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Abstract

We address the problem of designing optimal bu�er management policies in shared memory

switches when packets already accepted in the switch can be dropped �pushed�out�� Our goal is

to maximize the overall throughput� or equivalently to minimize the overall loss probability in

the system� For a system with two output ports� we prove that the optimal policy is of push�

out with threshold type �POT�� The same result holds if the optimality criterion is the weighted

sum of the port loss probabilities� For this system� we also give an approximate method for the

calculation of the optimal threshold� which we conjecture to be asymptotically correct� For the

N �ported system� the optimal policy is not known in general� but we show that for a symmetric

system �equal tra�c on all ports� it consists of always accepting arrivals when the bu�er is not

full� and dropping one from the longest queue to accommodate the new arrival when the bu�er

is full� Numerical results are provided which reveal an interesting and somewhat unexpected

phenomenon� While the overall improvement in loss probability of the optimal POT policy over

the optimal coordinate�convex policy is not very signi�cant� the loss probability of an individual

output port remains approximately constant as the load on the other port varies and the optimal

POT policy is applied� a property not shared by the optimal coordinate�convex policy�

�This work was done while at the IBM T�J� Watson Research Center�
yAnd Department of Electrical Engineering� Technion� Haifa ������ Israel
zPart of the work was done while visiting the IBM T�J� Watson Research Center�
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� Introduction

Shared�memory fast packet switches are widely used in high�speed� wide�area networks ��� ��� Such

switches consist of a single large memory where packets arriving from all inputs are stored while they

wait before being transmitted on their respective output	s
� While this design presents a number of

technical challenges� in particular memory access and speed� the sharing of a single memory by all

input and output ports o�ers numerous advantages� One of them is improved bu�er e�ciency� which

translates into smaller memory sizes to satisfy a given loss probability requirement� However� despite

this greater e�ciency� losses remain unavoidable and it is� therefore� still of interest to understand

how they can be minimized� Furthermore� sharing of the memory also introduces new potential

problems as individual inputs can now a�ect the performance seen by others� In this paper� we

focus on identifying how to best share the memory between the system ports� so that overall system

throughput is maximized�

There has been a number of prior works which have addressed this problem� In particular�

Kamoun and Kleinrock �
� analyzed several sharing schemes� namely� Complete Sharing 	CS
 in which

an arriving packet is accepted if any storage space is available� Complete Partitioning 	CP
 in which

the entire storage is permanently partitioned among the output ports� Sharing with Maximum Queue

Lengths 	SMXQ
 in which a limit on the number of bu�ers allocated to each output port is imposed�

Sharing with a Minimum Allocation 	SMA
 in which a minimum number of bu�ers is always reserved

for each output port and the remaining bu�ers are shared between all output ports� and Sharing

with a Maximum Queue and Minimum Allocation 	SMQMA
 which is a combination of the SMXQ

and SMA schemes� Their study assumed independent Poisson arrivals and exponential service times

and they obtained closed form expressions for the probability distribution of the bu�er occupancy�

based on the fact that it has a well�known product form solution� From their numerical examples�

they showed that sharing can improve performance especially when little storage is available� but

that some restrictions should be imposed to avoid throughput degradation in asymmetric systems�

Additional numerical results ���� for a CS policy but with bursty arrivals� further supported this

conclusion by showing that some outputs can become temporarily congested and monopolize the use

of the shared memory�

The existence and the structure of an optimal sharing policy 	in the sense of minimum packet loss

or maximum throughput
 was then �rst investigated by Foschini and Gopinath ���� They considered

optimality within the class of policies that never drop a packet once they admit it in the bu�er� and

hence have coordinate�convex state space � 	if x � �� then 	x��x�� � � � � 	xi� �

�� � � � � xm
 � � for all

i � �� � � � � N
� These policies� referred to as coordinate�convex policies� include the policies of �
��

For a switch with two output ports they proved that the optimal coordinate�convex policy is to limit

�



the queue length of output port i� i � �� � to some �xed level mi� such that m� �m� � B� where

B is the bu�er size� For more than two ports they conjectured that the optimal policy is simple 	see

de�nition in ���
� Their proofs were based on the fact that the probability distribution of the bu�er

occupancy has a product form solution�

Wei� et al�� ����� suggested a sharing policy which allows for the dropping of accepted packets� and

therefore does not belong to the class of coordinate�convex policies� According to this policy 	named�

Drop�on�Demand or DoD
� an arriving packet is always accepted if there is an empty bu�er� If a

packet destined for output port i arrives and �nds the bu�er full and output port l has more packets

in the shared�memory than any other ports� the following action is taken� if i � l� the arriving

packet is dropped� if i �� l� the arriving packet joins the bu�er and one port l packet is dropped� In

general� policies which can accept an arriving packet by dropping another packet from the system

are known as push�out policies 	see� e�g�� ���
� Push�out policies include coordinate�convex policies

	never push�out a packet
 as well as the DoD policy� In ����� numerical examples were provided

showing that the DoD policy yields better throughput and lower packet losses than either the CS

and CP policies� However� as we shall show� this policy is optimal only for symmetric systems�

In this paper we consider a model similar to the one of �
�� The bu�er size is denoted by B� and

the arrival and service processes of type i 	destined to output i
 packets are Poisson and exponential

with rates �i and �i� respectively� Upon arrival of a packet the system can decide to either accept the

packet� or reject it� or accept it and drop another packet from the system� In other words� we include

pushout policies and our goal is to determine the policy which maximizes the overall throughput� or

equivalently minimize the overall loss probability�

For a two�ported switch� we prove that the optimal policy is of push�out with threshold type

	POT
� i�e�� whenever the bu�er is non�full� the arrival should be accepted� and whenever it is full�

an arrival from type i� i � �� �� is accepted and a type i 	the other type
 packet is pushed�out if the

number of type i packets is below some threshold k�i 	where k
�
�� k

�
� � B
� The same result is true if

the optimality criterion is the weighted sum of the port loss probabilities� For �� � �� and �� � ��

we also show that k�� � B��� In general� the determination of the threshold k�� is computationally

intensive� but for the two�ported system we develop a simple and yet reasonably accurate heuristic

to obtain its value� The results for the two�ported system establish the non�optimality of DoD for

asymmetric systems�

For the symmetric N �ported system with identical arrival rates and identical transmission rates�

we show that the optimal policy is to accept an arrival whenever the bu�er is non�full� or the queue

corresponding to the type of the arriving packet is not the largest� in the second case a packet from

the longest queue is dropped� This establishes the optimality of DoD for the N �ported symmetric

system� The proofs of the results for both the two�ported and N �ported systems are based on the
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theory of Markov decision processes�

The behavior of the optimal policies are then investigated for the two�ported case by means

of numerical examples� which reveal an interesting and somewhat unexpected phenomenon� While

the overall improvement in loss probability of the optimal POT policy over the optimal coordinate�

convex policy is found to be relatively minor� a signi�cant di�erence is observed when focusing on

the loss probability of an individual output port� The use of the optimal POT policy results in an

approximately constant loss probability on a given port as the load on the other varies� In contrast�

signi�cant variations can be observed with the optimal coordinate�convex policy� The insensitivity

of individual losses is clearly a desirable feature� but nevertheless surprising given the global nature

	overall throughput
 of our optimization� For the two�ported system� we also investigate the heuristic

method for determining the threshold of the optimal POT policy� which based on the numerical

results obtained is conjectured to be asymptotically correct as the bu�er size B increases� Numerical

comparisons further show that the approximation is very good for most practical scenarios�

Finally� we note that the structure of the Markov process arising from a POT policy permits

the development of an e�cient method for the computation of the state probabilities� The method

consists in reducing the 	B � �
��� system of equations to the solution of a system of 	B � �


equations�

The paper is organized as follows� In section � we introduce the system model and provide the

formulation of the optimization problem� In section � we investigate the structure of the optimal

policy� We �rst focus on the two�ported system for which we prove that the optimal policy is of

POT type� We also derive a number of interesting properties of the optimal policy� and describe the

approximation we propose to compute the optimal threshold� Next we consider the more general

N �ported system and also identify the optimal policy� but only for the symmetric case 	arrival and

service rates are the same at all ports
� Section 
 is devoted to numerical comparisons between

the performance of the optimal POT and coordinate�convex policies� We concentrate again on the

two�ported system� for which we also study the accuracy of the proposed threshold approximation�

Section � brie�y summarizes the �ndings of the paper and suggests some open problems� Finally�

appendix A provides proofs of lemmas used in section �� and appendix B outlines an e�cient method

for computing state probabilities in a two�ported system operating under the POT policy�

� The Model and Problem Formulation

The system consists of a bu�er shared by packets destined to any of N output ports� Packets are

said to be of type i� � � i � N� if they are destined to port i� Type i� � � i � N� packets arrive

to the bu�er according to a Poisson process with rate �i� and are transmitted by output port i with






a transmission time which is exponentially distributed with rate �i� We assume that �i� �i � �

so that only a �nite number of transitions can occur in any �nite interval of time� and that packet

inter�arrival and transmission times from all sources are mutually independent� The total bu�er size

is taken to be B packets� and a packet occupies its bu�er until it has been completely transmitted�

Our goal is to determine how the B bu�ers are �best� shared among packets of di�erent types�

so that the overall system throughput is maximized� This amounts to identifying rules that specify

when and how packets of di�erent types are allowed to occupy a space in the shared bu�er� In

this paper� acceptable rules include accepting or rejecting an arriving packet as well as discarding

	pushing�out
 an already stored packet to accommodate an arriving one� Because the state of the

system can be represented by a Markov chain� the rules or policy governing the sharing of the bu�er

can be expressed as a continuous time Markov decision process� Decision epochs correspond to

arrivals and departures from the system� where at each epoch� a decision is made as to whether a

current or future packet should be accepted� rejected� or accepted by pushing�out another packet

from the system� Next� we proceed with a precise formulation of this process�

Let x	n
 � 	x�	n
� x�	n
� ���� xN	n

 be the state of the system at decision epoch n � �� �� � � ��

where xi	n
� � � i � N� denotes the number of type i packets in the system at decision epoch n�

Let X � f�� �� ����BgN be the state space of the system� De�ne the following operators to denote

the rejection� acceptance and push�out of packets� respectively 	upon arrival epoch
�

Pr	x
 � x

Pai	x
 � x� ei x � Dom	Pai
 � � i � N 	�


P
p
j
i

	x
 � x� ei � ej x � Dom	P
p
j
i


 � � i �� j � N

where� ei� � � i � N� denotes the vector with all components zero except the ith which is equal ��

Dom	Pai

�
�f
PN

j�� xj � Bg and Dom	P
p
j
i



�
�fxj � �g�

Let U � fu � 	u�� u�� ���� uN
 � ui � fr� ai� p
j
i � � � j �� i � Ngg be the set of possible decisions�

and U	x
 � fu � U � x � �Ni��Dom	Pui
g be the set of all admissible actions when the system state is

x� The speci�cation of the continuous time Markov decision process is then completed once we have

de�ned the length of time between successive decision epochs and the transition probability function�

When the system is in state x� the length of time until the next decision epoch is an exponential

random variable with transition rate
PN

i��	�i � �i�fxi � �g
� and the transition probability to the

next state is given by

Pr�x	n� �
 � Pui	x	n

 j x	n
 � x� u	n
 � u� �
�iPN

i��	�i � �i�fxi � �g

� � i � N

�



Pr�x	n� �
 � Di	x	n

 j x	n
 � x� u	n
 � u� �
�i�fxi � �gPN

i��	�i � �i�fxi � �g

� � i � N� 	�


where Di	x	n

 indicates a departure of a type i packet when the system is in state x at time n�

As mentioned earlier� the objective of the optimization is to minimize the overall loss probability�

or equivalently to maximize the overall throughput of the system� That is� denoting by n	T 
 the

number of decision epochs up to time T � we are interested in the policy that for any initial state

x	�
 � x� maximizes

lim
T��

inf
�

T
E

�
�n�T �X

k��

NX
i��

di	k
 jx	�
 � x

�
A � 	�


where di	k
 � � if at the kth decision instant a departure of type i occurs and di	k
 � � otherwise�

The above expression can be generalized to a weighted average reward of the form

lim
T��

inf
�

T
E

�
�n�T �X

k��

NX
i��

widi	k
 jx	�
 � x

�
A � wi � �� � � i � N�

and the proof of Section � on the structure of the optimal policy actually goes through for this more

general case� However� in order to keep notations simple we will assume that wi � �� � � i � N in

the rest of the paper�

The above continuous time problem needs to be translated into an equivalent discrete time

optimization problem� and we use uniformization 	see ���� ���� ��� section ����
 for that purpose� In

our case� uniformization amounts to introducing� when the system is in one of the states x � fxi � ��

for at least one ig� �ctitious departure epochs of type i which occur with rate �i�fxi � �g� The

reward of a �ctitious departure is taken to be zero� This modi�cation does not alter the stochastic

behavior of the process and results in identical transition rates� equal to
PN

i��	�i��i
� independent

of the state of the system and the decision taken� The transition probabilities in the new system are

now given by

Pr�x	n� �
 � Pui	x	n

 j x	n
 � x� u	n
 � u� �
�iPN

i��	�i � �i

� � i � N

Pr�x	n� �
 � Di	x	n

 j x	n
 � x� u	n
 � u� �
�iPN

i��	�i � �i

� � i � N� 	



and the equivalent discrete time optimization objective is to �nd a policy that for any initial state

x	�
 � x� maximizes

lim
n��

inf
�

n
E

�
nX

k��

NX
i��

di	k
 jx	�
 � x

�
�

�



where di	n
 � � if at the nth decision instant a real 	non��ctitious
 departure of type i occurs and

di	n
 � � otherwise� In the next section� we consider the problem of identifying the policy that

maximizes this cost function�

� The Optimal Policy

To avoid cumbersome notation� in the following we assume without loss of generality that the arrival

and departure rates are normalized so that�
PN

i��	�i � �i
 � �� A standard approach to solving the

kind of optimization problem we consider� is to �rst work with the discounted cost criterion 	see ���
�

E
�X
n��

�n
NX
i��

di	n
� 	�


where � � � � � is a discount factor�

In our system� since the rewards di	n
 are bounded� it is known ��� that there is always an optimal

stationary policy to the discounted problem� Therefore� we limit our investigations to this class of

policies� A stationary policy 	 is a function 	 � X � U with 		x
 � U	x
 for every x � X � and

such that under 	 the decision u � 		x
 is always taken whenever the system is in state x� In order

to carry out our investigation of the optimal policy� we need to introduce the Banach space F of all

bounded real functions f � X � R with norm jj 	 jj given by jjf jj � max
x�X

jf	x
j�

For any stationary policy 	 we then de�ne T� � F � F 	the dynamic programming operator


by

	T�f
	x
 �
NX
i��

�i�fxi � �g�
NX
i��

��if 	Pui	x

 �
NX
i��

��if 	Di	x

 	�


where� 		x
 � 	u�� u�� ���� uN
� The �rst term in the right hand expression is the one�step cost for

the system under policy 	� while the rest of the terms correspond to the cost that incurs after the

�rst step� Based on equation 	�
 we then de�ne the operator T by 	Tf
	x
 � max
�
	T�f
	x
 for all

x� If we denote the optimal cost starting from state x by J�	x
� the following results are well�known

	see� e�g�� ���
�


 For every x � X � J�	x
 � TJ�	x
�


 For any f � F � limn�� T �n�f	x
 � J�	x
 for every x � X � where T �n� is the n�fold composition

of the operator T �


 A stationary policy 	 is optimal i� J�	x
 � T�J�	x
 for every x � X �

�



In the next sections� we rely on these results to identify the optimal policy for our system� We

focus �rst on the two�ported system for which we show that the optimal policy is of POT type in

the general case of di�erent arrival and service rates on each port� We also prove some interesting

properties of this policy in some cases and propose a simple heuristic to compute the optimal threshold

value� The accuracy of this approximation is later evaluated in section 
� The N �ported system is

treated next� but only for the symmetric case for which the optimal policy is identi�ed�

��� The Two�Ported System �N � ��

����� Optimal Policy Derivation

In order to determine the optimal policy for the two�ported system� it is necessary to specify enough

of its properties so that it is fully characterized� The basic approach we employ to identify these

properties is the value iteration method 	see ���
� It is based on the fact that the optimal value

function can be shown to obey a certain property simply by showing that if this property holds for a

function f � F � then it continues to hold for the function Tf 	which also belongs to F
� The main

di�culties in using this approach are in initially �guessing� the properties of the optimal policy� and

in selecting appropriate auxiliary properties for the function f which are usually necessary to prove

that the desired properties hold�

The dynamic programming operator for the two�ported system is�

Tf	k�� k�
 � ���fk� � �g� ���fk� � �g

� ���f		k� � �

�� k�
 � ���f	k�� 	k�� �


�


� �����	k�� k�
 � �����	k�� k�
 	�


where�

��	k�� k�
 � maxf f	k�� k�
� f	k�� �� k� � �
 g if k� � k� � B

��	k�� k�
 � maxf f	k�� k�
� f	k�� �� k�
� f	k�� �� k� � �
 g if k� � k� � B 	�


and�

��	k�� k�
 � maxf f	k�� k�
� f	k� � �� k�� �
 g if k� � k� � B

��	k�� k�
 � maxf f	k�� k�
� f	k�� k�� �
� f	k�� �� k�� �
 g if k� � k� � B� 	�


where we de�ne �i	k�� k�

�
�� for k�� k� � � or k�� k� � B�

Lemma � The optimal value function J�	k�� k�
 has the following properties�

�



�� Monotonicity and boundedness in k�� � � J�	k� � �� k�
� J�	k�� k�
 � �� � � k� � B � ��

�� Monotonicity and boundedness in k�� � � J�	k�� k�� �
� J�	k�� k�
 � �� � � k� � B � ��

�� Concavity along k�� J�	k� � �� k�
� J�	k�� k�
 � J�	k�� k�
� J�	k� � �� k�
� � � k� � B � ��

	� Concavity along k�� J�	k�� k� � �
� J�	k�� k�
 � J�	k�� k�
� J�	k�� k� � �
� � � k� � B � ��


� Concavity along the line k� � k� � b� � � b � B� J�	k�� �� k�� �
� J�	k�� k�
 � J�	k�� k�
�

J�	k� � �� k�� �
� � � k� � B � �� � � k� � B � ��

Proof� Consider a function f � F which satis�es properties ��� of Lemma � 	for example the

function ���
� In appendix A� we show that the function Tf also satis�es these properties� Using

the fact that limn�� T �n�f	x
 � J�	x
 for every x � X � the function J�		
 then satis�es these

properties as well�

Properties ��
 are only auxiliary properties needed for the proof of property �� and the combina�

tion of properties �� � and � of Lemma � allows to directly establish the following proposition�

Proposition � The optimal policy for the discounted cost problem is of type POT�

Proof� Properties ��� of Lemma � imply that an arrival from either type should be accepted if

an empty bu�er is available� From property �� the optimal value function is concave on the line

k��k� � B and hence it has either a unique maximum or two maxima at consecutive points on this

line� The fact that J�	x
 satis�es the dynamic programming equation J�	x
 � TJ�	x
� implies that

the value of k� 	or k�
 corresponding to the maximum 	in case two maxima exist either one can be

chosen
 is the optimal threshold in the POT policy�

Lemma � and Proposition � can be shown to hold for the weighted average reward criterion with

weights � � w�� w� � �� w� � w� � �� In this case� the di�erences in properties � and � of Lemma

� should be upper bounded by w� and w� instead of �� respectively� and the proofs follow as in

appendix A�

����� The Two�Ported System with Equal Transmission Rates ��� � ���

In this section we establish an interesting albeit intuitive property of the optimal policy for the

two�ported system when the transmission rate on both output ports are equal� �� � ��
�
��� For that

�



system� we show that when �� � ��� the optimal threshold satis�es� k
�
� � B��� The proof of this

property relies again on the value iteration method�

The dynamic programming operator for this system is now�

Tf	k�� k�
 � �� �fk� � �g� �fk� � �g �

� ��� f		k� � �

�� k�
 � f	k�� 	k�� �


�
 �

� �����	k�� k�
 � �����	k�� k�
 	��


where� �i		
� i � �� �� were de�ned in 	�
�	�
�

Lemma � If �� � ��� the optimal value function J�	k�� k�
 has the following property�

J�	k�� k�
 � J�	k�� k�
� k� � k�

Proof� See appendix A�

The above lemma essentially states that when �� � ��� it is preferable to have more packets of

type � than of type � in the system� When combined with Proposition �� it directly gives the desired

result stated in the following Proposition�

Proposition � If �� � ��� the optimal policy for the discounted cost is POT with threshold k�� � B��
�

Proof� From Proposition �� the optimal policy for the discounted cost problem is POT� From Lemma

�� we know that

J�	k�� B � k�
 � J�	B � k�� k�
� k� �
B

�

which� together with the concavity of the optimal value function J�	k�� k�
 on the line k� � k� � B

	property � of Lemma �
� implies that the maximum of the optimal value function on this line occurs

in the range k� � B���

This result con�rms the intuition that the higher arrival rate of type � packets implies that they

can be pushed out more often�

����� Threshold Design for the Two�Ported System

The two previous sections established that the optimal policy for the two�ported system is of type

POT� However� the value of the optimal threshold was not explicitly identi�ed� There are a number

��



of possible approaches to obtain the value of the optimal threshold� but typically they are compu�

tationally intensive and for large values of the bu�er size may even be infeasible� In this section we

propose a heuristic approximation to compute the value of the optimal threshold k��� The accuracy

of this approximation will be assessed numerically in section 
���

Using the value iteration method� it is easy to check that an upper bound to the solution of the

equation J�	k�� k�
 � TJ�	k�� k�
 is the function

f�	k�� k�
 � d� c�

k�
� � c�


k�
� �

where d � 	�����
�	���
� and 
i� i � �� �� is the unique solution in 	�� �
 of the quadratic equation

	�� � � �i� � �i�

i � �i�

�
i � �i� 	��


and

ci �
�i

�� �	�� �i	�� 
i


	��


In fact� the function f�	k�� k�
 corresponds to the discounted long term throughput when the bu�er

size is in�nite� We are interested in determining the value k�� that maximizes J�	k� B � k
 for

k � �� � � � � B� Our proposed approximation consists of assuming that k�� approximately maximizes

f�	k� B � k
� k � �� � � � � B as well� We expect this to be especially true for large bu�ers since the

optimal cost is then closer to f�		
�

The maximum of f�	k� B � k
� k � �� � � � � B is easily found to be either max	bx�c � �
 or

max 	bx�c� �� �
� where

x� �
ln	c� ln
��	c� ln
�



ln 
� � ln 
�
�

ln
�
ln
� � ln
�

B � C� � C�B 	��


To �nd the form of the approximation for the average cost criterion 	see section ��� for details
� we

have to take the limit as � � �� Let �i
�
��i��i� i � �� �� It can be seen that

lim
���


i �

�
� if �i � �

���i if �i � �

and

lim
���

ci �

�
� if �i � �
�i

�i��i
if �i � �

Also� when �i � ��


�i	�

�
� lim

���

d
i
d�

�
�

�i � �i

��



We can� therefore� compute 	except for the case �� � �� � � which requires that we apply L�Hospital�s

rule one more time


�C� � lim
���

C� � lim
���

ln 
�
ln 
� � ln
�

�

�����������	
����������


� if �� � �� �� � �

ln��
ln���ln ��

if �� � �� �� � �

�����
�����������

if �� � �� �� � �

� if �� � �� �� � �

and similarly for �� � �� �� � � 	other cases are again straightforward
�

�C� � lim
���

C� � lim
���

d ln	c� ln
�
�d� � d ln	c� ln 
�
�d�


��	�
 � 
��	�


�
	�� � �



��
�	�
 � 	


�
�	�



� � ���

�
�	�



��	�
	

�
�	�
 � 
��	�



�
	�� � �

���	�
 � 	


�
�	�



� � ���
��	�



��	�
	

�
�	�
 � 
��	�



	�



where


��i 	�

�
� lim

���

d�
i
d��

� �
�i	�
��i	

�
i	�



� � 
�i	�
� ��

The proposed approximation for the optimal threshold k�� consists then of selecting the closest

integer to x�
�
� �C� � �C�B� Note that the main contribution for large B comes from C�� In fact� as

will be seen in section 
��� numerical evidences suggest the following conjecture which� however� we

were not able to prove

lim
B��

k��
B
� �C�� 	��


��� The Symmetric N�Ported System

In this section� we consider a system with N identical output ports� i�e�� the arrival and transmission

rates are the same on all ports and denoted by � and �� respectively� For this special case� we show

that the optimal policy is to accept all packets whenever the bu�er is non�full� and when the bu�er

is full to accept a packet only if the queue corresponding to its destination output port is not the

largest� In the latter case� a packet from the largest queue is pushed�out to accommodate the new

arrival�

��



The dynamic programming equation for this system becomes�

Tf	k
 � �
NX
i��

�fki � �g� ��
NX
i��

f	 	k � ei

� 
 � ��

NX
i��

�i	�k
 	��


where�

�i	�k
 � max
��j�N

f f	k � ei � ej
 g if
NX
i��

ki � B

�i	�k
 � max
��j�N

f f	k � ei
� f	k� ei � ej
 g if
NX
i��

ki � B 	��


where� we de�ne k
�
�	k�� � � � � kN
� 	k � ei


��
�	k�� � � � � 	ki � �


�� � � � � kN
� and �i	k

�
�� if kj � � or

kj � B for some � � j � N �

As for the two�ported case� we �rst proceed to establish a number of key properties of the optimal

value function which will enable us to characterize the optimal policy�

Lemma � The optimal value function J�	k
 has the following properties�

�� Monotonicity and boundedness in ki� � � J�	k� ei
� J�	k
 � �� � � ki � B � � � � � i � N �

�� Symmetry� J�	k
 � J�			k

 for any permutation 		k
 of the vector k�

�� Balancing� For � � i� j � N � if ki � kj then J�	k
 � J�	k � ei � ej
� otherwise J�	k
 �

J�	k � ei � ej
�

	� Drop from the longest queue� For � � i� j� l � N � if ki � kj � kl then J�	k � ei � el
 �

J�	k � ei � ej
�

Proof� See appendix A�

As before� the above properties can now be applied to characterize the optimal policy which we

state in the following proposition�

Proposition � The optimal policy for the discounted cost problem is to accept a packet whenever the

bu�er is non�full� When the bu�er is full� a packet is accepted only if the queue corresponding to its

destination output port is not the largest among all queues� The arriving packet is then accommodated

by pushing�out a packet from the largest queue�

��



Proof� Property � of Lemma � implies that an arriving packet should be accepted if an empty bu�er

is available� Property � implies that an arrival to a full bu�er should be accepted only if it is not

destined to the longest output queue� in this case property 
 implies that a packet from the longest

output queue should be dropped in order to accommodate the arriving packet�

��� The Average Cost Problem

In this section we establish that the usual conditions required to extend the solution of the discounted

cost problem to the average cost problem are indeed satis�ed� The state space of our system is �nite�

and for �i � �� � � i � N� the state x � � is accessible from every other state regardless of which

stationary policy is used� Hence� the conditions of Corollary ���� section V� of ��� are satis�ed and

the following properties hold�

�� There exists a bounded function h	i
 and a constant J 	the optimal value of the average cost

problem which doesn�t depend on the initial state
 which satisfy the average cost version of

the optimality equation�

J � h	�k
 �
NX
i��

�i�fki � �g�
NX
i��

�ih		�k � ei

�
 �

NX
i��

�i�i	�k
� 	��


where �i	�k
 is de�ned in 	��
 with h		
 replacing f		
�

�� For some sequence �n � �� h	�k
 � limn���J�n	
�k
� J�n	�
��

�� J � lim���	�� �
J�	�
�

From property � it follows that the function h	�k
 has the same properties as the function J�n	�k


listed in Lemmas ��� for some sequence �n � �� Equation 	��
 has a form similar to the dynamic

programming equation of the discounted cost problem and Corollaries ��� can� therefore� be shown

to also hold for the average cost problem�

� Numerical Results

In this section we investigate the performance of a shared memory switch operated under the optimal

policy identi�ed in this paper� Our focus is on the two�ported case for which more general results

are available� For this system� we conduct two kinds of investigations� A comparison with the

�




performance of the optimal coordinate�convex policy� An evaluation of the accuracy of the heuristic

approximation proposed to compute the optimal threshold�

In order to determine the performance of the optimal policy� we need to compute the packet loss

probabilities of the system under this policy� The main problem is obtaining these probabilities is

that the state space of the underlying Markov chain increases very fast as the bu�er size increases�

Speci�cally� the number of states is 	B � �
���� where B is the bu�er size� which makes direct state

probabilities computations di�cult when B is large�

We investigated two possible approaches to compute packet loss probabilities� The �rst one takes

advantage of the special structure of the Markov chain to reduce to B � � the number of equations

needed to solve for the state probabilities� The method for achieving this reduction is presented in

appendix B� While this method was found to drastically improve computation time� it requires very

high precision in order to avoid numerical instabilities� Therefore� we investigated another approach

for computing loss probabilities� It is based on the successive approximation technique for computing

average costs presented in ��� Section ����� This technique requires certain properties from the Markov

chain� but they are easily seen to be satis�ed in our case� Since we are interested mainly in computing

loss probabilities rather than the probabilities of every state� we can then use the method with the

number of lost packets as our cost function� The main issue with the technique is convergence speed�

and it is typically much slower than the �rst approach� However� the main advantage is numerical

stability� especially for large bu�ers� Because of that� it has been the technique of choice in most of

our numerical examples�

	�� Comparison with Coordinate�Convex Policies

Since a coordinate�convex policy is a special case of a pushout policy� considering as cost the overall

switch loss probability� the optimal pushout policy will have a smaller loss probability than the

optimal coordinate convex policy� The price of this improvement is� however� a more complex

implementation� and it is of interest to evaluate the trade�o� between the gain in performance

and the higher cost� In this section� we provide numerical results to help us compare the relative

performance of the optimal coordinate�convex� 	�c � and the optimal pushout� 	
�
p policies� Figure �

gives the performance of the two policies for a bu�er size of ��� In �gures � 	a
 and 	b
� the utilization

	� � ���
 of port � is kept constant at �� while the utilization of port � varies from �� to ���� In

�gures � 	c
and 	d
� the utilization of port � is kept constant at �� while the utilization of port �

varies again between �� and ����

We observe that the di�erence in overall loss probability between the two policies is not very

��



signi�cant� For the speci�c examples we consider� the maximum value of the ratio

Loss probability of 	�c
Loss probability of 	�p

is ����� However� when individual loss probabilities are considered� signi�cant di�erences between

the two policies are observed� Speci�cally� the loss probability of port � whose utilization is kept

constant� is a�ected signi�cantly by the variation of the utilization of port � under policy 	�c and

varies by up to seven orders of magnitude� Under policy 	�p� however� the loss probability of port �

never increases above what it experiences in the reference balanced case 	equal port loads
 by more

than one order of magnitude as the utilization of port � varies� Furthermore� the better overall

performance of 	�p often also results in lower loss probabilities for both ports� Even in the few

cases where the loss probabilitiy for the heavier loaded port is lower under 	�c than under 	
�
p � the

di�erence remains minimal� Speci�cally� for the examples of �gure �� the loss probabilitiy for the

heavier loaded port under 	�c is never less than �� of its value under 	�p� Similar experiments

were conducted for many other values of port utilizations and for bu�er sizes up to ��� and similar

behaviors were observed� Therefore� we concluded that an important advantage of 	�p compared to

	�c is that it e�ectively isolates the performance of a port with constant utilization from �uctuations

in the utilization of the other port 	assuming� the optimal policy is used in each case
�

Figure � illustrates another noteworthy feature of the pushout policies� In this �gure we plot the

total loss probability and the loss probabilities of the two ports when a POT policy� not necessarily

the optimal� is employed� The bu�er size in this case is �� and the k� thresholds used by the POT

policy are varied between � and ��� We observe that the overall loss varies little as the threshold

changes� This implies that the performance of the optimal policy is not critically dependent on the

choice of the optimal threshold� However� this is not true for individual loss probabilities at each

port� As we have seen above it may be desirable� in addition to achieving a throughput close to the

optimal� to also provide appropriate loss probabilities to each port� In this case a good approximation

to the optimal threshold k�� is still required� As we will see in the next subsection� the approximation

proposed in section ����� for the optimal threshold is quite good� especially when the port utilizations

are smaller than ��

	�� Accuracy of the Approximation

Figure � compares the values of the optimal threshold and the proposed approximate threshold for

the parameters of �gure ��

We see that the approximate values are very close to the optimal when utilization of both ports

is smaller than one� Numerical experimentation has also shown� that the approximation while

��



somewhat less accurate� is still good when the utilization of both ports is larger than one� The

approximation is less accurate when the utilization of one port is smaller than but close to �� while

the utilization of the other port is larger than but close to �� Even in this case� as the bu�er size

increases� the approximation does become more accurate� This is illustrated in �gure 
� where we

plotted the ratio of the optimal to the approximate threshold as the bu�er size increases� This

was done for two sets of port utilizations� In the �rst set 	��� ��
 � 	��� ���
� while in the second�

	��� ��
 � 	��� ���
� We see that in both cases� while the approximation is poor for small bu�ers� it

continually improves as the bu�er size increases� This leads us to conjecture the correctness of the

asymptotic behavior of the approximation expressed in 	��
�

� Conclusion

In this paper� we have studied optimal policies for shared memory switches when packets already

stored in memory can be pushed�out to accommodate another packet� We have identi�ed the optimal

policy for a general two�ported system as well as for a symmetric n�ported system� Our investigation

of the performance of the optimal policy has shown� that if the only objective is to minimize the

overall loss probability� the optimal push�out policy does not provide signi�cant advantages over the

optimal coordinate�convex policy� However� if it is also desired that the loss probability of one port

be isolated from the tra�c �uctuations of the other port� then the optimal push�out policy o�ers

some advantages�

Another interesting property of the optimal POT policy is the insensitivity of the overall loss

probability to the exact choice of the threshold� which facilitates its design� In cases where individual

port loss probabilities are also of importance� a more accurate calculation of the threshold is required

and we suggested an approximation that provides a quick estimate which is good for most tra�c

values of interest�

While we provided the optimal push�out policy for N � � and symmetric tra�c� the structure of

the optimal policy for general input tra�c and N � � is not known at this time�

��



APPENDICES

A Proofs of Lemmas

Proof of Lemma �� Assume that properties ��� of Lemma � hold for a function f � F �

Proof of property ��

case � 	k� � k� � B � �
� From properties ��� of the function f � we have

Tf	k�� k�
 � ���fk� � �g� ���fk� � �g

� ���f		k� � �

�� k�
 � ���f	k�� 	k�� �


�


� ���f	k� � �� k�
 � ���f	k�� k� � �
 	��


Tf	k� � �� k�
 � �� � ���fk� � �g

� ���f	k�� k�
 � ���f	k� � �� 	k�� �

�


� ���f	k� � �� k�
 � ���f	k� � �� k� � �
 	��


Comparing 	��
 and 	��
 term by term and using properties ��� of the function f � we have that

���fk� � �g � Tf	k� � �� k�
� Tf	k�� k�
 � ���fk� � �g� �	�� ���fk� � �g


from which we have � � Tf	k� � �� k�
� Tf	k�� k�
 � ��

case � 	k� � k� � B � �
� From properties ��� of the function f � we have

Tf	k� � �� k�
 � �� � ���fk� � �g� ���f	k�� k�
 � ���f	k� � �� 	k�� �

�


� ���maxff	k� � �� k�
� f	k�� �� k� � �
g

� ���maxff	k� � �� k�
� f	k�� k�� �
g 	��


and Tf	k�� k�
 is the same as 	��
� From properties ��� of the function f � we have � � f	k���� k��

�
� f	k� � �� k�� �
 � � and �� � f	k� � �� k� � �
� f	k� � �� k�
 � �� from which we have

� � maxff	k� � �� k�
� f	k�� �� k� � �
g � f	k� � �� k�
 � � 	��


and similarly we have

� � maxff	k� � �� k�
� f	k�� k� � �
g � f	k�� k� � �
 � � 	��


Comparing 	��
 and 	��
 term by term and using properties ��� of the function f and 	��
�	��
� we

have � � Tf	k� � �� k�
� Tf	k�� k�
 � ��

��



Proof of property �� similar to the proof of property ��

Proof of property �� follows directly by comparing Tf	k� � �� k�
 � Tf	k�� k�
 with Tf	k�� k�
 �

Tf	k� � �� k�
 term by term as in the proof of property �� The proof of property 
 follows in a

similar way�

Proof of property 
�

case � 	k� � k� � B � �
� From properties ��� of the function f � we have

Tf	k� � �� k�� �
� Tf	k�� k�
 � ��	�fk� � �g � �


� ���	f	k�� k� � �
� f	k� � �� k�

 � ���	f	k� � �� 	k�� �

�
� f	k�� k� � �



� ���	f	k� � �� k�� �
� f	k� � �� k�

 � ���	f	k� � �� k�
� f	k�� k� � �

 	�



Tf	k�� k�
� Tf	k� � �� k�� �
 � ��	�� �fk� � �g


� ���	f	k� � �� k�
� f		k� � �

�� k�� �

 � ���	f	k�� k�� �
� f	k� � �� k�



� ���	f	k� � �� k�
� f	k�� k�� �

 � ���	f	k�� k�� �
� f	k� � �� k�� �

 	��


For k�� k� � � it follows directly by comparing 	�

 with 	��
 term by term and using property � of

the function f that the LHS of 	�

 is less or equal to the LHS of 	��
� For k� � �� k� � �� comparing

	�

 with 	��
 term by term we have that� the terms multiplied by ���� ���� ��� in 	�

 are less

equal to the corresponding terms in 	��
 by property �� We still have to show that

���	f	�� k�� �
� f	�� k�

 � �� � ���	f	�� k�
� f	�� k� � �

 	��


From property 
 we have f	�� k� � �
 � f	�� k�
 � f	�� k�
 � f	�� k� � �
� and from property � we

have f	�� k�� �
 � � � f	�� k�� �
� From the last two inequalities we have f	�� k�� �
� f	�� k�
 �

� � f	�� k�
� f	�� k� � �
� from which the inequality 	��
 follows� The proof is similar for the case

k� � �� k� � ��

case � 	k��k� � B
� The inequality Tf	k���� k���
�Tf	k�� k�
 � Tf	k�� k�
�Tf	k���� k���


is easily shown to hold by comparing these expressions term by term and using property � of the

function f on the lines k� � k� � B � � and k� � k� � B� For the terms involving ��� �� the above

inequality holds for all cases of the location of the maximum of the function f on the line k��k� � B�

Proof of Lemma �� Assume that Lemma � holds for a function f � F �

case � 	k� � k� � B � �
� From properties ��� of the function f � we have

Tf	k�� k�
 � �	�fk� � �g� �fk� � �g
 � ��	f		k� � �

�� k�
 � f	k�� 	k�� �


�


� ���f	k� � �� k�
 � ���f	k�� k�� �
 	��


��



Tf	k�� k�
 � �	�fk� � �g� �fk� � �g
 � ��	f		k� � �

�� k�
 � f	k�� 	k�� �


�


� ���f	k� � �� k�
 � ���f	k�� k�� �
 	��


Comparing 	��
 with 	��
 term by term and using Lemma � for the function f � we have that

Tf	k�� k�
 � Tf	k�� k�
�

case � 	k� � k� � B
� Here we have�

Tf	k�� k�
 � �	�fk� � �g� �fk� � �g
 � ��	f		k� � �

�� k�
 � f	k�� 	k�� �


�


� ���maxff	k�� k�
� f	k�� �� k�� �
g� ���maxff	k�� k�
� f	k�� �� k�� �
g 	��


Tf	k�� k�
 � �	�fk� � �g� �fk� � �g
 � ��	f		k� � �

�� k�
 � f	k�� 	k�� �


�


� ���f	k�� k�
 � ���f	k� � �� k� � �
 	��


where in the last two terms of 	��
 we used Lemma � and property � of Lemma � 	concavity on the

line k� � k� � B
 for the function f � Applying Lemma � twice to the function f � we obtain the

following two inequalities

maxff	k�� k�
� f	k�� �� k�� �
g � f	k�� k�


� f	k� � �� k�� �
� f	k�� k�
 � f	k� � �� k� � �
�maxff	k�� k�
� f	k� � �� k�� �
g 	��


From 	��
 and the inequality �� � �� we have Tf	k�� k�
 � Tf	k�� k�
�

Proof of Lemma �� Assume that properties ��
 of Lemma � hold for a function f � F �

Proof of property �� Similar to the proof of property � of Lemma ��

Proof of property �� Consider a state k and de�ne the state kij as the state k with ki and kj

interchanged� It is enough to show that Tf	k
 � Tf	kij
� Compare the dymanic programming

equations� 	��
� of Tf	k
 and Tf	kij
 term by term� Clearly� the �rst terms are equal� Using

property � 	f		k � ei

�
 � f		kij � ej


�

 it follows that the second terms are equal as well� Using

property � again one can easily show that the third terms are also equal�

Proof of property �� Consider a state k and assume that the bu�er is full� i�e��
PN

i�� ki � B� Fix

some i� j 	i �� j
� and assume that ki � kj 	� �
� We show that Tf	k
� Tf	k� ei � ej
 � �� From

equation 	��
 we have that

Tf	k
� Tf	k � ei � ej


� ���� �fkj � �g� � ��
NX
l��

l��i�j

�f		k � el

�
� f		k� ei � ej � el


�
�

��



� ���f	k � ei
� f	k � ej
� � ���f	k � ej
� f		k � ei � �ej

�
�

� ��
NX
l��

� max
��p��N

ff	k � el � ep�
g � max
��p��N

ff	k � ei � ej � el � ep�
g� 	��


Each of the second and the third terms of 	��
 is greater than or equal to zero 	gez
 by properties

� and �� For kj � � the �rst term of 	��
 vanishes and the fourth term is gez by property �� For

kj � � the �rst term equals � and for the fourth term we have by property � 	boundedness
 that it

is greater or equal to ���� hence the sum of the �rst and the fourth terms is greater than zero for

� � �� This shows that the sum of the �rst four terms is gez�

Then� we show that the last term of 	��
 is gez� We show that for each l the term that appears

in the sum is gez� Fix l and denote by p�� and p
�
� the indices that give the maximum value in the �rst

and the second maximum terms� respectively� We break ties in the maximum terms by choosing p��

and p�� such that kp�� and kp�� are the maximal components of the vectors k and k�ei�ej � respectively

	obviously� this convention doesn�t a�ect the validity of the proof
� Next� we consider all cases of the

location of the maximum indices p�� and p
�
� and show that each term that appears in the sum of the

last term of equation 	��
 is gez� First consider the case p�� � j� Then by property 
 of the function

f it must be that kj is the maximal component of the vector k 	there may be other components with

the same value
� and since ki � kj we have that ki � kj � Then� applying property 
 of the function

f to the second maximum term we have that p�� � i� which implies that the two maximum terms are

equal� Next� consider the case p�� � i 	and assume that ki � kj � otherwise we get the previous case
�

Then� by property 
 of the function f it must be that ki is the maximal component of the vector k�

and hence p�� is equal to i 	by property 
 again
� Then� the di�erence between the two maximum

terms is gez for i � l or i� j �� l by property � of the function f and for i �� l � j by properties �

and � of the function f � Finally� we consider the case p�� �� i� j 	and assume that kp�
�
� ki� otherwise

we get the previous case
� Then� by property 
 of the function f it must be that kp�
�
is the maximal

component of the vector k� and hence p�� is equal to p
�
� 	by property 

� The proof then follows

exactly as the previous case�

Consider the case ki � kj and de�ne !k
�
�k � ei � ej � Then� for kj � ki � � we have Tf	!k
 �

Tf	!k� ei � ej
 by the �rst part of property �� and for kj � ki � � we have Tf	!k
 � Tf	!k� ei � ej


by property �� This completes the proof of property � for the case of full bu�er� The proof for the

case of a non�full bu�er is simpler and follows in a similar way�

Proof of property 	� This property follows directly from property ��
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B Recursive State Probabilities Computations

In this section we outline an e�cient method for the computation of the state probabilities in a

threshold�based pushout shared memory system with two inputs and two outputs� We let �k and

�k � be the arrival and service rates� respectively� for output k� k � �� �� We assume that the shared

memory can hold B packets and denote by K� the pushout threshold value� Note that a packet

occupies its bu�er until it �nishes being served and leaves the system� In other words� the maximum

number of packets in the system is B� and the two servers do not correspond to additional bu�er

space� Under the assumption of Poisson arrivals and exponential service times� the system can be

represented by a two�dimensional Markov chain whose state is of the form 	i� j
� � � i� j � B� and

i�j � B� with i and j denoting the number of class � and class � packets in the system� respectively�

The total number of states is then 	B � �
	B � �
���

The operation of the system is such that if there are free bu�ers� an arriving packet is always

accepted irrespective of its class� However� when all bu�ers are full� the handling of a packet depends

on its class and the system state�

i� j � B and i � K� � An arriving class � packet is dropped and the system state remains at 	i� j
�

An arriving class � packet is accepted by pushing out a class � packet� and the new state is

	i� �� j � �
�

i� j � B and i � K� � An arriving class � packet is dropped and the system state remains at 	i� j
�

An arriving class � packet is accepted by pushing out a class � packet� and the new state is

	i� �� j � �
�

i� j � B and i � K� � Any arriving packet is dropped irrespective of its class� and the system

state remains at 	i� j
�

The 	B��
	B��
�� state probabilities can be obtained using a number of standard techniques�

but the purpose of this section is to describe a simple and e�cient recursive procedure for their

computation� The key to this approach is to note that all state probabilities can be expressed

as functions of the probabilities of boundary states� i�e�� states corresponding to a full bu�er� In

this appendix we describe how these functions can be recursively obtained� and then show how the

remaining B � � unknown state probabilities can be computed using additional equations and the

normalization condition�

��



B�� Recursive Procedure

B���� Outline

We denote the probability of state 	i� j
 by Pi�j and want to express all Pi�j �s in terms of the B � �

unknowns Ci � Pi�B�i� This can be done recursively using the balance equations for state 	i� j
 and

progressing by decreasing value of j and then increasing value of i� When referring to �gure �� we

start with the balance equation for state 	�� B
 which allows us to express P��B�� as a function of

C�� Next we move to 	�� B � �
 whose balance equations gives P��B�� in terms of P��B� P��B��� and

P��B��� and therefore as a function of C� and C� based on the previously obtained expression for

P��B��� This process continues row�wise and by decreasing value of j until we reach the second row

of the state diagram 	the detailed equations for this procedure are provided below
� At this point�

all state probabilities have been expressed as functions of the unknowns Ck � � � k � B� and it

now remains to identify B �� additional� independent equations from which these unknowns can be

computed�

These B � � additional� independent equations can be obtained from the balance equations for

the states 	�� �
� 	�� �
 � � �	B� �
 of the last row of the state diagram� plus the normalization condition�

The unknowns can then be determined and used to obtain all the state probabilities� The overall

complexity of the procedure is O	B	
� while a standard approach based on the full transition matrix

would typically be O	B

� Signi�cant speed improvements can� therefore� be achieved� However�

as mentioned earlier� stable operation for large values of B requires very high precision due to the

presence of alternating signs in the expressions involved� The rest of this section is devoted to

detailing these equations�

B���� Notation and Detailed Equations

We assume that the state probabilities Pi�j can be expressed in terms of the unknowns Ck�

Pi�j �
BX
k��


i�j	k
Ck� � � i � B and � � j 	��


From our de�nition of the unknowns Ci � Pi�B�i� we have�


i�B�i	k
 �

�
� if k � i

� if k �� i

Our recursion to obtain the Pi�j in the form of equation 	��
 proceeds row�by�row and increasing

value of the index i identifying the number of class � packets in the full bu�er state of that row� i�e��

��



the state 	i� B � i
� This recursive approach allows us to compute the coe�cients 
i�j in terms of

previously computed ones� For that purpose� we identify several regions corresponding to di�erent

forms of the balance equations� that re�ect the in�uence of various boundary conditions�

As shown in �gure �� there are six di�erent cases that need to be considered as their balance

equations have di�erent expressions�

�� State 	�� B
� This is the only state on row �� and it corresponds to the case where the system

is full with class � packets�

�� States 	�� B� i
� � � i � B � �� These states are the �rst ones on each row and correspond to

cases with no class � packets in the system�

�� States 	i� B � i
� � � i � K�� These states correspond to a full system where the number of

class � packets is below the threshold�


� States 	K�� B � K�
� This state corresponds to a full system where the number of class �

packets is at the threshold�

�� States 	i� B � i
� K� � i � B � �� These states correspond to a full system where the number

of class � packets is above the threshold�

�� States 	j� B � i
� � � i � B � �� and � � j � i � �� These are essentially the states in the

interior of the state diagram�

Case ��

The balance equation for case � gives us the following relation�

C�	�� � ��
 � ��P��B��

� P��B�� �
�� � ��
��

C�

� 
��B��	�
 �
�� � ��
��

and 
��B��	k
 � �� � � k � B 	�



This means that we have obtained P��B�� in terms of the desired unknowns�

Case ��

Balance equations for case � states yield the following expression for � � i � B � ��

	�� � �� � ��
P��B�i � ��P��B�i�� � ��P��B�i � ��P��B�i��

� P��B�i�� �

�
�� � �� � ��

��

�
P��B�i �

��
��
P��B�i�� �

��
��
P��B�i

�




which gives

P��B�i�� �
BX
k��


�
�� � �� � ��

��

�

��B�i	k
�

��
��

��B�i��	k
�

��
��

��B�i	k


�
Ck

This then allows us to express 
��B�i��	k
 in terms of coe�cients from states in previous rows�

Hence� providing a recursive computational procedure�


��B�i��	k
 �

�
�� � �� � ��

��

�

��B�i	k
�

��
��

��B�i��	k
�

��
��

��B�i	k
 	��


Case ��

The Balance equation for case � have the following form for � � i � K��

	�� � �� � ��
Pi�B�i � ��Pi���B�i � ��Pi���B�i�� � ��Pi�B�i��

� Pi�B�i�� �

�
�� � �� � ��

��

�
Pi�B�i �

��
��
Pi���B�i �

��
��
Pi���B�i��

This again gives the coe�cients 
i�B�i��	k
 in terms of coe�cients from states in previous rows�


i�B�i�� �

�
�� � �� � ��

��

�

i�B�i �

��
��

i���B�i �

��
��

i���B�i�� 	��


Case 	�

The balance equation for the state corresponding to a full system with a number of packets of

each class exactly equal to the threshold value gives the following relation�

	�� � ��
PK��B�K� � ��PK����B�K� � ��PK����B�K���

���PK��B�K��� � ��PK����B�K���

� PK��B�K��� �
�� � ��
��

PK��B�K� �
��
��
PK����B�K�

�
��
��
PK����B�K��� � PK����B�K����

where we have assumed � � K� � B � �� Some minor modi�cations are needed if K� � � or

K� � B � �� but we shall not detail them here�

Based on the above relation� we again obtain 
K��B�K���	k
 in terms of coe�cients from states

in previous rows�

��




K��B�K��� �
�� � ��
��


K��B�K� �
��
��


K����B�K� 	��


�
��
��


K����B�K��� � 
K����B�K����

Case 
�

The Balance equations for case � have the following form for K� � i � B � ��

	�� � �� � ��
Pi�B�i � ��Pi���B�i � ��Pi���B�i�� � ��Pi�B�i��

� Pi�B�i�� �

�
�� � �� � ��

��

�
Pi�B�i �

��
��
Pi���B�i � Pi���B�i��

The coe�cients 
i�B�i��	k
 are as for case � obtained in terms of coe�cients from states in previous

rows�


i�B�i�� �

�
�� � �� � ��

��

�

i�B�i �

��
��


i���B�i � 
i���B�i�� 	��


Case ��

As mentioned earlier� case � corresponds to the balance equations for �typical� states� i�e�� states

which do not involve any boundary condition� For these states� the balance equation for state

	j� B � i
 with � � i � B � � and � � j � i� �� is as follows�

	�� � �� � �� � ��
Pj�B�i � ��Pj���B�i � ��Pj�B�i�� � ��Pj���B�i � ��Pj�B�i��

� Pj�B�i�� �

�
�� � �� � �� � ��

��

�
Pj�B�i �

��
��
Pj���B�i

�
��
��
P��B�i�� �

��
��
P��B�i

This gives the following recursion for the coe�cients 
j�B�i��	k
�


j�B�i�� �

�
�� � �� � �� � ��

��

�

j�B�i �

��
��


j���B�i �
��
��


��B�i�� �
��
��


��B�i 	��


Using equations 	�
���
 and proceeding in a row�by�row fashion� all the coe�cients 
i�j	k
 can

be computed so that based on equation 	��
 the Pi�j �s are expressed in terms of the B�� unknowns

Ck � � � k � B� It now remains to obtain B � � additional and independent equations to determine

these unknowns�

��



The �rst such equation is simply the normalization equation
P

ij Pi�j � �� which gives�

BX
k��

�
�X

i�j


i�j	k


�
ACk � � 	
�


The remaining B equations are obtained next from balance equations for states in the last row�

	B � i� �
� � � i � B � �� which have not been used before� Note that state 	�� �
 is not used as it

would not contribute an independent equation� As before� we need to distinguish between typical

and boundary cases and we start with the latter� i�e�� i � ��

The balance equation for state 	B� �
 gives�

CB	�� � ��
 � ��PB����

CB	�� � ��
 �
BX
k��

��
B����	k
Ck

� � �
B��X
k��

��
B����	k
Ck � ���
B����	B
 � 	�� � ��
�CB 	
�


Similarly� the balance equations for states 	B � i� �
� � � i � B � � give�

	�� � �� � ��
PB�i�� � ��PB�i���� � ��PB�i�� � ��PB�i����

� �
BX
k��

�	�� � �� � ��

B�j��	k
� ��
B�j����	k
 	
�


���
B�j��	k
� ��
B�j����	k
�Ck

Using these B � � equations� the unknowns Ck� � � k � B can be determined� which allows us to

then obtain all the state probabilities�
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