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Abstract

We consider a multiclass GI|G|1 queueing system, operating under an arbitrary work-conserving
scheduling policy π. We derive an invariance relation for the Cesaro sums of waiting times under

π, which does not require the existence of limits of the Cesaro sums. This allows us to include

in the set of admissible policies important classes, such as time-dependent and adaptive policies.

For these classes of policies, ergodicity is not known a priori and may not even exist. Therefore,

the classical invariance relations, involving statistical averages do not hold. For anM |G|1 system,
we derive inequalities involving the Cesaro sums of waiting times, that further characterize the

achievable performance region of the system.



1 Introduction.

Conservation laws (i.e., invariance relations,) regarding average waiting times and average number

of customers in the system have been known for a long time. Most of the conservation laws

presented so far [13, 12], deal with single server, work conserving systems, or multiple server,

strongly work conserving systems [12, 6]. Roughly speaking, in such systems, no work (service

time) is created or destroyed within the system (e.g., customers do not balk, the server maintains

always the same speed, etc.) For such systems, under ergodicity assumptions (that is, under

the assumption that limits of sample averages of waiting times exist under a scheduling policy

π,) one can prove invariance relations of the form (see e.g., [12],)

NX
i=1

ρiWi(π) = F, (1)

where N is the number of classes, Wi(π) is the limit of the sample average waiting time for

customers of class i, ρi is the utilization of class i and F is a constant, independent of the

scheduling policy. Relatively little can be said about multiple server systems [6].

The equation in (1) constrains the average waiting times under an ergodic scheduling policy to

lie on an N-dimensional plane. A number of inequalities [8] further constrain the set of achievable

average waiting times (i.e., the performance region) to be a convex polygon. These inequalities

take typically the form X
i∈R

ρiWi(π) ≥ F (R), (2)

where R ⊂ {1, 2, · · · , N} and F (R) is a function independent of the policy π. For further details,
the reader may consult [8].

In practice, work can be created and/or destroyed, within the system, in a scheduling policy-

dependent fashion. For example, when preemptive priority rules are considered, interruption of

a low priority customer introduces an overhead. Since this overhead depends on the priority

rule in hand, an invariance relation is no longer possible. Policy-dependent overhead is also

generated in polling systems, whenever the server spends a nonzero time to switch from a station
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to another (nonzero server walking time.) For such non work-conserving systems, a number

of pseudoconservation laws have appeared (see for example [2]). Such laws express a relation

between waiting times, akin to that of eq (1), but with policy-dependent right hand sides.

Ergodicity of the scheduling policy used is a key assumption for all the above studies. In

fact, many authors (an exception being [12, Theorem 11-13]) constrain further the class of work-

conserving policies to policies that have regenerative structure [4],[8],[6]. However, for a large

(and rather important for applications,) class of policies, namely adaptive [1], and in general,

policies that base their decisions on the entire history of the system, convenient regeneration

points may not exist. Moreover it may not be a priori clear that limits of sample averages exist

under such policies.

The motivation to study existence of invariance relations without ergodicity assumptions came

from the application studied in [1]. Briefly, the problem considered in [1] is the following: requests

belonging to N classes arrive for service at a single server queue. With each class, there is an

associated response time objective gi. The goal is to determine a scheduling policy π such that

W̄k(π)
∆
= lim supk→∞

Pk
m=1Wim(π)/k, where Wim(π) is the response time of the mth served

customer from class i, is kept below the objective gi. Note that for an ergodic policy, W̄k(π) is the

limit of the sample average of the waiting times of customers from class i. No a priori knowledge

of system statistics was assumed. This restriction excluded randomized policies [8] and lead to the

design of an adaptive policy. In addition, in this framework, the question arose whether by using

nonergodic policies one can improve the performance of the system. This question raises the issue

of what equalities/inequalities the sample averages of waiting times under general nonpreemptive

work-conserving policies may satisfy. Using the results of the current paper, it was shown that,

within the whole class of (both ergodic and nonergodic) nonpreemptive, work-conserving policies,

the policy proposed in [1] achieved the above mentioned goal.

The paper is organized as follows: in Section 2 we define the GI|G|1 model for which the
conservation law holds and specify the class of admissible policies. In Section 3 we prove a

conservation law for the GI|G|1 system and provide a counterexample to the claim that limits
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of sample averages of waiting times always exist when the interarrival times are exponentially

distributed. In Section 4, we derive inequalities that impose further constraints on the sample

averages of waiting times for the M |G|1 system.

2 System model and admissible policies

In the sequel, we use the following model. (This model has been used in [15] as well.)

System Model: We consider a single server queue with N classes of customers. The time

interval between the kth and k+1st arriving customer (k ≥ 1) is denoted by Tk. We assume that
the first arrival occurs at time t = 0. With each arrival there is an associated random variable,

Ck, which denotes the class to which the arrival belongs; that is, if Ck = i, i = 1, · · · , N , then
the kth customer belongs to class i. If the kth arriving customer belongs to class i, its service

time is a random variable Sik. Therefore, Sk, the service time of the kth arriving customer is

given by

Sk =
NX
i=1

I{Ck=i}Sik, (3)

where I{A} denotes the indicator function of the eventA. We assume that {Tk, k ≥ 1}, {Ck, k ≥
1} and {Sik, k ≥ 1}, for each i = 1, · · · , N , are independent sequences. Each sequence contains
i.i.d. random variables. It follows from (3) that {Sk, k ≥ 1} is a sequence of i.i.d. random
variables independent of {Tk, k ≥ 1}. We define the total arrival rate as λ ∆

= 1/ET1 and the

arrival rate of class i as λi
∆
= P (C1 = i)/ET1. To avoid unnecessary complications, we assume

that λ > 0, P (T1 = 0) = 0, P (S1 = 0) = 0 and P (C1 = i) > 0, i = 1, · · · , N .

For the conservation law of Theorem 1 in Section 3, the distribution of {Tk, k ≥ 1} is
arbitrary. However, for the inequality relations of Theorem 2 in Section 4 we need to assume

that the random variables {Tk, k ≥ 1} are exponentially distributed. Then this is equivalent
to the assumption that the arrival instants of each class constitute a Poisson process with rate

λi
∆
= P (C1 = i)/ET1, independent of the arrival processes of the other classes.

We specify next the set of admissible scheduling policies (i.e., all policies under which the
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system may operate.) This is the class of nonpreemptive, work-conserving policies. We place

no ergodicity restriction on an admissible policy. Thus, any adaptive or time-dependent policy is

a member of this class. A rigorous definition of this class is given in [9]. Roughly speaking, a

work-conserving policy does not idle the server while customers are waiting in the queue, does

not affect the amount of service time given to a customer or the arrival time of a customer and

is nonanticipative (that is, the scheduling decisions do not depend on future interarrival times,

future service times or the service times of customers that are present in the system at the time

when a scheduling decision is made.) Under a nonpreemptive policy, a customer in the queue

may not replace a customer who is being served before its service requirements are completed.

Under a nonpreemptive, work-conserving policy, the service times of the departing customers

from class i are i.i.d. r.v., identically distributed to {Sik, k ≥ 1}. Moreover, the service time of
the kth departing customer from class i is independent of its waiting time (time the customer

was waiting in queue before its service started) and of the waiting times of the customers from

class i that were served before the kth customer. These properties are crucial for the results in

the next sections and are stated formally in Lemma 1 below. Although the assertions of Lemma

1 are fairly intuitive, the proof requires a more precise definition of the class of admissible policies

as well as some technical arguments which are presented in [9].

For the kth departing customer from class i, letWik denote its waiting time and S̄ik its service

time. For i = 1, 2, · · · , N , and k ≥ 2, let

Fi1
∆
= σ(Wi1)

Fik
∆
= σ(Win, 1 ≤ n ≤ k; S̄in, 1 ≤ n ≤ k − 1),

where σ(X ) denotes the σ-field generated by the set of random variables X .

Lemma 1 Under any nonpreemptive, work-conserving policy the following statements are true:

1. S̄ik is independent of Fik, for every k ≥ 1.
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2. For a fixed i, 1 ≤ i ≤ N , the sequences {S̄ik, k ≥ 1} and {Sik, k ≥ 1}, are identically
distributed.

Remark: Note that the second statement of Lemma 1 is not true for the service times of

the successive departing customers. In other words, if S̄k is the service time of the kth departing

customer (irrespective of its class,) it is not true in general that under a nonpreemptive work-

conserving policy, {S̄k, k ≥ 1} is identically distributed to {Sk, k ≥ 1}.

3 The conservation law

The key to the main result of this section is the Strong Law of Large Numbers for Martingales

which is presented in Lemma 2. Its proof can be found in [11]. As will be seen in the proof of

Theorem 1, the corollary to this lemma, Corollary 1, will allow us to state the conservation law

without the need to assume the existence of limits of sample averages of waiting times.

Lemma 2 Let {Xk, k ≥ 1} be a sequence of random variables and {Fk, k ≥ 1} an increasing
sequence of σ-fields, with Xk measurable with respect to Fk, for each k. Let Z be a random

variable and let c be a constant such that E(|Z| · max{0, log |Z|}) < ∞ and P (|Xk| > x) ≤
c · P (|Z| > x) for each x ≥ 0 and k ≥ 1. Then

lim
k→∞

1

k

kX
m=1

[Xm+1 −E(Xm+1|Fm)] = 0 a.e.

The next corollary follows easily from Lemma 2.

Corollary 1 Let {Wk, k ≥ 1}, {Sk, k ≥ 1} be sequences of random variables and {Fk, k ≥ 1}
be an increasing family of σ-fields. Suppose that Wk is Fk-measurable for all k ≥ 1 and that
Sk−1is Fk-measurable for all k ≥ 2. Suppose also that Sk is independent of Fk, for all k ≥ 1.
Let there be a random variable Z, a constant δ > 1, and a constant c such that E|Z|δ <∞ and
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P (|WkSk| > x) ≤ cP (|Z| > x) for each x ≥ 0 and k ≥ 1. Then

lim
k→∞

ÃPk
m=1WmSm

k
−
Pk

m=1WmESm
k

!
= 0 a.e. (4)

Proof: Let X1
∆
= 0, Xk

∆
= Wk−1Sk−1, k ≥ 2. Clearly, Xk is Fk-measurable for all k ≥

1. Also, since Sk is independent of Fk and Wk is Fk-measurable, we have that for k ≥ 1,

E(Xk+1|Fk) = E(WkSk|Fk) = WkESk. Since δ > 1, the condition E|Z|δ < ∞ implies that

E(|Z|max{0, log |Z|}) < ∞. Equation (4) follows now by applying Lemma 2 to the sequence
{Xk, k ≥ 1}. 2

Recall that Wim (or Wim(π), when dependence on the policy needs to be emphasized,)

denotes the waiting time of the mth departing customer from class i when policy π is used and

S̄ik denotes the service time of the kth departing customer from class i. We shall use Corollary

1 in Theorem 1 below, by replacing Wk with Wik and Sk with S̄ik. To verify the conditions of

Corollary 1 in this case, we need the lemma that follows and some conditions on the moments

of the service times. Let s
(m)
i

∆
= ESm

i1 denote the mth moment of the random variable Si1. Let

si
∆
= ES1i1 and define ρi, the utilization of class i, as ρi = λisi.

Lemma 3 Suppose that
PN

i=1 ρi < 1 and that for some constant γ > 2, s
(γ)
i < ∞, i =

1, · · · , N . Then under any nonpreemptive, work-conserving policy, there exists a constant ci and
a nonnegative random variable Zi such that EZ

γ/2
i < ∞, and for each x ≥ 0 and k ≥ 1, we

have that

P (Wik(π)S̄ik > x) ≤ ciP (Zi > x).

The proof of Lemma 3 is given in [9]. The main idea is to use the fact that under any work-

conserving policy, the waiting time of a customer is bounded by the length of the busy period

in which the customer arrived, a quantity which is independent of the policy. The details of the

proof are based on renewal arguments and are omitted for the sake of brevity.

We are now ready to state and prove the conservation law for the GI|G|1 queueing system.
For an admissible scheduling policy π, let V (π)(t) denote the work in system (i.e., the sum of
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remaining service times of all customers in the system at time t,) when policy π is used. Let

us also denote by FIFO the policy that serves customers in First In First Out order. It is well

known that for this policy

lim
T→∞

1

T

Z T

0
V (FIFO)(t)dt = V ∗ = constant a.e.

Theorem 1 Suppose that
PN

i=1 ρi < 1 and that for some constant γ > 2, s(γ)i < ∞, i =

1, . . . , N . Then, for all work-conserving, nonpreemptive policies, we have that

lim
k→∞

NX
i=1

ρi

ÃPk
m=1Wim(π)

k

!
= V ∗ − 1

2

NX
i=1

λis
(2)
i a.e.

Proof: Let π be an admissible policy. Since the admissible policies are nonidling, the work in

system at time t is independent of the policy, [13], and therefore, for all t ≥ 0,

V (FIFO)(t) =
NX
i=1

V
(π)
i (t), (5)

where V
(π)
i (t) is the work in system at time t due to customers from class i only.

Let Kim denote the number of class i customers served during the mth busy period and

Km =
PN

i=1Kim. Let also Mik =
Pk

m=1Kim and Mk =
Pk

m=1Km. Since
PN

i=1 ρi < 1, we have

that EK1 < ∞, [5]. Using the Strong Law of Large Numbers, we have that limk→∞Mik/k =

P (C = i)EK1 and limk→∞Mk/k = EK1. Therefore,

lim
k→∞

Mik

Mk
= lim

k→∞
Mik/k

Mk/k
= P (C1 = i) =

λi
λ

a.e. (6)

From [3, Theorem 6] we have that

lim
k→∞

1

k

kX
m=1

W a
kSk =

V ∗

λ
− 1
2

NX
i=1

λi
λ
s
(2)
i a.e., (7)

where W a
k denotes the waiting time of the kth arriving customer. Taking the limit in (7) over

the subsequence Mk and rearranging terms, we have that

lim
k→∞

1

Mk

NX
i=1

MikX
m=1

Wim(π)S̄im = lim
k→∞

NX
i=1

Mik

Mk

PMik
m=1Wim(π)S̄im

Mik

=
V ∗

λ
− 1
2

NX
i=1

λi
λ
s
(2)
i a.e. (8)
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In (8), the sum
PMik

m=1Wim(π)S̄im appears, while for the conservation law we need only the

sum
PMik

m=1Wim(π). It is here where Corollary 1 is used. Towards this end, let us define,

rik
∆
=

PMik
m=1Wim(π)S̄im

Mik
− si

PMik
m=1Wim(π)

Mik
. (9)

Using Lemma 1 and Lemma 3 we see that (for a fixed i,) the sequences Wk =Wik(π), Sk = S̄ik

and Fk = Fik satisfy all the conditions of Corollary 1. Since limk→∞Mik =∞ a.e., we conclude

that

lim
k→∞

rik = 0 a.e. (10)

From (8), (9) and (10) we have that

lim
k→∞

NX
i=1

Ã
Mik

Mk
si

PMik
m=1Wim(π)

Mik
+

Mik

Mk
rik

!
=

V ∗

λ
− 1
2

NX
i=1

λi
λ
s
(2)
i a.e. (11)

To proceed, we need to replace in (11) the sequence Mik/Mk with its limit, λi/λ, and this can

be done if we show that for a fixed i, the sequence {PMik
m=1Wim(π)/Mik, k ≥ 1} is bounded

almost everywhere. Let Bk denote the length of the kth busy period; {Bk, k ≥ 1} is a sequence
of i.i.d. random variables, independent of the scheduling policy. Observe that since ES21 < ∞,
we have that EB2

1 < ∞, EK2
1 < ∞, [10], and therefore, from Schwartz’s inequality we have

that

E[K1B1] ≤ (EK2
1 · EB2

1)
1/2 <∞.

Let B̄im denote the busy period during which the mth customer from class i departs. Since

Wim(π) ≤ B̄im, we have that

lim sup
k→∞

{
PMik

m=1Wim(π)

Mik
} ≤ lim sup

k→∞
{
PMik

m=1 B̄im

Mik
} = lim sup

k→∞

Pk
m=1BmKimPk
m=1Kim

≤ lim
k→∞

Pk
m=1BmKmPk
m=1Kim

=
E[B1K1]

P (C = i)EK1
<∞ a.e. (12)

Using now (6),(11),(10) and (12) we have that

lim
k→∞

NX
i=1

λisi

PMik
m=1Wim(π)

Mik
= V ∗ − 1

2

NX
i=1

λis
(2)
i a.e. (13)
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It remains to show that (13) holds for all k (and not just for the subsequencesMik). This is done

by using the standard arguments by which partial reward limits are established from the known

limits of renewal reward processes, see e.g. [14, Section 2.3]. 2

When the arrival process of each class is Poisson, it is stated in [12, p. 432] that under any

nonpreemptive, work-conserving policy the limits of the sample averages of the waiting times

exist. If this statement were correct, Theorem 1 would be useful only when interarrival times are

not Poisson. It was hinted by Federgruen and Groenvelt [7], however, that the statement may

not be true. We present next a counterexample that shows that the assumption of Poisson arrival

processes does not guarantee ergodicity of the scheduling policies. Therefore, stronger conditions

on these policies must be imposed to establish ergodicity.

Counterexample. Consider an M/G/1 queue with two classes of customers. The two classes

are characterized by their arrival rates (denoted as λ1 and λ2) and service rates (denoted as µ1

and µ2.) Assume that the system is stable (i.e., λ1/µ1+λ2/µ2 < 1), the second moments of the

service requirements are finite, and that λ1/µ1 > 0, λ2/µ2 > 0. Define a time-dependent policy

π, as follows:

At the beginning of the nth busy period (n ≥ 1,) policy π gives highest priority to
class 1 customers, if 22k ≤ n ≤ 22k+1 − 1, for some k ≥ 0. Otherwise, (i.e., if

22k+1 ≤ n ≤ 22(k+1) − 1,) π gives highest priority to class 2 customers.

We shall show that under policy π, limits of sample averages of waiting times do not exist. Let

Wm denote the waiting time of the mth served customer from class 1, m ≥ 1. Define the

following sets:

H(n)
∆
= {m : customer m belongs to class 1 and is served during busy period l, 1 ≤ l ≤ n, in

which class 1 has highest priority }

L(n)
∆
= {m : customer m belongs to class 1 and is served during busy period l, 1 ≤ l ≤ n, in

which class 1 has lowest priority}
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Of course, H(n) ∪ L(n) = {1, 2, · · · ,Mn}, where Mn denotes the number of class 1 customers

served in the first n busy periods. Let Mh
n (resp. M l

n) denote the cardinality of the set H(n)

(resp. L(n).) Finally, let h(n), l(n) denote the number of busy periods among the first n busy

periods during which class 1 has highest and lowest priority respectively. Clearly, h(n)+ l(n) = n.

Then, W̄n, the sample average waiting time of class 1 customers during the first n busy periods,

is given by

W̄n
∆
=

1

Mn

MnX
m=1

Wm =
n

Mn

h(n)

n

Mh
n

h(n)

P
m∈H(n)Wm

Mh
n

+
n

Mn

l(n)

n

M l
n

l(n)

P
m∈L(n)Wm

M l
n

. (14)

We shall show now that W̄n does not converge. Consider first the subsequence {nk = (22k −
1), k ≥ 1}. Observe that h(nk) = 1

3
(22k − 1) and l(nk) =

2
3
(22k − 1). The random variables

Wm, m ∈ H(n), are identically distributed to the corresponding random variables in a queueing

system that gives always nonpreemptive priority to customers in class 1. Similarly, the random

variables Wm, m ∈ L(n), are identically distributed to the corresponding random variables in a

queueing system that gives always nonpreemptive priority to customers in class 2.

Let Bk, Ik, k = 1, 2, · · · denote the length of the kth busy period and kth idle period

respectively. The random variables Bk+Ik, k = 1, 2, · · · are independent, identically distributed.
Moreover, their distribution does not depend on the scheduling policy, since the policies considered

are nonidling. Let EB (EI) denote the mean of Bk (Ik.) Then, using the Strong Law of Large

Numbers we obtain as in the proof of Theorem 1, that Mn/n → λ1(EB + EI). Similarly,

since limn→∞ h(n) = ∞ and limn→∞ l(n) = ∞, we have that Mh
n/h(n) → λ1(EB + EI)

and M l
n/l(n) → λ1(EB + EI). Therefore, taking limits along the subsequence nk in (14) we

conclude that

lim
k→∞

W̄nk =
1

3
W h +

2

3
W l a.e.,

where W h (resp. W l) denote the average waiting time of class 1 customers, under the policy

which always gives strict nonpreemptive priority to class 1 (resp. class 2). Similarly, if we

consider the subsequence {n̄k = 22k+1 − 1, k ≥ 0}, we find that h(n̄k) = (2 · 22k+1 − 1)/3 and
l(n̄k) = (2

2k+1 − 2)/3. Therefore, from (14),

lim
k→∞

W̄n̄k =
2

3
W h +

1

3
W l a.e.
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Since W h < W l, we see that the sample averages converge to two different points along the

two subsequences {nk}, {n̄k}. The system does not reach steady-state under this particular

time-dependent policy. 2

4 Inequality constraints for M/G/1 Systems

Theorem 1 describes a hyperplane in the N-dimensional space, on which the limit of a linear

combination of the sample averages of waiting times must lie. Clearly, not all points in this

hyperplane can be obtained by employing some work conserving polilcy. The performance space

(i.e., the subset of points that are achievable by some admissible scheduling policy,) is well known

for ergodic systems. For an M |G|1 system, we are able to further characterize the performance
space. As we shall see, the constants F (R) that appear in the right hand side of the inequalities

in Theorem 2 are the same as the ones that appear when only ergodic policies are allowed.

For the rest of this section, we assume that the interarrival times are exponential. As in [8, 7],

the basic idea is to determine a lower bound on the time average of the work in system due to

customers that belong to a subset R of the classes.

Suppose that the system operates under a nonpreemptive, work-conserving policy π. For any

set R, R ⊂ {1, 2, · · · , N}, let V (π)
R (t) be the work in system at time t, due to customers that

belong to the classes in R, that is,

V
(π)
R (t)

∆
=
X
i∈R

V
(π)
i (t). (15)

We are interested in developing a lower bound for the quantity

lim inf
T→∞

R T
0 V

(π)
R (t)dt

T
. (16)

In [7], it was shown that for all t ≥ 0 and for each sample path, V
(π)
R (t) is minimized by a

policy which gives nonpreemptive priority to classes in R. Moreover, since the order of service

of customers from classes in R cannot affect V
(π)
R (t), it is sufficient to assume that the order of
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service of customers from classes in R is FIFO. The question that needs to be resolved is whether

the order of service of customers from Rc, the complement of R, can affect the time average

in (16). Under the assumption that steady state exists, it is shown in [8, 7] that the order of

service of customers in Rc does not affect the time average in (16). Since we do not make any

assumptions about the ergodicity of the policies, however, we need a different approach here.

Assume that a work-conserving policy π gives nonpreemptive priority to classes in R. Let τim

be the time instant the mth arriving customer from a class i in Rc is scheduled for service and let

τ̄im be the first time in the interval [τim + Sim,∞) at which there are no customers from classes
in R in the system. Observe that either τ̄im = τjl for some l = 1, 2, · · · and j ∈ Rc, or τ̄im is

the end of a busy cycle. Also, let τk be the first time within the kth busy period that a customer

from a class in Rc is scheduled for service. Let Γk denote the time instant when the kth busy

period begins. At time T = Γk+1, the integral in (16) can be written as follows:

Z Γk+1

0
V
(π)
R (t)dt =

kX
m=1

Z Γm+1

Γm
V
(π)
R (t)dt =

kX
m=1

Ū (π)
m , (17)

where Ū (π)
m

∆
=
R Γm+1
Γm V

(π)
R (t)dt. We may rewrite Ū

(π)
k , k = 1, 2, · · · in the form

Ū
(π)
k = U

(π)
k +

X
i∈Rc

MikX
m=Mi(k−1)+1

U
(π)
im , (18)

where

U
(π)
im

∆
=
Z τ̄im

τim
V
(π)
R (t)dt and U

(π)
k

∆
=
Z τk

Γk
V
(π)
R (t)dt .

Using this decomposition of Ū
(π)
k we can show that the distribution of the sequence Ū

(π)
k , k ≥

1, cannot be affected by a nonpreemptive, work-conserving policy that gives priority to classes in

R. This is the content of the next lemma.

Lemma 4 For any nonpreemptive, work-conserving policy π that gives priority to classes in the

set R over classes in the set Rc, the sequence {Ū (π)
k , k ≥ 1} consists of i.i.d. random variables,

identically distributed to the sequence {Ū (πf )
k , k ≥ 1} generated by the policy πf that gives

12



nonpreemptive priority to classes in R, serves customers from class in R in FIFO order and

customers from classes in Rc in FIFO order.

Proof: Recall that π is work-conserving, the arrival process is Poisson (and independent of the

service requirements,) and the service requirements are independent random variables. Observe

that the value of V
(π)
R (t) for t ∈ [τim, τ̄im) depends only on Sim and the service times and the

arrival process of customers from classes in R in that time interval. It follows that the random

variables {U (π)
im , i ∈ Rc, m ≥ 1} are independent and also independent of {U (π)

k , k ≥ 1}.
Moreover, the distribution of U

(π)
im is independent of the policy π. Since π is nonidling and

gives nonpreemptive priority to customers in R, {U (π)
k , k ≥ 1} is a sequence of i.i.d. random

variables and the distribution of {U (π)
k , k ≥ 1} is independent of the policy. Observe also that

the summation in (18) includes the same customers, independent of the policy. This observation

and the fact that {U (π)
k , k ≥ 1} and {U (π)

im , i ∈ Rc, m ≥ 1} are independent sequences of
independent random variables, imply that {Ū (π)

k , k ≥ 1} is a sequence of independent random
variables and that the distribution of {Ū (π)

k , k ≥ 1} is the same for all work-conserving policies
that give nonpreemptive priority to customers in R. To conclude the proof, observe that under

the policy that serves customers in Rc in FIFO order, the previous sequence consists of i.i.d.

random variables. 2

The main result regarding the performance space for the M |G|1 queueing system is given by
the following theorem.

Theorem 2 Suppose that
PN

i=1 ρi < 1, and for some constant γ > 2, we have s
(γ)
i ≤ ∞, for

i = 1, . . . , N . Then for any work-conserving, nonpreemptive policy π, and for all R ⊂ {1, · · · , N}
we have that

lim inf
k→∞

X
i∈R

ρi

ÃPk
m=1Wim(π)

k

!
≥ F (R) a.e., (19)

where F (R) is a constant, independent of the scheduling policy. The limit exists and equality is

achieved, if classes in R have nonpreemptive priority over classes in Rc.

13



Proof: Using Lemma 4 and assuming that customers from classes in Rc are served according

to a FIFO policy, we conclude as in [8, Chapter 6], that under any nonpreemptive, work-conserving

policy π that gives priority to classes in R,

lim
k→∞

R Γk
0 V

(π)
R (t)dt

Γk
=

w0
1−Pi∈R ρi

+
X
i∈R

ρisi
∆
= F̄ (R) a.e., (20)

where w0 is the average residual work of the customer in service. Standard arguments can be

used now, to show that when classes in R have nonpreemptive priority,

lim
T→∞

R T
0 V

(π)
R (t)dt

T
= F̄ (R) a.e. (21)

Since V
(π)
R (t) is minimized by a policy that gives nonpreemptive priority to classes in R, we

conclude that under any nonpreemptive, work-conserving policy,

lim inf
T→∞

R T
0 V

(π)
R (t)dt

T
≥ F̄ (R) a.e. (22)

The limit exists and equality is achieved if classes in R have nonpreemptive priority over classes

in Rc. Following the methodology of Theorem 1 and using (22) we have that

lim inf
k→∞

X
i∈R

ρi

ÃPk
m=1Wim(π)

k

!
≥ F̄ (R)−X

i∈R

1

2
λis

(2)
i

∆
= F (R) a.e.

2

5 Conclusions.

We considered a GI|G|1 queueing system with N priority classes. The system operates under

a scheduling policy which may be nonergodic or for which ergodicity may not be verifiable in

advance. Adaptive and time-dependent scheduling rules represent an important class of such

policies. We have derived an invariance relation that “conserves” a weighted sum of appropriate

Cesaro sums of waiting times. We have also demonstrated inequalities that characterize further

the achievable performance region, for the special case of Poisson arrivals.
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