all possible 	� consistent with 
���

Clearly� we have that
B�
FL � B�

SE � B�
FI �

while the complexity and cost of implementation reduces from FL to SE to FI�

Given � � fFlexible� Semi�Flexible� Fixedg� policy 
� is bu�er�optimal policy among the class of
admissible policies C� if

B��

� � B��

� � for all 

� � C�

�



We also de�ne�
B� �� inf

��C
B�
�� 

��

Unless otherwise speci�ed� in the following� the class of admissible policies� C� will be the class of
work�conserving non�preemptive policies�

��� Bu�er�Optimal Multiplexers

In this section we address the issue of determining B� 
as de�ned in 

��� and the scheduling
policies that achieve B�� for �exible� semi��exible and �xed bu�er allocation multiplexers�

Proposition � For �exible allocation� BFL � NLmax�
PN

i�� �i� and this value is achieved by any
work�conserving service policy�

Proof� Suppose 
 is some work�conserving policy� Consider an arbitrary busy period that starts
at �� and ends at ��� Notice that the maximum number of bits from session i that can enter the
system in the interval ���� t�� �� � t � ��� is Lmax��i��i
t� ���� i�e�� the maximum number of bits
that can be in the system corresponds to the greedy tra�c pattern� starting from time ��� Since 

continuously serves packets in ���� t�� we have�

max
���t���

NX
i��

Qi
t� � NLmax �
NX
i��


�i � �i
t� ����� r
t� ���

Constraint 
�� implies that the right hand side in the previous inequality reaches its maximum at
time t � ��� Thus

BFL � NLmax �
NX
i��

�i�

This bound is achieved under the greedy tra�c pattern� �

Note� The previous argument can be extended in a straightforward fashion if session i has envelope
Lmax � min frit� �i � �itg� Let � � � be the earliest time at which the slope of the functionPN

i��min frit� �i � �itg becomes less than or equal to r� Then� observing that the maximum of

NLmax �
NX
i��

min fri
t� ���� �i � �i
t � ���g � r
t� ���

occurs at time t � �� � � and following identical arguments we conclude that

BFL � NLmax�
NX
i��

min fri� � �i � �i�g � r��

Next� we investigate the bu�er requirements of the semi��exible allocation�

Proposition � For semi��exible allocation� BSE � Lmax
�N � 
� �
PN

i�� �i�

�



Proof� Fix an integer K � 
� and consider the following arrival rates�

�Ki �
K



 �K�i
r� i � 
� � � � � N � 
�

and

�KN �





 �K�N��
r�

We assume that all packets are of size L � Lmax� Let T � L�r be the time taken to transmit a
packet� Let the system operate under a scheduling policy 
 and denote by 	G the following tra�c
pattern� A packet of length L from session N arrives at time �� and no more tra�c from session
N arrives afterwards� The greedy tra�c patterns from sessions 
 to N � 
 arrives at time ��� By
time �� we mean �immediately after	� i�e�� at time � � �� where � is arbitrarily small� Thus� since

 is work�conserving and non�preemptive� the packet from session N will be transmitted in the
interval ��� T �� We will use this notation in the sequel� but will avoid the incorporation of �� since it
would complicate the discussion unnecessarily� Note also that although the packets are of constant
length� the greedy pattern of each session can still appear at the input link to the multiplexer�
However� the number of packets from session i that will be delivered to the scheduler at time �� is
b
L� �i��Lc� The rest of the bits� L� �i � b
L� �i��LcL must wait in memory until a complete
packet is formed�

De�ne
�M�
i 
	�

K� 	�� � sup
t��

Q�
i 
t�

	G��

Note the di�erence between �M�
i 
	�

K� 	�� and M�
i 
	�

K � 	��� in the latter we take in addition the
supremum over all arrival patterns consistent with 
�� and 
��� We will show that

N��X
i��

�M�
i 
	�

K� 	�� � 
N � 
�L�
N��X
i��

�i � 
N � 
�
K

K � 

L� 

��

Since we clearly have that M�
i 
	�

K� 	�� � �M�
i 
	�

K� 	�� and M�
N � L � �N � 

�� implies that for any

K�
NX
i��

M�
i 
	�

K � 	�� � NL�
NX
i��

�i � 
N � 
�
K

K � 

L

and letting K �� we conclude that

BSE � lim
K��

�
inf
��C

NX
i��

M�
i 
	�

K� 	��

�
� 
�N � 
�L�

NX
i��

�i�

as desired�

For simplicity in the notation� we will drop the dependence on 	�K and 	� in the rest of this proof�
To show 

��� let us consider the following slightly more general system  � that consists of sessions

 to N � 
� The bu�er content of session i� 
 � i � N � 
� at time � is Qi
�� and session i�

 � i � N � 
� sends tra�c greedily at rate �Ki after time �� but it cannot use the server in the
interval ��� T �� Considering the tra�c of sessions 
 to N � 
 only� the original system di�ers from
 only in the initial conditions 
in the original system we have the special case Qi
�� � L � �i��
Note that under both systems� the tra�c from sessions 
 to N � 
 cannot use the server in the
interval ��� T � 
by de�nition in system  � while in the original system a packet from session N is
served in ��� T ��


�



Setting n � N � 
� we will show that for system  � under any policy 
including idling� 
n�

nX
i��

�M�n
i �

nX
i��

Qi
�� � n
K

K � 

L� 

��

which is equivalent to 

���

For the proof of 

�� we will use induction on n� For n � 
� 

�� is clearly true since session 

will have to wait at least until time T before it is served 
notice that session 
 will have to wait
even longer if Q�
���K�
K� 
�L � L since there will be no complete packet in the multiplexer��
Assume now that 

�� is true for n� Consider a system  consisting of n � 
 sessions and let � be
the �rst time that session n � 
 is served under an arbitrary policy 
n��� Note that since by the
de�nition of system  no session can use the server in ��� T �� we have that T � � � The following
two possibilities arise�


� � � 
K � 
�nT � Consider policy 
n that serves only packets from session 
 to n in exactly
the same manner as policy 
n��� Whenever 
n�� serves a packet from session n� 
� 
n idles�
Note that 
n satis�es the requirements of the inductive hypothesis for n� Therefore� using
the fact that �M

�n��
i � �M�n

i � 
 � i � n� we have

nX
i��

�M
�n��
i �

nX
i��

�M�n
i �

nX
i��

Qi
�� � n
K

K � 

L�

Since session n� 
 was not served in the interval ��� ��� we have also

�M
�n��
n�� � Qn��
�� � r�

K


K � 
�n��
� Qn��
�� �

K

K � 

L

and therefore 

�� holds for n � 
�

�� T � � � 
K � 
�nT � The tra�c served from sessions 
 to n in the interval ��� �� is at most
r� � L 
it may be less if there are no packets from sessions 
 to n to be served at some time
in �T� �� or the server idles�� Therefore� the sum of the bu�er contents of sessions 
 to n at
time � is Pn

i��Q
�n��
i 
�� �

Pn
i��Qi
�� � �

Pn
i��

K

�K���i
r � 
r� � L�

�
Pn

i��Qi
�� � r�
�

� �

�K���n

�
� 
r� � L�

�
Pn

i��Qi
�� � L� r�

�K���n



��

Since a packet from session n�
 is served in the interval ��� ��T �� we can apply the inductive
hypothesis to the policy 
n that schedules only packets from sessions 
 to n after time � in
exactly the same manner as 
n��� and with initial bu�er contents Q

�n��
i 
��� 
 � i � n� Using

also 

�� we get Pn
i��

�M
�n��
i �

Pn
i��Q

�n��
i 
�� � n K

K��
L

�
Pn

i��Qi
�� � 
n� 
�
K

K��
L�A�

where

A � L�
r�


K � 
�n
�

K

K � 

L�

Since the bu�er requirements of session n� 
 are at least

Qn��
�� �
r�K


K � 
�n��
�







we �nally have that

n��X
i��

�M
�n��
i �

n��X
i��

Qi
�� � 
n� 
�
K

K � 

L�B�

where
B � L� r�

�K���n
� K

K��
L� r�K

�K���n��

� L� r�
�K���n�� �

K
�K���L�

Since by assumption � � 
K � 
�nT � we have r��
K � 
�n�� � L�
K � 
� and� therefore�
B � �� Hence� the induction hypothesis holds for n� 
� �

Before dealing with the �xed allocation case� we present a preemptive service policy called Rate
Proportional Processor Sharing �RPPS� that was introduced in ��
�� Recall that under our model�
bits of a packet p are only eligible for service once the last bit of packet p has arrived� Let a
session be backlogged at time t� if a positive amount of eligible session i tra�c is queued at time
t� Then the RPPS server ensures that for any session i� if session i is continuously backlogged in
the interval ��� t�� then

Si
�� t�

Sj
�� t�
�

�i
�j
� j � 
� �� ���� N� 

��

Notice that if i and j are both continuously backlogged in the interval� then 

�� is met with
equality� Also note that the RPPS policy obeys the Ordering Property discussed in Section ����
The following result is adapted from ��
��

Proposition � For �xed allocation� BFI � �NLmax �
PN

i�� �i� and this value is achieved by
T�RPPS��

Proof� We show �rst that the bu�er requirements of session i under any policy 
 are at least
�Lmax � �i� Consider the following arrival pattern� The system is empty at time �� A packet of
length Lmax from session j 	� i arrives at time �� At time �� tra�c from session i arrives greedily�
Since 
 is work�conserving and non�preemptive� the packet from session j begins service at time �
and the tra�c from session i cannot begin service before time Lmax�r� Therefore� the queue size of
session i at the time t when tra�c from session i is �rst served is at least

Q�
i 
t� �

Lmax

r
�i � Lmax � �i�

Letting �i � r� we conclude that the bu�er requirements of session i are at least �Lmax � �i� and
this implies that

BFI � �NLmax�
NX
i��

�i�

To see that T 
RPPS� meets this bound note that since under RPPS the rate of service received
by session i is at least �i� ��
��

QRPPS
i 
t� � �i � Lmax�

Applying Theorem � and summing over i� we get the desired result� �

Since BFI � BSE � from Propositions � and � we immediately get the following result�


�



Corollary � �NLmax �
PN

i�� �i � BFI � BSE � Lmax
�N � 
� �
PN

i�� �i

Notes�


� Although Corollary 
 indicates that the semi��exible allocation does not provide signi�cant
savings in terms of bu�er requirements compared to the �xed allocation� we will see in the
next sections that when packet delays are also considered� the semi��exible allocation provides
the �exibility of designing delay�optimal policies with low bu�er requirements� This remark
not withstanding� it should be pointed out that the T�RPPS� policy� which from Proposition
� has low bu�er requirements under �xed allocation� is also capable of providing low� albeit
not optimal� delay bounds�

�� In ���� it was shown that when �i � �� i � 
� � � � � N � and when the First�Come�First�Served

FCFS� policy is employed�

Qi
t� � Lmax

�

�

�i
r

�
�
�i
r
NLmax�

By summing over all i� we conclude that BFCFS
SE � 
�N � 
�Lmax� Together with Proposition

�� this implies that when �i � �� i � 
� � � � � N � the FCFS is bu�er�optimal for semi��exible
allocation� However� this is not true for general �i� as the following example shows�

Consider the following arrival pattern� A packet of length Lmax together with a burst of size
�j arrives from each of the sessions j 	� i at time �� At time �� a packet p from session i of
length Lmax arrives� followed immediately by a burst of packets of total size �i� After time ��
tra�c from session i arrives at rate �i� Assume also that

PN
i�� �i � r� It is easy to see that

at the time t when packet p enters service�

Qi
t� �

�

N � 
�Lmax �

PN
j 	�i �j

r

�
�i � Lmax � �i�

Summing over i we see that

BFCFS
SE � 
�N � 
�Lmax � �

NX
i��

�i �
NX
i��

�i�i
r

� 
�N � 
�Lmax � �
NX
i��

�i � max
��i�N

�i�

which by Corollary 
 can be larger than BSE in general�

� Bu�er requirements v�s Delay	 Delay Optimal Policies

In this section� we address the issue of designing scheduling policies that provide predetermined
delay bounds to each of the sessions and have low bu�er requirements� We start with a result that
we need later and which is of independent interest� It expresses the relationship that exists between
bounds on the delays and bu�er requirements�

Recall the de�nition of D�
i 
	�� 	�� and M

�
i 
	�� 	�� from Section �� In Theorem �� we establish a useful

lower bound on D�
i 
	�� 	�� as a function of M

�
i 
	�� 	�� and the characteristics 
�i� �i� of session i�

Theorem � For any zero�loss multiplexer implementing policy 
 that serves packets from session
i in a FCFS order� it holds�

D�
i 
	�� 	�� �

M�
i 
	�� 	��� �i � Lmax

�i


��


�



Proof� We drop the superscript of 
 and the dependence on 	�� 	� for notational convenience�
Consider the tra�c pattern under which the supremum in the de�nition of Mi 
see eq� 
��� is
achieved and let t� be such that Qi
t

�� � Mi under this tra�c pattern 
since Mi is a supremum�
it may not be achieved at any time� however the same argument as the one that follows can be
used by using appropriate �epsilons	�� We focus on the �rst complete packet present in the queue
of session i at time t� 
since the multiplexer is of store�and�forward type� Mi � Lmax and therefore
there is always a complete packet in the queue of session i at time t��� Let bt � t� be the arrival
time of that packet 
recall that the arrival time of the packet is the time the last bit of the packet
arrives to the scheduler�� Then� since packets from session i are served in a FCFS order�

�i
t
� � bt� � �i � Lmax �Mi

or�

t� � bt � Mi � Lmax � �i
�i

� 
���

where we have used the fact that due to the FCFS property� the amount of tra�c stored in the
bu�er at time t� is at most the amount of work that session i can generate in the time interval
�bt� t�� which in turn is bounded by and �i
t� � bt� � �i � Lmax� Letting bd be the delay of the packet
at the head of the queue at time t�� we have from 
���

bd � Mi � Lmax � �i
�i

�

�

Notes�


� One of the reviewers suggested the following bound on the delay� Consider the last complete
packet in the queue of session i at time t�� The amount of tra�c that needs to be transmitted
in order for this packet to be sent on the output link is at least Mi�Lmax� Therefore� even if
the scheduler is allocated solely to session i� the delay of the this last packet will be at least

Mi � Lmax��r� Therefore� we have another bound

D�
i 
	�� 	�� �

M�
i 
	�� 	��� Lmax

r
� 
�
�

In general� the bounds 

�� and 
�
� do not imply each other and therefore a tighter bound
can be obtained by taking the maximum of the two� For our purposes� bound 

�� is su�cient�

�� Clearly� bound 
�
� holds for general tra�c envelopes� Bound 

�� can also be extended to
general envelopes� Indeed consider that the session envelope is Ai
t�� where Ai
t� is 
strictly�
increasing and sub�additive� Then� repeating the arguments in the proof of Theorem � we
conclude that

D�
i 
	�� 	�� � A

����
i 
M�

i 
	�� 	��� �

where A����
i 
x� is the inverse of Ai
t�� If Ai
t� is nondecreasing� a similar formula can be

given by going through the obvious modi�cations to account for intervals where Ai
t� is not
strictly increasing�
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��� Delay�Optimal Policies

In this section� we address �rst the issue of designing delay�optimal policies� In the next section� we
address the issue of designing policies that are delay�optimal and also have low bu�er requirements�

To proceed� we need some notation and de�nitions� Let the non�negative vector 	D � 
D�� ���� DN�
be a list of required upper bounds on delay so that no session i packet is delayed by more than Di

time units in the multiplexer� The deadline of packet p from session i that arrives at time ap is
de�ned as dp � ap�Di� If fp is the �nishing time of p� its lateness is de�ned as lp � fp�dp� Given
a zero�loss multiplexer that implements service policy 
� the vector 	D � 
D�� ���� DN� is schedulable
under 
 if for all arrival patterns consistent with 
�� and 
��� and for all sessions i� no session i

packet is delayed by more than Di time units� The schedulable region !
� of the policy 
 is the set

of all vectors schedulable under 
� Given a class of admissible policies C� the schedulable region of
C is

S
��C !

� and a vector is schedulable in C if it belongs to the schedulable region of C� We de�ne
a scheduling policy 
� to be delay�optimal in C if

!� 
 !�� 
���

for all policies 
 � C�

It has been shown in �

�� that under any arrival pattern the Preemptive Earliest Deadline First

PEDF �� i�e�� the policy that at any instant schedules the packet with the smallest deadline �rst

ties are resolved by picking one of the packets with equal minimal deadlines in an arbitrary
fashion�� minimizes the maximum lateness of all the packets� This implies that the PEDF policy
is delay�optimal among all scheduling policies� To see this� assume there that the vector 	D is
schedulable under a policy 
� Then the lateness of every packet under 
 is nonpositive� and
therefore the maximum lateness of all packets is nonpositive under 
� But then� the same conclusion
is true for PEDF 
since it minimizes the maximum lateness� and therefore the lateness of all
packets under PEDF is nonpositive� This means of course that the vector 	D is schedulable under
PEDF � which implies that the schedulable region of PEDF is a superset of that of 
� For non�
preemptive policies� no policy is known that minimizes the maximum lateness of all packets over
all arrival patterns� However� we will show that under constraints 
�� and 
�� the non�preemptive
EDF 
NPEDF � 
i��e�� the policy that behaves like PEDF but it takes decisions only at packet
transmission completions or upon arrival of a new packet in an empty system� and the PEDF
tracking policy 
T 
PEDF �� are delay�optimal� We will also provide the schedulable region of these
non�preemptive policies� We note that in general NPEDF may di�er signi�cantly from T 
PEDF ��
This is demonstrated in Example 
 of Section ���� where we also show that in the important special
case of �xed size packets� T 
PEDF � and NPEDF behave identically�

We now proceed to show the optimality of both the NPEDF and T 
PEDF � policies�

Theorem � The NPEDF and T 
PEDF � policies are delay�optimal among the class of non�
preemptive policies� The schedulable regions of NPEDF and T 
PEDF � consists of the set of
vectors which satisfy the constraints


k � 
�Lmax �
Pk

n�� �in � Dik

�
r �

Pk��
n�� �in

�
�
Pk��

n�� �inDin � 
 � k � N � 


NLmax �
PN

n�� �in � DiN

�
r �

PN��
n�� �in

�
�
PN��

n�� �inDin �

whenever Di� � Di� � � � �� DiN �


�



The Theorem is a conclusion of the following two lemmas� The �rst one establishes the necessary
conditions for a vector to be schedulable under any non�preemptive policy� and the second demon�
strates the su�ciency of these constraints for schedulability under NPEDF and T 
PEDF �� Let
U
t� � 
 if t � � and � otherwise�

Lemma � Let D� � D� � � � � � DN � If the vector fD�� � � � � DNg is schedulable under a non�
preemptive policy then necessarily�

Lmax

r
� D�� 
���

NX
i��


Lmax � �i � �i
t �Di��U
t�Di� � Lmax � rt�
Lmax

r
� t � DN � 
���

and
NX
i��


Lmax � �i � �i
t�Di�� � rt� t � DN � 
���

Proof� We follow the method of proof in ����� Assume that all packets meet their deadlines
under a non�preemptive policy� Clearly� we should have 
Lmax�r� � D�� since otherwise maximum
length packets from any session are not schedulable� Consider the following arrival pattern� At
time � the last bit of a packet of maximum length from session N� together with a burst of bit�size
packets of total size �N arrives in the system� At time �� the last bit of a packet of maximum
length from session i� 
 � i � N � 
� together with a burst of bit�size packets of total size �i
arrives� Afterwards� packets from session i� 
 � i � N� arrive in bit�size at �xed rate �i� Let

Lmax�r� � t � DN � Since all packets meet their deadlines at time t� all packets from session i that
arrived before or at time t �Di must be transmitted by t� The number of bits contained in these
packets is 
Lmax��i��i
t�Di��U
t�Di�� Therefore� the number of bits from sessions 
 to N � 

that must be transmitted by time t is

PN��
i�� 
Lmax � �i � �i
t � Di��U
t � Di�� Since the policy

is non�preemptive and the packet from session N arrives �rst� the number of bits transmitted by
time t from the rest of the sessions is at most rt � Lmax and this implies 
���� To show inequality

���� let t � DN and observe as before that the number of bits from all the sessions that can be
transmitted by time t can be at most rt while the number of bits that must be transmitted isPN

i��
Lmax � �i � �i
t�Di��U
t�Di�� �

Lemma � Let D� � D� � � � � � DN � Any vector fD�� � � � � DNg that satis�es the constraints of
Lemma 	 is schedulable under both NPEDF and T 
PEDF ��

Proof� Let W 
t� d� be the amount of work in the system with deadlines at most d at time t
under either NPEDF or T 
PEDF �� We show that for all t � �� W 
t� t� � � which implies the
lemma�

If the server is idle at time t� then since both policies are work�conserving� we have W 
t� t� � ��
Assume therefore that the server is serving a packet at time t and de�ne s as follows� If the server
is serving a packet with deadline larger than t at time t� set s � t� Otherwise� let s � t be the
smallest time such that the server is continuously busy serving packets with deadlines at most t in
the interval �s� t�� Let P be the set of packets with deadlines at most t that either are served in
�s� t�� or are in the system at time t� If P � �� then clearly W 
t� t� � � � Assume therefore that
P 	� � and let e be the packet with the earliest arrival time� ae� among the packets in P � Observe


�



that the amount of work of the packets in P is W 
t� t� � r
t� s� and that all this work arrives at
or after time ae� Notice also that from 
��� and the fact that packet e has deadline at most t� we
have t� ae � D� � 
Lmax�r��

If ae � s then using the upper bound on the amount of work with deadlines at most t that can
arrive in the interval �s� t�� determined in the proof of Lemma 
� we get

NX
i��


Lmax � �i � �i
�s�Di��U
�s�Di� � W 
t� t� � r�s� �s � t� s � t� ae �
Lmax

r
� 
���

If 
Lmax�r� � �s � DN � 
��� and 
��� imply that W 
t� t� � � and therefore this case cannot occur�
If �s � DN� 
��� and 
��� imply that W 
t� t� � ��

Assume now ae � s�We will show that this case cannot occur� Let q be the packet that completes
service or is in service at time s and let aq be its arrival time� By the de�nition of s� packet q
has a larger deadline than t which implies that ae � aq� This is so since under both NPEDF and
T 
PEDF � packet e cannot leave later than packet q if ae � aq�

Note that since the deadline of packet q is larger that t� we have that t�aq � dq�aq � DN � Taking
also into account that ae � aq� we have t � ae � t � aq � DN � Since all the work of the packets in
P arrives at or after time ae� setting �s � t � ae we have that

NX
i��


Lmax � �i � �i
�s�Di��U
�s�Di� � W 
t� t� � r
t� s� � W 
t� t� � r�s� r
s� ae�

We will show next that

ae � s �
Lmax

r
� 
���

which will imply that
PN

i��
Lmax��i��i
�s�Di��U
�s�Di� � W 
t� t�� r�s�Lmax� This inequality
together with the fact that as discussed above� 
Lmax�r� � �s � DN and 
��� imply thatW 
t� t� � �
which shows that the case ae � s cannot occur�

To show 
��� for NPEDF observe that by the de�nition of this policy� packet e must have arrived
after packet q entered service and therefore� s � ae is less than the time to transmit a maximum
length packet�

Consider now that the system operates under the T 
PEDF � policy� If fq � fe� then by the
de�nition of T 
PEDF �� packet e must have arrived after packet q entered service and therefore�

��� is true� If fq � fe then note that from the de�nition of PEDF �

fq � ae� 
���

since dq � de� Now recall from Theorem 
 that�

fq � s�
Lmax

r
�

Combining this with 
��� yields 
���� �

The schedulable region of PEDF under the arrival patterns considered in this section can be found
using similar arguments as those used to prove Theorem �� For completeness� we present this result
in the next theorem�
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Figure �� Schedulable regions for �� � �� � ��

Theorem � The schedulable region of PEDF consists of the set of vectors which satisfy the con�
straints

kLmax �
kX

n��

�in � Dik

�
r �

k��X
n��

�in

�
�

k��X
i��

�inDin � 
 � k � N�

whenever Di� � Di� � � � �� DiN �

In Figures � and �� we show the schedulable regions of PEDF and NPEDF under various parame�
ters� As we see� in both �gures the two regions di�er by two strips which have width Lmax�r� In fact�
by examining the schedulable regions it is easy to see that if the vector fD�� � � � � DNg is schedulable
under PEDF � then the vector fD� � Lmax�r� � � � � DN � Lmax�rg is schedulable under NPEDF �
As we will see in the next section� this is a consequence of a general result that holds for any arrival
patterns� Also� we see in Figure �� where �� � �� � �� that any schedulable vector under NPEDF

has coordinates larger than �Lmax�r� Since� as is easy to see� the vector f�Lmax�r� �Lmax�rg is
schedulable under the First�Come�First�Served 
FCFS� policy� it follows that in this case from the
point of view of schedulability there is no point in employing another scheduling policy� In fact� as
can be seen from Theorem � this is true always when N � � and �� � �� � ��

Note� Lemmas 
 and � extend in a straightforward fashion to general session envelopes Ai
t��

 � i � N � Indeed� de�ning Ai
t� � � for t � �� and replacing in the arguments the quantity

Lmax � �i � �i
t�Di��U
t�Di� with Ai
t�� we obtain

Theorem � Let D� � D� � � � � � DN � If session i� 
 � i � N � has envelope Ai
t�� then the
NPEDF and T 
PEDF � policies are delay�optimal among the class of non�preemptive policies and
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Figure �� Schedulable regions for ��� �� 	� ��

their schedulable region consists of the set of vectors which satisfy the constraints

Lmax

r
� D�

NX
i��

A
t�Di� � Lmax � rt�
Lmax

r
� t � DN �

and
NX
i��

A
t�Di� � rt� t � DN �

The schedulable region of PEDF under general session envelopes can be similarly derived�

��� Delay�Optimal Policies with Low Bu�er Requirements

In this section� we address the issue of designing delay�optimal policies with low bu�er require�
ments� We propose a policy that is delay�optimal and under semi��exible allocation has low bu�er
requirements� Note that based on Proposition 
� a delay�optimal policy will also have minimum
bu�er requirements if a �exible allocation is used� However� we will see that the improvement over
the semi��exible case is small and may� therefore� not warrant the additional cost and complexity�

We �rst motivate the use of semi��exible allocation by showing� that under �xed allocation the
bu�er requirements of any delay�optimal policy are at least O
N���


�



Proposition � Let 
 be any non�preemptive policy that is delay�optimal for all tra
c patterns
consistent with ��� and ���� Under �xed�allocation�

B�
FI � N�Lmax �N

NX
i��

�i�

Proof� Consider the vector of delays 	D given as the solution of the following system of equations�


k � 
�Lmax�
Pk

n�� �n � Dk

�
r �

Pk��
n�� �n

�
�
Pk��

n�� �nDn� 
 � k � N � 


NLmax �
PN

n�� �n � DN

�
r �

PN��
n�� �n

�
�
PN��

n�� �nDn�

The vector 	D is schedulable in the class of non�preemptive policies� This will follow from Theorem �
once we show the inequality Dk � Dk��� k � 
� � � � � N�
� which is easily seen from the observation
that by the de�nition of 	D�

Dk��

�
r �

kX
n��

�n

�
�

kX
n��

�nDn � Dk

�
r�

k��X
n��

�n

�
�

k��X
n��

�nDn�

Assume that a packet of length Lmax from session N arrives at time � followed by a burst of bit�size
packets of total length �N � At time �� a packet of length Lmax together with a burst of bit�size
packets of total length �i arrives from session i� i � 
� � � � � N�
� After time � session i sends tra�c
at rate �i� Let us estimate the bu�er content of session N at time DN��� Since all the packets
meet their deadlines� the server must have served 
N � 
�Lmax �

PN��
n�� �n bits from sessions 
 to

N � 
� Therefore� the bits from class N served in ��� DN��� are at most

rDN�� � 
N � 
�Lmax �
N��X
n��

�n�

It follows that

Q�
N 
DN��� � Lmax � �N �DN���N �

�
rDN�� � 
N � 
�Lmax�

N��X
n��

�n

�
� 
���

Now let �i � r
�
N � 
�� i � 
� � � � � N � 
� and �N � r

� 
�� It can be easily shown that

lim
	��


DN�� � �

and taking limits as 
� � in 
��� we conclude that

M�
N � lim

	��
Q�
N 
DN��� � NLmax �

NX
n��

�n

By interchanging the indices we conclude that

M�
i � NLmax �

NX
n��

�n� i � 
� � � � � N

and summing over i we get the desired result� �

It turns out that even under semi��exible allocation� the delay�optimal policies NPEDF and
T 
PEDF � still have bu�er requirements of at least O
N���

��



Proposition � With � � fNPEDF� T 
PEDF �g�

B�
SE �

N
N � 
�

�
Lmax �

NX
n��


N � n � 
��in �

where �i� � � � � � �iN �

Proof� To show this proposition� we need �rst some de�nitions and observations� Consider
the following greedy arrival pattern� A packet of size Lmax together with bit�size packets of total
size �i from session i� i � 
� � � � � N arrive at time �� After time �� bit�size packets from session i
arrive at rate �i� Let the sessions 
 to N be scheduled under a strict 
non�preemptive� priority rule
with session 
 having the highest priority� Let �i � � be the �rst time at which the bu�er content
of session i becomes zero and de�ne bi � �i � �i��� where �� � �� Note that since the sessions
are served in a strict priority order� at time �i the bu�er contents of sessions 
 to i are zero and
therefore at this time the �rst packet from session i� 
 is scheduled� Let ai be the bu�er size of
session i when the �rst packet from this session is scheduled� We then have

bi �
ai

r �
Pi

j�� �j
�

This is due to the fact that since the scheduler serves the sessions in strict priority and tra�c from
sessions 
 to i arrives at rate

Pi
j�� �j� the rate by which the bu�er content of session i is depleted

is r� � r �
Pi

j�� �j� Therefore it will take ai�r
� units of time to empty a bu�er content of size ai�

Since tra�c arrives greedily and the �rst packet from session i is served at time �i��� we have

ai � Lmax � �i � �i���i

� Lmax � �i �

�
i��X
l��

bl

�
�i

� Lmax � �i �

�
i��X
l��

al
r �

Pl
j�� �j

�
�i 
���

Assume next without loss of generality that �� � � � � � �N � and consider again the greedy arrival
pattern� Let either the NPEDF or the T 
PEDF � policy be applied� Let D� � C and de�ne the
di�erences Di�� �Di large enough so that both NPEDF and T 
PEDF � schedule the sessions in
a strict priority order 

 to N� in the interval ��� �N�� According to the discussion in the previous
paragraph� the bu�er requirements of session i are at least ai�

Let us now assume that �i � 
i��

� 
�r� Taking 
 � �� it can be seen from 
��� by an inductive
argument that

lim
	��

ai � iLmax �
iX

j��

�j �

Therefore�

B�
SE �

NX
i��

iLmax �
NX
i��

iX
j��

�j �
N
N � 
�

�
Lmax �

NX
i��


N � i� 
��i�

�

The question now arises whether one can design policies for semi��exible allocation� that have
bu�er requirements lower than O
N��� We show next that this is indeed the case� Speci�cally�

�




we construct delay�optimal policies with bu�er requirements O
N�� The design is based on the
following lemma�

Lemma � Let 	D � fD�� � � � � DNg be a vector that satis�es the conditions of Theorem �� and in
addition the last inequality is strict�

NLmax �
PN

n�� �in � DiN

�
r �

PN��
n�� �in

�
�
PN��

n�� �inDin�

Then� we can �nd a vector 	D� � fD�
�� � � � � D

�
Ng such that D�

i � Di� i � 
� � � � � N � and in addition
	D� satis�es the conditions of Theorem � with equality for the last constraint�

Proof� Let us assume without loss of generality that D� � � � � � DN � Let K be the smallest
index such that

minfk � 
� NgLmax�
kX

n��

�n � Dk

�
r �

k��X
n��

�n

�
�

k��X
n��

�nDn� K � k � N�

Let


 �� min
K�k�N

��	Dk

�
r �

Pk��
n�� �n

�
�
Pk��

n�� �nDn �
�
minfk � 
� NgLmax�

Pk

n�� �n
�

r �
PK��

n�� �n


�� � ��

De�ne a new vector 	D��� as follows� D���
i � Di� i � 
� � � � � K�
� and D���

i � Di� 
� i � K� � � � � N �
It is easy to see that the vector D��� satis�es the inequalities of Theorem �� and that for some k�
K � k � N � one of them is met with equality� We will show that in addition� D���

� � � � � � D
���
N �

The case K � 
 is trivial� Assume now that K � 
� Since D� � � � � � DN � it is su�cient to show
that DK�� � DK � 
� Notice �rst that from the de�nition of K we have that

minfK�NgLmax�
K��X
n��

�n � DK��

�
r �

K��X
n��

�n

�
�

K��X
n��

�nDn� 
�
�

If DK � 
 � DK��� using the de�nition of 
 we would have

minfK � 
� NgLmax�
PK

n�� �n � 
DK � 
�
�
r �

PK��
n�� �n

�
�
PK��

n�� �nDn

� DK��

�
r �

PK��
n�� �n

�
�
PK��

n�� �nDn�

which contradicts 
�
��

If
NLmax �

PN
n�� �in � D

���
N

�
r �

PN��
n�� �in

�
�
PN��

n�� �nD
���
n �

we then set 	D� � 	D���� Otherwise de�ne K��� as the smallest integer such that

minfk � 
� NgLmax�
kX

n��

�n � D
���
k

�
r �

k��X
n��

�n

�
�

k��X
n��

�nD
���
n � K��� � k � N�

and create another vector 	D���� Note that since by construction the vector 	D��� satis�es one of the
inequalities with equality for some k� K � k � N � we have that K��� � K� In general� if in the ith
step the vector 	D�i� satis�es

NLmax�
PN

n�� �in � D
�i�
N

�
r �

PN��
n�� �in

�
�
PN��

n�� �nD
�i�
n �

��



we set 	D� � 	D�i�� Otherwise we de�ne K�i� analogously and repeat the process to create a vector
	D�i���� Since K�i� is increasing in i and is at most N � the iteration will stop in a �nite number of
steps and at the end we will have the vector 	D�� �

Theorem 	 There is a delay�optimal policy 
� among the class of non�preemptive policies such
that for all arrival patterns consistent with ��� and ����

B��

SE � �NLmax � �
NX
i��

�i�

Proof� Let 	D be a feasible vector of delays� If 	D satis�es the conditions of Theorem � with
equality for the last constraint� set 	D� � 	D� Otherwise construct the vector 	D� as described in
Lemma �� Therefore� 	D� always satis�es�

NLmax �
PN

n�� �in � D
�

iN

�
r �

PN��
n�� �in

�
�
PN��

n�� �inD
�

in
�

Let 
� be either the NPEDF or the T 
PEDF � policy that uses vector 	D� as the vector of delays�
Since the vector 	D� is schedulable by design� we have�

D��

i 
	�� 	�� � D�
i � Di�

Using also Theorem � we conclude that

�iD
�
i � �i � Lmax �M��

i 
	�� 	��

and therefore�
NX
i��

�iD
�
i �

NX
i��

�i �NLmax �
NX
i��

M��

i 
	�� 	��� 
���

Taking into account Lemma � and the fact that
PN

i�� �i � r� we have

PN
i�� �iD

�
i � D�

iN

�
r �

PN��
n�� �in

�
�
PN��

n�� �inD
�
in

� NLmax �
PN

n�� �in

���

Conditions 
��� and 
��� imply the theorem� �

Note that because of its constructive nature� the proof of Lemma � provides a simple algorithm for
constructing policy 
�� which is both delay�optimal and has �low	 bu�er requirements�

Notes�


� As it a�ects the bu�er requirements at subsequent nodes� it may be of interest to provide a
characterization of the burstiness and rate of the session"s departing tra�c� when an upper
bound� Di� on its delay through the multiplexer is known� From ��� Theorem ��
�� it is known
that the departing tra�c of session i� Bi
�� t� ��� veri�es�

Bi
�� t� �� � Lmax � �i � �iDi � �it�

��



�� From the previous note and assuming a schedulable vector 	D� we can then obtain an upper
bound on the burstiness of session i departing tra�c� In those cases where 	D satis�es the
constraints of Theorem � with strict inequalities� it is then possible to reduce this bound
following a method similar to that of Lemma �� The reason is again that in this case� the vector
of actual session delay bounds induced byNPEDF or T 
PEDF � is smaller 
component�wise�
than 	D� In fact� assume that all the inequalities in Theorem � are strict� and following the
method of Lemma �� let c � � be the largest number such that the vector fDi � cgN

i�� remains

schedulable� TheNPEDF policy that operates with parameters fDig
N

i�� schedules identically

to the one that operates with parameters fDi � cg
N

i�� and� therefore� these policies induce

the same session delays� However� the latter policy induces delay bounds fDi � cg
N

i�� since

by the choice of c� fDi � cgN
i�� is schedulable� Therefore a bound on the burstiness of session

i tra�c is Lmax � �i � �i
Di � c��

�� The technique in the previous note cannot be applied to policy 
� since by design the pa�
rameters of this policy will satisfy one of the constraints in Theorem � with strict equality�
However� since policy 
� always has smaller delay bounds than the corresponding NPEDF
policy� it will also have smaller burstiness bounds for the departing session tra�c�


 Optimality Criteria for Soft Deadlines

	�� Minimization of Maximum Lateness

In the previous section� we provided the schedulable region of NPEDF � T 
PEDF � and PEDF

under the assumption that the arriving tra�c satis�es certain constraints� In this section� we
consider the problem of designing scheduling policies when the objective is to keep the lateness of
all packets as low as possible� This criterion is of interest in situations where the deadlines represent
a desirable time by which the packets should be transmitted� and it is important to transmit each
packet as early as possible and in a fair manner relative to the transmission times of the rest of the
packets� PEDF is a good policy with respect to this type of objectives in the sense that among all
scheduling policies� it minimizes the maximum lateness of all packets under any arrival pattern �

��
However� it is easy to construct arrival patterns for which the NPEDF policy is not optimal with
respect to the criterion of minimizing the maximum lateness among the non�preemptive policies�
In spite of this� we show in the next Theorem� that NPEDF is still a good policy in the sense that
the maximum lateness under NPEDF is at most Lmax�r larger than the maximum lateness under
PEDF for any arrival pattern� i�e�� even for tra�c streams that do not satisfy the conditions of 
��
and 
��� Let ap be the arrival time of packet p� In the rest of this section� to avoid unimportant
technical complications we make the assumption that

lim
p��

ap ��� 
���

Let fp� bfp be the �nishing time of packet p under the PEDF and NPEDF policies respectively
and let dp be its deadline�

Theorem 
 Under any arrival pattern�

sup
p

n
�fp � dp

o
� sup

p

ffp � dpg�
Lmax

r
�

��



For the proof of Theorem �� we need the next lemma and some notation� We assume that packet
numbering is according to the order in which packets enter service under the NPEDF policy� Let
ep� �ep be the time packet p entered service under the PEDF and NPEDF policies respectively�
Let also W �
t� d� denote the amount of work 
in bits� with deadline less than or equal to d at time
t in a system that employs scheduling policy 
� Finally� if under the NPEDF policy� at time t the
server is idle or the packet in service has deadline at most d set wNPEDF 
t� d� � �� Otherwise let
wNPEDF 
t� d� be the remaining length 
in bits� of the packet that is in service at time t�which by
de�nition must have deadline larger than d�

Lemma � For every t and d� and every policy 
�

WPEDF 
t� d� � W �
t� d� 
���

WNPEDF 
t� d� � wNPEDF 
t� d� � WPEDF 
t� d� � Lmax 
���

Proof� To show 
���� note that W �
t� d� � A
�� t� d��S�
�� t� d�� where A
�� t� d� is the amount
of work with deadline at most d that arrived in the interval ��� t�� and S�
�� t� d� is the amount of
work with deadline at most d served under policy 
 in the interval ��� t�� It therefore su�ces to
show that

SPEDF 
�� t� d�� S�
�� t� d��

De�ne �t as the supremum of times t
�

� t such that at time t
�

� PEDF serves tra�c with deadline
larger than d or does not serve any tra�c� and 
 serves tra�c with deadline at most d� If there
is no such time� i�e�� in the interval ��� t� PEDF serves tra�c with deadline at most d whenever 

does so� set �t � �� At time t

�

su�ciently close but smaller than �t� there is no backlogged tra�c with
deadline at most d under PEDF 
otherwise� by de�nition PEDF would be serving such tra�c��
Therefore� SPEDF 
�� �t�� d� � A
�� �t�� d� � S�
�� �t�� d�� In the interval ��t� t�� PEDF always serves
packets with deadline at most d whenever 
 does so� Note also that PEDF � by de�nition� is serving
these packets at the highest rate 
link rate�� Therefore� SPEDF 
�t� t� d� � S�
�t� t� d�� We conclude
that

SPEDF 
�� t� d� � SPEDF 
�� �t�� d� � SPEDF 
�t� t� d�

� S�
�� �t�� d� � S�
�t� t� d�

� S�
�� t� d��

We use induction on the instants at which packets begin service under NPEDF to prove 
��� as
follows� We assume that the �rst packet arrives in the system at time � and� therefore� e� � �e� � ��
Relation 
��� holds trivially at time �e�� Assuming that 
��� holds up to time t � �ep and for all d� we
will show that it holds for all t in the interval 
�ep� �ep��� and all d� and therefore up to time t � �ep��
and for all d� Since by 
��� limp�� �ep ��� we will conclude that 
��� holds for all t and d� It fact�
it is su�cient to show 
��� only for t in 
�ep� �fp� since by de�nition wNPEDF 
�ep��� d� � Lmax and
either �fp � �ep�� or� if �fp � �ep��� then under both policies� WPEDF 
t� d� � WNPEDF 
t� d� � � for
t � � �fp� �ep��� and W

PEDF 
�ep��� d� � WNPEDF 
�ep��� d� 
since both policies are work�conserving��

Furthermore� notice that we need to show 
��� only for t � 
�ep� �fp�� Indeed if �fp � �ep��� from
the argument of the previous paragraph we conclude that 
��� holds for t � �fp and all d� If
on the other hand �fp � �ep��� denoting W 
t

�� �� lims�t� W 
s�� we will have W
NPEDF 
 �f�p � d� �

WPEDF 
 �f�p � d� � Lmax 
the limits exist since both functions of t are piecewise linear� since 
���

��



holds for t � ��ep� �fp�� Since any arrival that might occur at time �fp will increase the corresponding
workload under both policies by the same amount� we have

WNPEDF 
 �fp� d� � WPEDF 
 �fp� d� � Lmax 


If the next packet to enter service under NPEDF � packet p�
� has deadline at most d� 
��� holds
for t � �fp since then wNPEDF 
 �fp� d� � �� If on the other hand packet p � 
 has deadline larger

than d� then from the operation of NPEDF and 
��� we conclude that � � WNPEDF 
 �fp� d� �
WPEDF 
 �fp� d� � � and 
��� follows since w

NPEDF 
�ep��� d� � Lmax�

Let therefore� t � ��ep� �fp�� Under NPEDF � the packet with deadline dp is continually served in
the interval ��ep� �fp�� That is� for any d � dp� the amount of work in the system with deadline at
most d� is depleted at the highest rate under non�preemptive EDF� Therefore� 
��� holds for d � dp
for all t � ��ep� �fp� provided that it is true at �ep�

Let now d � dp� Since dp is the smallest deadline in the system under the non�preemptive EDF
policy at time �ep� by 
���� � � WNPEDF 
�ep� d� � WPEDF 
�ep� d� � �� i�e�� there is no work in the
system with deadlines less than dp at time �ep� under both policies� Then since the same amount of
work arrives in the system under both policies and no work with deadline at most d is served by
the non�preemptive EDF� we have

WNPEDF 
t� d� � WPEDF 
t� d� � SPEDF 
�ep� t� d� � WPEDF 
t� d� � 
t� �ep�r

� WPEDF 
t� d� � 
 �fp � �ep�r � 
 �fp � t�r � WPEDF 
t� d� � Lmax � wNPEDF 
t��

�

Proof of Theorem 
� Assume �rst that U �� supq ffq � dqg � �� Since no deadline is missed
by more than U under PEDF � the scheduler must be able to transmit all the tra�c backlogged
at time dp with deadlines at most dp within an interval of length U � Therefore W

PEDF 
dp� dp� �
Ur� and from 
��� we conclude that WNPEDF 
dp� dp� � wNPEDF 
dp� dp� � Ur � Lmax� Packets
that arrive after time dp have deadlines larger than dp and therefore they cannot be scheduled
before packet p under NPEDF � Therefore� the maximum delay of packet p after time dp is

WNPEDF 
dp� dp� � wNPEDF 
dp� dp���r which implies that for any packet p�

�fp � dp � U �
Lmax

r
�

as desired�

Assume next that U � �� Consider the PEDF andNPEDF policies that operate with packet delay
bounds D

�

p � Dp � U � Notice that these are valid bounds� i�e�� D
�

p � �� since clearly Dp � dp � fp
and� therefore�

Dp � inf
q
fdq � fqg

� � sup
q

ffq � dqg � �U�

Let d
�

p � ap�D
�

p � dp�U � Observe that since all delay bounds are decreased by the same amount�
the new PEDF and NPEDF policies behaves identically to the original ones and therefore� the
�nishing times of the packets do not change� Also�

U
�

�� sup
q

n
fq � d

�

q

o
� U � U � ��

��



Therefore� applying the argument corresponding to the case U � �� we have

Lmax

r
� U

�

�
Lmax

r
� �fp � d

�

p

� �fp � dp � U

i�e�� we again have �fp � dp � U � Lmax�r� �

Corollary � If under any arrival pattern the vector of packet deadlines fdig
�
i�� is schedulable under

PEDF � then the vector fdi � 
Lmax�r�g�i�� is schedulable under NPEDF �

Proof� Applying Theorem � to theNPEDF policy that operates with deadlines fdi�
Lmax�r�g�i���
we have that

sup
i



�fi � di �

Lmax

r

�
� sup

i



fi � di �

Lmax

r

�
�
Lmax

r
� sup

i

ffi � dig � ��

The �rst inequality follows from Theorem � and the fact that the PEDF policy that operates
with deadlines fdi � 
Lmax�r�g�i�� schedules identically as the PEDF policy that operates with
deadlines fdig

�
i��� The equality that follows is simply a mathematical equality� while the second

inequality is an immediate consequence of the assumption that the vector of packet deadlines fdig
�
i��

is schedulable under PEDF � �

	�� Lexicographic Optimization�

A stronger optimality criterion than minimizing the maximum lateness� one which relates closer to
fairness� is the criterion of lexicographic optimization of packet lateness� which is de�ned below�

Let flig
n

i�� � fuig
n

i�� � be two n�dimensional vectors and let 
l
i�� 
u
i�� be index permutations such
that

l�l��� � � � � � l�l�n�� u�u��� � � � � � u�u�n��

The vector flig
n

i�� is called lexicographically smaller than the vector fuig
n

i�� � denoted as flig
n

i�� �lex

fuig
n

i�� � if


� l�l��� � u�u���

�� l�l�i� � u�u�i� for some i � �� � � � � n implies that l�l�j� � u�u�j� for some j � i�

Let V be a set of n�dimensional vectors� Vector fl�i g
n

i�� � V is lexicographically optimal in V if
fl�i g

n

i�� �lex fuig
n

i�� for all fuig
n

i�� � V � Note that condition 
 implies that a lexicographically
optimal point is also a point that minimizes its maximum coordinate� The opposite is not always
true�

The property of the lexicographically optimal vector that relates to fairness is that if one attempts
to reduce coordinate i by picking another vector in V � then necessarily another coordinate that is
larger than coordinate i will have to be increased 
see ��� Section ��������

It turns out that if preemptions are allowed� one of the PEDF policies is lexicographically optimal�
Speci�cally� let PEDF � be the policy that serves preemptively the packets with the earliest deadline

��



�rst� and that among the packets with the earliest deadline serves �rst the packets with the shortest
remaining service time� i�e�� time to transmit at rate r the remaining bits in the packet� Among
packets with the same deadline and the same remaining service time� PEDF � selects one in an
arbitrary fashion� To provide a precise formulation of the optimality of PEDF �� we will assume
that the number of arrivals in �nite intervals is �nite and

lim sup
t��

A
�� t�

rt
� 
�

where A
�� t� is the work that arrives to the system up to time t�These constraints imply that the
busy periods of any work�conserving policy� as well as the number of packets served within a busy
period are �nite�

Theorem � Among all policies� PEDF � minimizes lexicographically the lateness vector of the
packets that arrive during any busy period�

Before proving this Theorem we need the next lemma which is a direct consequence of the above
de�nition of lexicographical ordering�

Lemma � If flig
n

i�� �lex fuig
n

i�� � and fl
�
i g

m

i�� �lex fu
�
i g

m

i�� � thenn
flig

n

i�� �
�
l�i
�m
i��

o
�lex

n
fuig

n

i�� �
�
u�i
�m
i��

o
�

Let us now de�ne

sp� Service time of packet p�

s�p 
� �� remaining service time of packet p at time � under policy 
�

Also� for a given policy 
� recall the notations e�p 
service start time�� f
�
p 
service completion time�

and l�p 
lateness� of packet p�

Proof of Theorem �� It is known �

�� that for every policy 
� one can �nd a work�conserving

non�idling� preemptive� policy 
 such that l�

�

p � l�p for every p� Therefore� from now on we
concentrate on work�conserving policies� The proof is based on the following lemma�

Lemma � Let 
 be a work�conserving policy and suppose that at time � during a busy period there
are packets p� q� in the system such that either dp � dq or� dp � dq and sp
�� � sq
�� and policy 

schedules packet q �rst� Then there is a policy 
� such that

� 
� schedules identically to 
 in the interval ��� ��

� after time �� policy 
� never schedules packet q while packet p is in the system

� fl�
�

p g �lex fl�pg� where fl
��

p g� fl
�
pg are the lateness vectors of the packets that arrive during

the busy period under policies 
� and 
� respectively�

��



Proof� To show this� we argue as follows� Denote by ��k� tk�� k � 
� � � �� � t� � �� � t� � � � ��
the maximum intervals of time� after time �� during which 
 schedules either one of packets p or
q� Consider the policy 
� that rearranges only the scheduling of packets p� q in the intervals
��k� tk�� k � 
 by scheduling �rst packet p until it is completely transmitted� and then packet q�
Policy 
� satis�es the �rst two conditions of the lemma� To show that it also satis�es the third
condition� consider the following cases� Note that by construction we have f�

�

q � f�q �


� f�
�

q � f�q � In this case� l
��

q � l�q � However� by construction of 

�� we have f�

�

p � f�p and

therefore� l�
�

p � l�p � It follows that fl
��

p � l�
�

q g �lex fl�p � l
�
q g� Since the lateness of the rest of the

packets in the busy period do not change� the result follows from Lemma ��

�� f�
�

q � f�q � In this case� f
��

q � f�p and f
��

p � f�p � We need to distinguish two sub�cases�


a� dp � dq� Then� l
��

q � f�
�

q � dq � f�p � dp � l�p � Also� clearly l�
�

p � l�p � Therefore� we

again have fl�
�

p � l�
�

q g �lex fl�p � l
�
q g�


b� dp � dq� In this case� l�
�

q � l�p � However� since the remaining service time of packet p

does not exceed that of packet q at time � � we have f�
�

p � f�q � i�e�� l
��

p � l�q �We conclude

again that fl�
�

p � l�
�

q g �lex fl�p � l
�
q g�

Using now repeatedly the proposition� it can be shown that if policy 
 does not schedule packet p
according to PEDF � in the busy period� one can construct a policy that schedules p according to
PEDF � and is no worse than 
 in the lexicographic sense� Repeating this procedure for all packets
within the busy period� we eventually obtain the PEDF � policy� which by construction is no worse
than 
 in the lexicographic sense� �

The next observation� which follows directly from Theorem 
� shows that T 
PEDF �� is �almost	
lexicographically optimal�

Corollary � Let ftpg
n
p�� and flpg

n
p�� be the lateness vectors for a given set of arrivals when the

service policy is PEDF � and T 
PEDF �� respectively� Then for each packet arrival p�

lp � tp �
Lmax

r
�

The natural question to ask at this point is the performance of NPEDF with respect to the
lexicographic criterion� The following example shows that for certain arrival patterns the policy is
far from being lexicographically optimal�

Example �� Assume that the server works at rate 

bits�unit of time� and let packets arrive as
follows� At time � a maximum size packet with deadline MLmax arrives and at time ��� K 
� Lmax�

�bit packets with deadline ML�max arrive� Thereafter� at each time t � Lmax� �Lmax� � � � �MLmax� a
maximum size packet with deadline t � Lmax arrives� Under PEDF �� the K 
�bit packets will be
transmitted upon arrival and will depart from the system by time K� and under both NPEDF and
T 
PEDF �� the packet arriving at time � goes into service upon arrival and stays in service until it
departs at time Lmax� The di�erence between the two non�preemptive policies manifests itself after
time L�

max� when T 
PEDF �� serves the K 
�bit packets� while NPEDF serves the packet with
deadline �Lmax� Observe that in fact under NPEDF � all 
�bit packets leave the system after time

M � 
�Lmax� Under PEDF

� the K 
�bit packets will be transmitted consecutively starting from

��



time � and� therefore� their lateness is a most �
MLmax �K�� Under T 
PEDF ��� the lateness of
these packets is at most �
MLmax�K��Lmax� as guaranteed by Corollary �� However� under any
of the NPEDF policies� the lateness of the K packets is at least �Lmax� i�e�� the lateness of all the
K 
�bit packets has increased by at least 
M � 
�Lmax�K relative to the lateness provided by the

lexicographically optimal� PEDF � policy� �

The example notwithstanding� NPEDF is almost lexicographically optimal for �xed size packets
since as we show in the next proposition� in this case T 
PEDF �� behaves like NPEDF � Note
that in general two NPEDF policies may di�er only by the rules by which packets with the same
deadlines are selected for transmission� When� however� all packets have the same length� the
resulting packet lateness are identical in value 
although may di�er by packet indices� under any
NPEDF policy and� therefore� all these policies have the same performance as far as lexicographic
optimization is concerned�

Proposition � For all arrival patterns� T 
PEDF �� behaves behaves like NPEDF when all packet
sizes are �xed at L�

Proof� Suppose not� Then for some sequence of arrivals� there must exist packets p and q with
dp � dq� such that the following two conditions hold�

fT �PEDF
� �

p � fT �PEDF
� �

q � 
���

i�e�� packet p departs before packet q under the tracking policy� and

aq � fT �PEDF
� �

p � L� 
���

i�e�� both packets have arrived before either is scheduled by the tracking policy 
a unit service rate
is assumed��

Now if fPEDF
�

p � fPEDF
�

q � then from 
��� the tracking policy must schedule packet q before packet
p which contradicts 
���� If fPEDF

�

p � fPEDF
�

q � then by the de�nition of PEDF � we must have�

aq � fPEDF
�

p � 
���

Combining 
��� and 
����
fPEDF

�

p � fT �PEDF
��

p � L�

which contradicts Theorem 
� �

� Conclusions and Extensions

This paper was motivated by the need to support multiple sessions with varying tra�c character�
istics and performance requirements in fast packet�switched networks� It addressed the problem
of characterizing and designing policies that are optimal in the sense of minimizing bu�er and�or
delay requirements� under the assumption of commonly accepted tra�c constraints� Bu�er opti�
mal policies were investigated for three typical memory allocation methods� that represent di�erent
trade�o�s between e�ciency and complexity� The aspect of also minimizing delay was then taken
into account� and it was shown that delay and bu�er requirements could not be jointly optimized

��



unless some level of �exibility was available in allocating memory� Delay optimal policies were
investigated and the results were used to construct policies that are both delay�optimal and have
low 
near�optimal� bu�er requirements� Finally� the important problem of designing fair policies for
users with soft deadlines was also addressed� and optimal or near optimal policies were identi�ed�

The main conclusions of this paper are the following� If the only objective is to have low bu�er
requirements the �xed allocation mechanism is adequate in practice� If however� good delay per�
formance is also required� �xed allocation leads to large bu�er requirements� In contrast� under
the semi��exible allocation� delay�optimal policies with low bu�er requirements can be designed�
While it is easier to implement NPEDF than T 
PEDF �� T 
PEDF � may be the policy of choice
if it is desirable to apportion lateness in packet �nishing times in a fair manner�

The class of tracking policies that was introduced in this paper may be of independent interest in
other applications� The natural direction in which the results should be extended is to multiple
nodes� This has been the focus of �
��� which partially addresses some of these issues�
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