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Abstract�In this paper we investigate structural properties of
multicast trees that give rise to the so called multicast power law.
The law asserts that the ratio R(n) of the average number of links
in a multicast tree connecting the source to n destinations to the
average number of links in a unicast path, satis�es asymptotically
R(n) � cn�; 0 < � < 1: In order to obtain a better insight
we �rst analyze some simple multicast tree topologies, which
under appropriately chosen parameters give rise to the multicast
power law. The asymptotic analysis of R(n) in this case, indicates
that it is very dif�cult to infer the validity of power law by
observing graphs of R(n) alone. Next we introduce a new metric,
�reachability degree�, which is easy to measure and applicable
to general networks where multicast trees are constructed as
subtrees of a given spanning tree which we call Global Multicast
Tree. The reachability degree is indicative of the structure of
the Global Multicast Tree. We show that this metric provides a
more reliable means for inferring the validity of the power law.
Finally, we perform experiments on real and simulated networks
to demonstrate the use of the new metric.

Index Terms�Analysis of Algorithms, Asymptotic Analysis,
Internet Topologies, Multicasting, Power Law.

I. INTRODUCTION
Multicast communication in the Internet was proposed more

than a decade ago in [2], [6] (cf. also [7]), and the experimental
MBone network has been operational since 1992. In multicast
communication senders transmit to a logical address and
receivers join a logical group. Multicast routing ensures that
only a single copy of a packet destined to multiple destinations
traverses each link, so that the overall traf�c load is reduced.
Also, multicast alleviates the overhead on senders who can
reach an entire group by the transmission of a single packet.
The trade-off is that multicast requires extra control and
routing overhead at the routing nodes.
In this paper we concentrate on the quanti�cation of the

main advantage of multicast routing. That is, we address the
question of what is the expected traf�c load reduction due
to multicast, when compared to unicast communication. One
of the �rst works to address this issue is [4]. Motivated by
the problem of pricing multicast communications, Chuang and
Sirbu [4] performed experiments on a number of real and
generated network topologies. For a network of size N; they
measured the average number of links, LN (n); in the multicast
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tree needed to reach n randomly selected destination hosts
from a given source; LN (n) represents the average cost of
multicast tree per unit of bandwidth (it is assumed that all
destinations require the same bandwidth). If unicast commu-
nication is employed, then the communication cost per unit of
bandwidth is UN where UN is the average number of links in
a unicast path. The ef�ciency gain of multicast versus unicast
is re�ected in how far LN (n) deviates from the (unicast) linear
growth. Chuang and Sirbu [4], after extensive simulations,
concluded experimentally that for small n; LN (n) =UN =
�(n0:8); i.e., the ratio increases as a fractional power of n.
This naturally raises the following questions. Is this behavior
to be expected, or is it just an experimental approximation?
Is the behavior speci�c to the chosen topologies, or should
it be expected of other topologies as well? Can one identify
conditions under which the power law relation holds? This
paper attempts to provide theoretical answers to some of these
questions.
The basic experimental result in the Chuang and Sirbu

paper is reproduced here in Figure 1. The authors considered
a network with N routing nodes. Multiple destination hosts
may be connected to the network through a routing node
(e.g., each routing node may have a number of dial-in ports,
or may have a LAN connected to one of its ports [4]). A
source and a number n of multicast destination hosts, is picked
randomly. A multicast tree consisting of shortest paths from
the source to each of the destinations is constructed. Denote
by LN (n) the average number of links of the multicast trees
created by the above procedure. Note that the number of
destination hosts, n, can be either smaller or larger than the
number of routing nodes N . Therefore, the ratio a = n=N
can vary from zero to in�nity. Figure 1 shows the Chuang
and Sirbu �ndings concerning the ratio RN (n) = LN (n)=UN .
For n small relative to N , i.e., when a � 1, the power law
RN (n) = LN (n)=UN � n0:8 seems to be exhibited. Deviation
from the power law and a phase transition appears around
a = 1, and saturation occurs for a� 1.
The �rst attempt to obtain an analytical insight to the empir-

ical multicast power law of Chuang and Sirbu was undertaken
by Phillips, Shenker and Tangmunarunkit in [18]. The authors
provided an approximate analysis of RN (n) for a regular V-
ary tree topology. Their analysis indicated that RN (n) grows
according to n (A�B lnn) where A and B may depend on
N but are independent of n (cf. (17) and (18) of [18]). While
this growth does not obey the power law, it turns out that on a
log-log scale it looks very much like it for the network sizes
considered and for n small relative to N . Another work that
explores analytically the possibility of the appearance of the
power law related to multicast communication is the work of
Mieghem, Hooghiemstra and Hofstad [15]. In the latter work,
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it is assumed that behind each routing node there can be a
single destination host. When n is small compared to N , the
case of interest in this paper, it is unlikely that more than one
of the n destination hosts will be located behind each routing
node. Hence for n=N � 1;the asymptotic results remain the
same whether it is assumed that multiple or single destinations
hosts can be located behind each routing node - see also the
discussion in [18, Section 3]. The conclusion in [15], Corollary
6, is that for networks for which it holds UN=N0:2 ! 0; the
multicast power law cannot hold if n = aN with 0 < a � 1
and large N . However, this conclusion does not exclude the
possibility that the power law still holds for realistic Internet
topologies when a = n=N ! 0 and N ! 1, n ! 1. This
limiting regime is of signi�cant interest since the Internet is
growing fast and numerous multicast groups that are small
relative to N; are likely to exist. In this paper we explore the
possibility of appearance of the power law under these latter
conditions.
As in [4], [18], [15], we assume that multicast is performed

on a spanning tree joining a given source to all the network
nodes, which we call Global Multicast Tree. Nodes of a mul-
ticast group are connected to the source using the appropriate
subtree of the Global Multicast Tree. Multicast trees of this
type usually are shortest-path trees and are, or can be used by
several Internet multicast protocols such as DVMPRP [19],
MOSPF [16], PIM-DM [8].
We address the following question. Can one determine

general conditions on Global Multicast Tree structures, based
on which it can be inferred that the multicast power law holds
or not? In order to get a better insight, we �rst concentrate
on generalizations of the simple tree structures considered in
[18]. For these structures, detailed asymptotic results can be
obtained. While we do not claim that these structures provide
good models of multicast trees encountered in practice, as will
be seen (see Section III) they provide insight and a means for
understanding more clearly the problem and the dif�culties
involved.
First, to make sure the approximations of [18] did not bias

the �nal result, we provide (cf. Theorem 1) an asymptotic
analysis of the full V�ary Global Multicast Tree topology
considered in [18] ( i.e., a tree for which all the nodes except
the leaf nodes have outdegree V; and all leaf nodes are at
depth D), which con�rms that their result indeed gives a
good approximation for the leading term for RN (n) when
a is small. Interestingly enough, for small a we discover
some small oscillations of the coef�cient in front of n. Next,
we consider a more general Global Multicast Tree topology.
Speci�cally, we start with a full V�ary multicast tree; between
two successive branchings of the multicast tree we add a
(possibly random) number of concatenated relay - otherwise
called unary - nodes, i.e., nodes at which no branching occurs.
The average number of these concatenated nodes decreases
exponentially as the distance (in number of branchings) from
the source increases. More precisely, a node in such a tree at
level k; k � 1; is replicated on average V (D�k)� times, where
D is the depth of the tree and 0 � � � 1. A tree with such a
property is shown in Figure 2. Note that for such a tree, each
of the subtrees that have as root one of the nodes at level 1 has

RNÝnÞ

Tree Saturation Regionn0.8n0.8

Fig. 1. Figure 7 from Chunag and Sirbu [4] showing the phase transition
of the ratio of the number of links traverse in multicast and the average path
length in unicast versus the number of destinations n.

Node at
Level 1Unary nodes

Node at
Level 2

Leaf Node

Fig. 2. A Self-Similar Tree with D = 3 and � = 1.

1=V number of nodes as the original tree and is of the same
form at the original tree. For this reason, we appropriately
call such a tree self-similar. Notice that this de�nition of self-
similar tree differs from other ones in the literature [17], [19].
When � = 0; we have the full V�ary tree. When 1 > � > 0;
we show that the ratio RN (n) exhibits the power law. More
precisely, we show that for a = n=N ! 0; and N ! 1;
n!1, it holds RN (n) � (cN + (n))n1�� where cN is an
explicitly computable function of N and  (n) is an oscillating
function of n of rather small amplitude for small values of V .
(cf. Theorem 2).
While self-similar trees provide concrete examples where

the power law appears, they also show that it is rather dif�cult
to con�rm experimentally, by simply measuring and plotting
multicast tree costs, whether the power law holds. This is so,
since as will be seen in Section III, even with the asymptotic
forms we obtain, it is very easy to confuse the multicast tree
cost of a regular V�ary tree with that of a �corresponding�
self-similar tree. Next we look for general structural properties
of the Global Multicast Tree that may provide us with a
more reliable means of deciding whether the multicast power
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law holds or not. It turns out (see Section IV) that such
structural properties do exist and are easy to obtain for general
networks. We de�ne a metric F (k) (see Section III for the
exact de�nition) that incorporates these structural properties
of the Global Multicast Tree and show that its behavior
determines the existence or non-existence of the power law.
Finally, in Section V we perform experiments on random and
real network topologies that demonstrate the use of the metric
we propose.

II. SPECIFIC GLOBAL MULTICAST TREE TOPOLOGIES
In this section we present results concerning regular and

self-similar Global Multicast Tree topologies.

A. Regular Trees
As in [18], we consider a V�ary Global Multicast Tree

where the source is located at the root of the tree and all the
potential destination hosts of the multicast tree are connected
to the network through the leaf nodes of the tree. In Section
II-C we consider the possibility that destination hosts may be
connected to the network through other tree nodes, not just
through the leaf nodes. We assume that behind each leaf node
there may be multiple destination hosts.
Let D be the depth of the tree, i.e., its longest (in terms of

hops) path. We assume that the V� ary tree is full (all nodes
but the leaves have outdegree V and all the leaves are at depth
D). If N is the number of leaf nodes then clearly,

N = V D: (1)

Let the multicast group consist of n hosts and

a =
n

N
> 0: (2)

Note that since more than one destination hosts may be behind
each node, it is possible that a > 1. However, the possibility
for the power law to appear arrises only when a� 1, which is
the most interesting case from an analytical point of view, and
very likely to occur in practice. We assume that the probability
of a destination host being connected to the network through
a given leaf node is uniform and independent of the way the
rest of the hosts are connected.
Following Chuang and Sirbu [4], to quantify the reduction

of traf�c load in multicast over unicast, we shall analyze
the average number of links LN (n) in the multicast tree
that connects n randomly selected hosts. Then UN = LN (1)
denotes the average number of links in the path between the
source and a host in unicast transmission. The reduction ratio
RN (n) is de�ned as,

RN (n) =
LN (n)

UN
: (3)

Observe that for the full V -ary tree we have UN = D.
To estimate the average number of links in the multicast

tree connecting n nodes, we observe that there are V l links
connecting a node at level l�1 to a node at level l of the tree,
1 � l � D; the probability that such a link is in the multicast
tree when n destination hosts have been selected is,

1�
�
1� 1=V l

�n
:

Thus the average number of links in the multicast tree is

LN (n) =

D=logV NX
l=1

V l
�
1�

�
1� V �l

�n�
: (4)

Our goal is to provide estimates of LN (n) that are valid for
a ! 0; n ! 1 (hence N ! 1). The analysis for other
values of a, e.g. a! 1 or a!1 is in fact simpler but less
interesting from our point of view. In the Appendix we prove
the following result.

Theorem 1: The quantity LN (n) attains the following

asymptotics as a = n=N ! 0; and n!1.

LN (n) = n

�
D +

1

lnV
� lnn

lnV
+

�
1

2
� 

lnV

�
� 1(ln a) +O

�
aM�1��

� V

V � 1 +
1

2 lnV
� 1
2
 2(ln a)

+O
�
aM
�
+O

�
1

lnn

�
+D �O

�
lnn3

n

�
; (5)

where M � 2;  = 0:57721 : : : is the Euler constant
and  1(x),  2(x), are oscillating periodic functions of small
amplitude for small V that can be expressed as,

 1(x) =
1X

k=�1
k 6=0

�(�1� 2�ik= lnV )
lnV

exp
�
2�ik

x

lnV

�
; (6)

 2(x) =
1X

k=�1
k 6=0

�(1� 2�ik= lnV )
lnV

exp
�
2�ik

x

lnV

�
: (7)

For example, it can be computed, j 1(x)j <
0:0000001725; 0:00041227; 0:0085; 0:068; 0:153 for
V = 2; 3; 5; 100; 1000, respectively.
The constants in the O (x) notation above are independent

of N and n.
We can now compare the theoretical results of Theorem 1

to the experimental results of Chuang and Sirbu presented in
Figure 1. In particular, taking into account that lnN = D lnV
we see from (5) that the ratio RN (n) for a ! 0 can be
approximated by

RN (n) � n

�
1� lnn

lnN
+
1� 
lnN

+
lnV

2 lnN

�
; (8)

which is not of the power law form.

B. Self-Similar Trees
According to the discussion in the previous section, the

multicast power law does not hold for V�ary Global Multicast
Trees. In this section we show that if the Global Multicast
Tree has a �self-similar� structure in the sense to be discussed
below, then we indeed have the power law behavior for a!
0; n!1.
As in the previous section, consider a V�ary tree where all

possible hosts are located at the leaves of the tree. However,
we assume now that the link connecting a node at level l� 1
and a node at level l consists of a concatenation of a random
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number of links. Let `l be the average number of these links.
We postulate that `l is a fraction of `l�1, that is, for some A
we have `1 = A and

`l = �`l�1; 0 � � � 1; l � 2:

Therefore, `l = �l�1A: Setting � = V �� we �nd,

`l = V ��(l�1)A = `DV
(D�l)�; � > 0:

In the rest of the paper, we assume for simplicity and without
loss of generality that `D = 1.
We call a tree with the above structure, a self-similar V�ary

tree with similarity factor �. Note that when � = 0, we have
the regular V� ary tree. In the following we assume that 0 <
� < 1.
We analyze now LN;�(n) for self-similar trees. In particular,

as before, we derive

LN;�(n) =
DX
l=1

V (D�l)�V l
�
1�

�
1� V �l

�n�
;

and for the average path length in a unicast connection we
�nd

UN;� =
DX
l=1

V (D�l)� =
N� � 1
V � � 1 : (9)

In the Appendix we prove the following asymptotic expan-
sions for L�(n).
Theorem 2: The quantity LN (n) attains the following as-

ymptotics as a = n=N ! 0; and n!1.

LN;�(n) = N�

�
n
��

�
� (�)
�� lnV

�  3(ln a) +O
�
aM��

��
� V

��

V �� � 1
+
1

2

�� (�)

n� lnV
� 1

2n�
 4(ln a) +

1

N�
O
�
aM
�!

+N�O

 
1

n� (lnn)
��

!
+
N� � 1
V � � 1O

 
(lnn)

3

n

!
; (10)

whereM � 2, � = 1 � �, �(�) is the Gamma function and
 3(a) and  4(a) are oscillating periodic functions of small
amplitude for small V that can be expressed as

 3(x) =
1X

k=�1
k 6=0

�(�1 + � � 2�ik= lnV )
lnV

exp
�
2�ik

x

lnV

�
;

(11)

 4(x) =
1X

k=�1
k 6=0

�(1 + � � 2�ik= lnV )
lnV

exp
�
2�ik

x

lnV

�
:

(12)

Observe that for a ! 0; n ! 1 (hence N ! 1),
Theorem 2 and (9) suggest the following approximation.

RN;�(n) =
LN;�(n)

UN;�
� n

1�� �
V � � 1

�� � (�)

(1� �) lnV

�
:

(13)
Thus, we obtain the power law with exponent of n equal to
1� �.

C. Destination Hosts Located at Non-relay Nodes
In the previous sections we assumed that destination hosts

are located at the leaves of the Global Multicast Tree. If
destination hosts can also be located at any of the non-relay
nodes of the Global Multicast Tree, then in order to �nd the
average cost of multicast we argue as in Section II and �nd

LN;�(n) =
DX
l=1

�
V (D�k)�V l

�
1�

�
1� V D�l+1 � 1

V D+1 � V

�n��

= V D�
V �(D+1) � V �

V � � 1

� V D
D�1X
l=0

V ��l

 
1�

aV
l+1�1
V�1
n

!n
:

The term of LN;�(n) that needs to be analyzed asymptotically
is bLN;�(n) = D�1X

l=0

V ��l

 
1�

aV
l+1�1
V�1
n

!n
:

This term has the same form as the one analyzed before and
hence its asymptotic expansion has the same form. Therefore,
the results are qualitatively the same as in the case where
destination hosts are located at nodes at the leaves of the
tree. We do not dwell into more details since, as explained
in the introduction, our main motivation for studying regular
and self-similar trees is to get a concrete example where
the multicast power law appears and complete analysis is
provided, in order to get a better insight.

III. COMPARISON BETWEEN REGULAR AND
SELF-SIMILAR TREES.

From the discussion in the previous sections we have the
following two asymptotic formulas for N and n large and as
n=N ! 0. For self similar trees,

RN;�(n) � n
1�� �

V � � 1
� � (�)

(1� �) lnV ;

while for regular V�ary trees,

RN (n) � n

�
1 +

1� 
lnN

+
lnV

2 lnN
� lnn

lnN

�
:

Clearly, plotting the above approximation for RN;�(n) in
a log-log scale provides a linear curve with slope 1 � �. Let
us turn our attention now to RN (n): In the graph in Figure
3 we plot the asymptotic form of RN (n) in a log-log scale
for V = 2; N = 4096 (= 212); 40960; 409600. As observed
in [18] and [15], in this scale, the graphs look linear. The
slopes, sN ; for N = 4096; 40960; 409600 are, 0:832; 0:879,
.905, respectively. Therefore, one is tempted from the plots in
Figure 3 to infer that the power law holds with � = 1 � sN ;
i.e., respectively, 1-.832=.168, 1-.879=.121, 1-.905= 0.095.
From the discussion above we see that it is very dif�cult to

decide experimentally by observing the slopes of multicast
gain alone whether for the graphs under consideration the
multicast power law holds. The question therefore arises
whether there are metrics, applicable to general networks,
based on which the inference can be made easier and more
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Fig. 3. Plots of RN (n) = R(n; 0) for V = 2 and N = 4096; 40960;
409600:

robust. Next we examine the possibility of introducing such
a general and robust metric for Global Multicast Trees. Let
t be a node on the Global Multicast Tree and consider the
subtree (of the Global Multicast Tree) T (t) that has as root
node t. Let r(t) be the number of routing nodes (behind which
destination hosts may exist) that are located on the subtree
T (t). Equivalently, r(t) is the number of routing nodes that
are reachable from the source through paths of the Global
Multicast Tree traversing node t. For example, in the self-
similar tree in Figure 2, if destination hosts are located only
at leaf nodes, then we have r(t) = 1 if t is a leaf node. If t
is located at level 1 or if t is a relay (unary) node between
levels 0 and 1 we have r(t) = 4 = 23�1. We call r(t) the
�reachability degree of t�. Intuitively the reachability degree
of a node should play an important role in determining this
node's participation in multicast tree construction. If r(t) is
large, it is likely that node t will participate in the multicast
tree to be formed. As we will see in the next section, r(t)
also plays an important role in determining analytically the
multicast tree performance in general networks.

Next, we need some de�nitions that are based on node
reachability degree, r(t). Let Q(k) be the number of nodes, t,
not including the root node, with reachability degree r(t) = k.
The reason for the exclusion of the root node in the de�nition
of Q(k) is technical and will become clear from the analysis in
Section IV. If destination nodes are located at the leaves of the
Global Multicast Tree, it is easy to see that for the regular V -
ary tree, we have Q(k) = V Dk�1 if k = V l, 0 � l � D � 1,
and Q(k) = 0 for all other values of k. In general, taking
into account that there are V �(D�l) � 1 relay nodes between
levels l� 1 and l; where 0 � � � 1, we �nd that for the self-
similar V -ary tree (including the regular V-ary tree) we have
Q(k) = k�1+�V D, if k = V l, 0 � l � D � 1; and Q(k) = 0
for all other values of k.

Now, let us de�ne by F (k) the number of tree nodes other
than the root node, with reachability degree at least k; 1 �
k � N . That is,

.1e2

.1e3

.1e4

1. .1e2 .1e3 .1e4k

Regular Tree
Self Similar Tree

)(kF

Fig. 4. Plots of F (k) for Regular and Self-similar Trees.

F (k) =
NX
l=k

Q(k):

From the previous discussion about self-similar trees, we have
that F (k) = 0 for k > V D�1 and for 1 � k � V D�1,

F (k) =
D�1X

l=dlogV ke

Q(V l)

= N

D�1X
l=dlogV ke

V l(�1+�)

= NV dlogV ke(�1+�)
1� V (D�dlogV ke)(�1+�)

1� V �1+� :

where dxe is de�ned as the smallest integer larger than or equal
to x. In Figure 4 we plot in log-log scale F (k) for a regular tree
with N = 212 = 4096, V = 2; as well as its �corresponding�
self-similar tree, i.e., the self-similar tree with � = :168. We
observe that the two curves are now clearly distinguishable
even for small k: the slopes we get by linear interpolation are
clearly different. The linear interpolation slope for the regular
tree is about -1, while that of the corresponding self-similar
tree is about -.835. In fact, decaying (with respect to k) bounds
for F (k); for a wide range of k, can be easily developed as
follows.
Using the fact that for � � 1 it holds,

(�1 + �) logV k + (�1 + �) � dlogV ke (�1 + �)
� (�1 + �) logV k;

we have,

F (k) � N

1� V �1+� k
�1+�; 1 � k � N; (14)

and

F (k) � NV (�1+�)k�1+�
1� V (D�dlogV ke)(�1+�)

1� V �1+� :

Moreover, since for k � V D�1 = N=V it holds,

1� V (D�dlogV ke)(�1+�)
1� V �1+� � 1;
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we can write

F (k) � NV �1+�k�1+�; 1 � k � N=V: (15)

Note that given a general Global Multicast Tree, F (k) is
easy to measure, and therefore it is easy to obtain experimental
results based on F (k). It is not needed to experiment with, or
simulate further, the multicast groups themselves. In addition,
it turns out that under the assumption that destination host
nodes are selected with uniform probability, any Global Mul-
ticast Tree that has polynomially decaying bounds of F (k) as
in (14), (15) gives rise to the multicast power law. This issue
is undertaken in the next section.

IV. GENERAL GLOBAL MULTICAST TREE TOPOLOGIES

Let us assume that n destination hosts are forming a
multicast group. We assume that destination hosts can be
located behind any of the routing nodes N: If destination hosts
can be located only at a subset S of the routing nodes, the
results that follow hold by replacing N with the size of the
set S. As in Section II we assume that the probability that
a destination host is located behind a given node is 1=N ,
independent of where the rest of the destination hosts are
located. Under these assumptions, given F (k), LN (n) can be
derived as follows. Consider a node t on the Global Multicast
Tree T , other than the source node s, with reachability degree
r(t). Let It be 1 if the link entering this node belongs to the
created multicast tree and 0 otherwise. If L is the random
variable representing the number of links in the multicast tree
T , then it holds,

L =
X

t2T�fsg

It;

and hence,
LN (n) =

X
t2T�fsg

E [It] :

Now, observe that It = 1 if and only if at least one of the
r(t) nodes that are located on the subtree T (t) is selected
by the n destination hosts. The probability that one of the
destination hosts picks some of the r(t) nodes is r(t)=N and
the probability than none of the n destination hosts picks some
of the r(t) nodes is (1� r(t)=N)n: Hence,

E [It] = 1� (1� r(t)=N)n;

and, recalling that Q(k) is the number of nodes (not including
the source node) for which r(t) = k,

LN (n) =
X

t2T�fsg

(1� (1� r(t)=N)n)

=
NX
k=1

Q(k)

�
1�

�
1� k

N

�n�
:

Note that this formula holds for any Global Multicast Tree.
We next transform this formula in order to make it depend on
F (k).
Using Abel's partial summation formula (cf. [20]) we have

that for two sequences vk and uk it holds,

NX
k=1

(uk � uk+1)vk = u1v1 � uN+1vN +
NX
k=2

uk(vk � vk�1):

Using this and taking into account that F (N + 1) = 0, we
proceed as follows:

LN (n) =
NX
k=1

Q(k)

�
1�

�
1� k

N

�n�

=
NX
k=1

(F (k)� F (k + 1))
�
1�

�
1� k

N

�n�

=
NX
k=2

F (k)

�
1� k � 1

N

�n
�
�
1� k

N

�n
+ F (1)

�
1�

�
1� 1

N

�n�
=

NX
k=1

F (k)

��
1� k � 1

N

�n
�
�
1� k

N

�n�
: (16)

Notice that if we consider randomly generated graphs, in
which case the Global Multicast Tree will also be random,
then (16) still holds with F (k) replaced by F (k) = E [F (k)].
Based on (16), we can now show that in general, a decay of
F (k) (or F (k)) according to (14), (15) with � > 0, gives rise
to the multicast power law, while a decay with � = 0 does not
give rise to such law.
Theorem 3: Assume that for the Global Multicast Tree and

0 � � < 1 it holds for large N and for 0 < � � 1,

F (k) � HNk
�1+�; 1 � k � N; (17)

F (k) � hNk
�1+�; 1 � k � �N: (18)

a) If � = 0, then a = n=N ! 0; and n!1;

RN (n) �
hN
HN

n

�
1� lnn

lnN
+O

�
1

lnN

�
+O (a)

�
;

RN (n) �
HN

hN
n

�
1� lnn

lnN
+O

�
1

lnN

�
+O (a)

�
:

b) If � > 0, then a = n=N ! 0; and n!1;

RN (n) �
hN
HN

�(�)�n1��
�
1 +O

�
1

n

�
+O

�
a�
��

;

RN (n) �
HN

hN
�(�)�n1��

�
1 +O

�
1

n

�
+O

�
a�
��

:

Although not explicitly denoted, HN ; hN as well as the
constants in the O (x) notation, may depend on �. The proof
of Theorem 3 is given in the Appendix. We see that under the
generalized assumptions of Theorem 3 the power law may
appear again, albeit in a weaker form than in self-similar
trees. If � = 0, i.e. F (k) decays as 1=k, then for large N
and small ratios n=N , RN (n) behaves as BNn(1� lnn=N)
and the power law does not hold. If � > 0, then the power
law for RN (n) appears. Hence measuring F (k) can provide
a means to infer the validity of power law for multicast
trees. For regular and self-similar trees, we see from (14)
and (15) that HN = N=(1 � V �1+�); hN = N=V �1+� and
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hence HN=hN = V 2(1��)=(V 1�� � 1). The parameter � is
introduced in order to include decays of the form (14), (15)
as well as decays observed in experimental data presented in
the next section. Re�nements of the theorem can be made, but
we leave it in this simple form since it contains the essential
points of the discussion.

V. EXPERIMENTS
In this section we examine the behavior of RN (n) and F (k)

on real and simulated networks and compare the obtained
graphs with the theoretical results obtained in Section IV and
the corresponding behavior of self-similar trees in Section III.
We performed two sets of experiment. The �rst set was

based on data from real internet topologies, obtained by the
Scan project of ISI, with their software "mercator" implement-
ing the ideas described [12]. We used the "Scan+Lucent" map
which also merged data from the Internet Mapping project [3].
The graph is an approximation of part of the Internet topology
circa October/November 1999, and includes 284805 nodes, of
which about 283685 can reach each other. For the experiment,
we considered the fully connected network consisting of the
283685 nodes.
The second set was based on random graph topologies:

Speci�cally, a number of nodes N is picked and M of
the N(N � 1)=2 edges are picked randomly to form an
undirected graph. This graph is transformed to a directed one
by considering each link as bidirectional.
For each of the topologies tested, we picked randomly nodes

as sources and created the Global Multicast Tree as the tree
of shortest (in number of hops) paths from the source to
all the network nodes. Once the Global Multicast Tree is
formed, the calculation of F (k) is straightforward. However,
the calculation of RN (n) requires further to simulate multicast
tree formations for each n. Speci�cally, having �xed the source
node and the corresponding Global Multicast Tree, to compute
RN (n) we perform the following simulations.
1) A number n of destination hosts is picked randomly. The
probability that each of the destination hosts is located
at a given routing node is 1=N and independent of the
location of the rest of the hosts.

2) The multicast tree is formed as the appropriate subtree
of the Global Multicast Tree.

3) The number of links, l(n); of the multicast tree is
computed.

4) The average of number of links, u, in a unicast commu-
nication is computed

5) The experiment in lines 1 to 4 is repeated 1000 times.
6) LN (n) is computed as the average of l(n), and UN as
the average of u, over the experiments performed.

7) We compute RN (n) = LN (n) =UN .
We present below the results obtained for the fully con-

nected real network with 283685 nodes and 860682 edges, as
well as a random network. We generated the random network
as described above with exactly the same number of nodes and
edges. The resulting random network contained one large con-
nected component consisting of 268164 nodes. We performed
the experiments using this connected component. The graphs
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Fig. 5. Plots of F (k) for a Real Internet Topology and a Randomly Generated
Topology.

obtained for various randomly chosen sources belonging to
the two networks, do not differ signi�cantly. Also, the results
remain qualitatively the same for other network sizes that were
tested.
Figure 5 shows in a log-log scale the obtained F (k). We

observe that for the random topology, the slope is about �1.
For the real topology, for values of k between 5 and 100 the
slope is about -.93.
Figure 6 shows in log-log scale the obtained RN (n). The

slopes of RN (n) for small n (between 5 and 100) are now
about :94 for the real topology and :89 for the random one.
Notice that as with the tree structures described in Section

III, from the graphs of Figure 6 one is tempted to say that the
power law holds for both topologies, with � = 1� :94 = :06
for the real topology and � = 1�:89 = :11 for the random one.
However, in Figure 5 the slope of F (k) in the log-log scale for
the random topology is �1, i.e., F (k) decays as 1=k. Testing
random graphs of various network sizes shows the same
behavior, which leads us to conclude that Theorem 3 a), rather
than the power law holds in this case. In fact this behavior has
been shown theoretically for another type of random graphs
(complete graphs with exponentially distributed links weights)
in [1]. Consider now the corresponding curves for the real
network topology. Apart from a relatively steep decline for
k � 5; the slope of F (k) in the log-log scale is about �:93,
while the slope of RN (n) is :94. This is in agreement with the
conditions of Theorem 3 b). Tests with other real network sizes
show the same qualitative behavior -although the numerical
values vary. Of course in this case, one should be careful
in drawing de�nite conclusions because it is dif�cult to say
whether the networks obtained for different node numbers are
of the same �type�. A subject of further research is to identify
classes of networks for which the conditions on F (k) can
be inferred based on even simpler network properties (e.g.,
distribution of node degree), or on the manner the networks
are generated and evolve.

VI. CONCLUSIONS
The question whether multicast communication follows the

power law arose from the attempt to price multicast com-
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Fig. 6. R(n) for the Real and Random Topology

munication in [4]. Power laws related to Internet topology
parameters were studied in [9]. As indicated in the latter
reference, power laws of this nature may be valuable for
af�rming how realistic simulated topologies are. This is an
important issue that received a lot of attention [5], [21].
In this paper we examined structural conditions on Global

Multicast Trees that give rise to the multicast power law.
Regular V�ary trees do not exhibit the power law, while self-
similar trees do. In fact, the power law rises under conditions
weaker than tree self-similarity. We provided a metric, F (k);
encompassing the structural properties of the Global Multicast
Tree, which is easy to measure and can be used to infer
the validity of the power law. Simulation work demonstrated,
based on observations of the graphs of F (k); that randomly
generated networks do not obey the power law, even though
graphs of RN (n) may lead one to believe so. For the real
topologies, similar measurements indicated that the power law
is likely to hold. However, since the conditions on F (k) are
essentially asymptotic (for large N ), further work is needed in
order to ascertain the validity in the latter case. For example,
can the behavior of F (k) be deduced from even simpler
network parameters? More generally, given the fact that several
power laws related to various network parameters have been
observed experimentally, see e.g. [9], the question arises as to
why these laws appear and when one law implies the other.
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APPENDIX
In this appendix we establish our main theoretical results

from Sections II and IV. In the next subsection we concentrate
on the proof of Theorem 2 which refers to self-similar trees
with � > 0. Theorem 1 for regular V -ary trees, i.e., the case
� = 0 is proved in a similar fashion.

A. Proof of Theorem 2
We �rst need the following lemma.
Lemma 4: For a = n=N , 0 < � < 1 the average number

of links LN;�(n) in the self-similar tree attains the following
asymptotic expansion.

LN;�(n) = N

 
V
��

V �� � 1
� c1 (a; �)

!
� N�V

��

V �� � 1
+
1

2
c2(a; �)

+N�O

 
1

n� (lnn)
��

!
+
N� � 1
V � � 1O

 
(lnn)

3

n

!
;

(19)

where � = 1� � and

c1(a; �) =
1X
l=0

V �
��l exp

�
�aV l

�
; (20)

c2(a; �) =
1X
l=0

aV (1+�)l exp
�
�aV l

�
: (21)
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For � = 0 the same expansion holds, with the provision that�
N� � 1

�
=
�
V � � 1

�
is replaced with its limiting value as

� ! 0; i.e., lnN= lnV = D.
Proof. We saw that the average cost of the multicast self-

similar tree is

LN;�(n) =
DX
k=1

V (D�k)�V k
�
1�

�
1� V �k

�n�
:

Observe that since D = logV N and n = aN , for k = D
the last term of the above sum is approximately equal to
V D(1� e�a). This term is not small in general and thus we
cannot extend the limit of the summation to in�nity without
introducing signi�cant error. In order to provide an asymptotic
analysis of LN;�(n), we de�ne �� = 1 � � and proceed as
follows:

LN;�(n) =

DX
k=1

V (D�k)�V k
�
1�

�
1� V �k

�n�
= V D

D�1X
l=0

V �
��l

�
1�

�
1� V l

V D

�n�

= V D

 
1� V �D��

1� V ���

!
� V D

D�1X
l=0

V �
��l

�
1� V l

V D

�n
= N

 
1�N���

1� V ���

!
� �LN;�(n)

= N
V
��

V �� � 1
� N�V

��

V �� � 1
� �LN;�(n); (22)

where

�LN;�(n) = N

D�1X
l=0

V �
��l

�
1� aV l

n

�n
:

We concentrate on the analysis of LN;�(n). First note that for
x=n < 1� �, � > 0, we have,

ln
�
1� x

n

�
= �

1X
k=1

1

k

�x
n

�k
)

�
1� x

n

�n
= exp

 
�n

1X
k=1

1

k

�x
n

�k!

= exp(�x) exp
 
�n

1X
k=2

1

k

�x
n

�k!

= exp (�x) exp
 
�x

2

2n
� n

1X
k=3

1

k

�x
n

�k!

= exp (�x) exp
�
�x

2

2n
�O

�
x3

n2

��
: (23)

Using the inequalities 1 � y � exp (�y) � 1 � y + y2=2,
y � 1; and assuming further that x � lnn (hence x=n < 0:5)
we have from (23),

�
1� x

n

�n
= exp (�x)

�
1� x2

2n
+O

�
x4

n2

��
= exp (�x)

 
1� x2

2n
+
x

n
O

 
(lnn)

3

n

!!
: (24)

Now, set An =
�
ln( lnna )
lnV

�
: Hence

aV An�1 < lnn � aV An : (25)

Since aV An�1 < lnn < n = aV D; we conclude that

An � D: (26)

Therefore we can write,

�LN;�(n) = N

An�1X
l=0

V �
��l

�
1� aV l

n

�n

+N
D�1X
l=An

V �
��l

�
1� aV l

n

�n
; (27)

with the understanding that
Pb

l=a cn = 0 if a > b. We analyze
separately each of the terms on the right hand side of the last
equation.
A. The term

PAn

l=0 V
���l
�
1� aV l

n

�n
:

For l � An � 1 we have from (25) that aV l � lnn; and
taking into account (24),

An�1X
l=0

V �
��l

�
1� aV l

n

�n
=

An�1X
l=0

V �
��l exp

�
�aV l

� 
1� a2V 2l

2n
+
aV l

n
O

 
(lnn)

3

n

!!
=

An�1X
l=0

V �
��l exp

�
�aV l

�
� a

2N

An�1X
l=0

V (1+�)l exp
�
�aV l

�
+

 
An�1X
l=0

V �l exp
�
�aV l

�! 1

N
O

 
(lnn)

3

n

!
: (28)

We look at each of the three terms of the last equality in (28)

separately.
A.1 The term

PAn�1
l=0 V �

��l exp
�
�aV l

�
.

We write,

An�1X
l=0

V �
��l exp

�
�aV l

�
=

1X
l=0

V �
��l exp

�
�aV l

�
�

1X
l=An

V �
��l exp

�
�aV l

�
: (29)
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For l � An we have from (25) that exp
�
�aV l

�
� 1=n and

hence
1X

l=An

V �
��l exp

�
�aV l

�
� 1

n

1X
l=An

V �
��l

� 1

1� V ���
1

N ��

1

n� (lnn)
��

=
1

N ��
O

 
1

n� (lnn)
��

!
: (30)

A.2 The term a
2N

PAn�1
l=0 V (1+�)l exp

�
�aV l

�
:

We have,

a

2N

An�1X
l=0

V (1+�)l exp
�
�aV l

�
=

a

2N

1X
l=0

V (1+�)l exp
�
�aV l

�
� a

2N

1X
l=An

V (1+�)l exp
�
�aV l

�
:

(31)

Using the fact that x2 exp (�x) < :6 for x � 0 we have for
the second term of the last equality,

1X
l=An

aV (1+�)l

2N
exp

�
�aV l

�
=

1X
l=An

V �l
�
aV l

�2
2NaV l

exp
�
�aV l

�
� 1

Na

1X
l=An

V ��l

=
1

Na�
�
aV An

��� 1

1� V ��

� 1

N�n� (lnn)
�

1

1� V ��

=
1

N ��
O

 
1

n� (lnn)
��

!
. (32)

A.3 The term
PAn�1

l=0 V �l exp
�
�aV l

�
:

We observe,

An�1X
l=0

V �l exp
�
�aV l

�
�

An�1X
l=0

V �l

=
V �An � 1
V � � 1

� N� � 1
V � � 1 by (26) . (33)

Combining (28), (29), (30), (31), (32), (33) we �nally get

AnX
l=0

V �
��l

�
1� aV l

n

�n
= c1(a; �)�

1

2N
c2(a; �)

+
1

N ��
O

 
1

n� (lnn)
��

!

+
N� � 1
V � � 1

1

N
O

 
(lnn)

3

n

!
; (34)

where

c1(a; �) =
1X
l=0

V �
��l exp

�
�aV l

�
; (35)

c2(a; �) =
1X
l=0

aV (1+�)l exp
�
�aV l

�
: (36)

B. The term
PD�1

l=An
V �

��l
�
1� aV l

n

�n
:

For l > An; taking into account (25) we �nd,�
1� aV l

n

�n
�
�
1� lnn

n

�n
=

 �
1� lnn

n

� n
lnn

!lnn
� 1

n
; since (1� 1=x)x � e�1 for x � 1;

and hence
D�1X
l=An

V �
��l

�
1� aV l

n

�n
� V �

��An
1

n

�
� a

lnn

��� 1
n

=
1

N ��

1

n� (lnn)
��
: (37)

From (27), (34) and (37) we �nally conclude,

�LN;�(n) = Nc1(a; �)�
1

2
c2(a; �) +N

�O

 
1

n� (lnn)
��

!

+
N� � 1
V � � 1O

 
(lnn)

3

n

!
:

Which together with (22) proves the lemma.
1) Derivation of Theorem 2: We now prove Theorem 2,

that is, we �nd asymptotic expansions of LN;�(n) for a! 0;
n!1. Observe that we only need to analyze the quantities
c1(a; �) and c2(a; �) de�ned in (20) and (21), respectively. We
mention that analysis can be provided, and is in fact easier,
for other values of a as well.
It turns out that the case a ! 0 can be handled by a

special analytic tool, namely the Mellin transform. The Mellin
transform found myriad of applications in the analysis of
algorithms. An excellent survey is given by Flajolet, Gourdon
and Dumas in [10] (cf. [13], [20]). For reader convenience,
we collected the most important properties of the Mellin
transform in Appendix C. In particular, the de�nition of Mellin
transform is given in (65). Property (M1) de�nes the so called
fundamental strip of the complex plane where the Mellin
transform exists. The harmonic sum property (M3) and the
mapping properties (M4) are crucial. We shall use them to
derive asymptotics of c1(a; �) and c2(a; �) as a! 0.
Let us �rst consider c1(a; �) =

P1
l=0 V

���l exp
�
�aV l

�
.

Observe that by (M3) the sum in c1(a; �) := c1(a) is a
harmonic sum with �k = V �

��k and g(x) = e�x with
�k = V k. Thus the Mellin transform c�1(s) with respect to a
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of c1(a) is by (M3) (and the well known fact that the Mellin
of e�x is the Euler gamma function �(s) for <(s) > 0):

c�1(s) =
�(s)

1� V �(1+s��) :

We now use (M4) to �nd c1(a) as a! 0: If Re(s) 2 (�M; �);
1 > M � 1; 1 > � > 0, from the properties of the Gamma
function [14], it can be seen that �(s) = O(jsj�r), r > 1
as jsj ! 1: Also, for Re(s) 2 (�M; �), the function c�1(s)
has poles at s = 0 and sk = �1 + � � (2�ik)= lnV ; k =
0;�1;�2; :::. All these poles are single. The pole at s = 0
has residue

cs;0 =
V
��

V �� � 1
:

The poles at sk have residues

csk;0 =
� (�1 + � � 2�ik= lnV )

lnV
:

Using now the Reverse Mapping Theorem (M4) and the
property �(�1 + �) = �(�)=(�1 + �), we see that for a! 0
we have the expansion for any M > 0,

c1(a; �) =
V
��

V �� � 1
� � (�)
�� lnV

a
��

+ a
�� 3(ln a) +O(a

M ); (38)

where

 3(x) =

1X
k=�1
k 6=0

�(�1 + � � 2�ik= lnV )
lnV

exp
�
2�ik

x

lnV

�
:

Now we consider c2(a; �) =
P1

l=0 aV
(1+�)l exp

�
�aV l

�
.

It is again a harmonic sum, hence by (M3) we �nd its Mellin
transform to be

c�2(a) =
s� (s)

1� V �(s��) :

But c�2(s) has a single poles at � with residue

c�;0 =
�� (�)

lnV
;

and single poles at sk = � � (2�ik)= lnV , k 6= �1;�2; :::
with residues

(� � i2�k)�(� � 2�ik= lnV )
lnV

:

Hence using again the Reverse Mapping Theorem (M4) we
obtain

c2(a; �) =
�� (�)

lnV
a�� � a�� 4(ln a) +O(aM ); (39)

where

 4(x) =
1X

k=�1
k 6=0

(� � 2i�k= lnV )�(� � 2�ik= lnV )
lnV

exp
�
2�ik

x

lnV

�
:

From Lemma 4, (38) and (39) Theorem 2 follows.

B. Proof of Theorem 3
We will develop bounds on LN (n) based on (16), (17) and

(18). Assume n � 2:
Using Taylor's expansion of (1 � x)n around x = k=N;

1 � k � N , we have,�
1� k � 1

N

�n
�
�
1� k

N

�n
� n

N

�
1� k

N

�n�1
+
n(n� 1)
2N2

�
1� k � 1

N

�n�2
(40)�

1� k � 1
N

�n
�
�
1� k

N

�n
� n

N

�
1� k

N

�n�1
+
n(n� 1)
2N2

�
1� k

N

�n�2
:

(41)

Using (40), (16) and (17) we conclude that,

LN (n) � HNN
��1n

NX
k=1

�
k

N

���1�
1� k

N

�n�1
1

N

+HNN
��1n

 
NX
k=1

�
k

N

���1�
1� k � 1

N

�n�2
1

N

!
n� 1
2N

:

(42)

Let us look at the summation in the �rst term of the right
hand side in (42). Since � < 1, the function x��1 (1� x)n�1
is decreasing for 0 < x � 1: Hence we have,

NX
k=1

�
k

N

���1�
1� k

N

�n�1
1

N
� 1

N�

�
1� 1

N

�n�1
+

Z 1

1=N

x��1(1� x)n�1dx

� 1

N�
+

Z 1

1=N

x��1(1� x)n�1dx: (43)

Regarding the summation in the second term of the right hand
side in (42) we calculate,

NX
k=1

�
k

N

���1�
1� k � 1

N

�n�2
1

N
=

1

N�
+

NX
k=2

�
k

N

���1�
1� k � 1

N

�n�2
1

N

� 1

N�
+

NX
k=2

�
k � 1
N

���1�
1� k � 1

N

�n�2
1

N

=
1

N�
+
N�1X
k=1

�
k

N

���1�
1� k

N

�n�2
1

N

�
1 +

�
1� 1

N

�n�2
N�

+

Z 1

1=N

x��1(1� x)n�2dx

� 2

N�
+

Z 1

1=N

x��1(1� x)n�2dx: (44)

Combining (42), (43) and (44) we obtain,
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LN (n)

HNN��1n
�
Z 1

1=N

x��1(1� x)n�1dx

+
n� 1
2N

Z 1

1=N

x��1(1� x)n�2dx

+
1

N�

+
n� 1
N1+�

: (45)

To develop a lower bound we proceed as follows. Assume
for simplicity in the notation that �N is integer. From (16),
(18), (41) and the fact that the function x��1 (1� x)n�1 is
decreasing for 0 < x � 1; n � 1; � < 1, we have,

LN (n)

hNN��1n
�

�NX
k=1

�
k

N

���1�
1� k

N

�n�1
1

N

+
n� 1
2N

 
�NX
k=1

�
k

N

���1�
1� k

N

�n�2
1

N

!

�
Z �

1=N

x��1(1� x)n�1dx

+
n� 1
2N

 Z �

1=N

x��1(1� x)n�2dx
!
;

or

LN (n)

hNN��1n
�
Z 1

1=N

x��1(1� x)n�1dx

+
n� 1
2N

 Z 1

1=N

x��1(1� x)n�2dx
!

�
Z 1

�

x��1(1� x)n�1dx

� n� 1
2N

�Z 1

�

x��1(1� x)n�2dx
�
: (46)

For unicast transmission we have,

UN = L(1) = N�1
NX
i=1

F (k);

and in a similar fashion we derive

UN
HNN��1 �

Z 1

1=N

x��1dx+
1

N�
; (47a)

UN
hNN��1 �

Z �

1=N

x��1dx: (47b)

From (45) and (46) we see that we need to evaluate the
asymptotics of the integral

R 1
1=N

x��1(1 � x)n�1dx; n � 1.
The form of these asymptotics depends on whether � = 0 or
� > 0. We treat each case separately.

Case 1: � = 0: Observe that,Z 1

1=N

x�1 (1� x)n�1 dx =Z 1

1=N

x�1

 
n�1X
l=0

�
n� 1
l

�
(�1)lxl

!
dx

= lnN +
n�1X
l=1

�
n� 1
l

�
(�1)l 1�N

�l

l

= lnN +
n�1X
l=1

�
n� 1
l

�
(�1)l
l

+N�1
n�1X
l=1

�
n� 1
l

�
(�1)l+1N

�l+1

l
: (48)

It is well known [11] that,
nX
l=1

�
n

l

�
(�1)l
l

= �
nX
l=1

1

l
= � lnn�  +�(1=n): (49)

On the other hand it can be shown using standard calculus
techniques that the function

f(x) =
n�1X
l=1

�
n� 1
l

�
(�1)l+1x

�l+1

l
;

is increasing in [1;1); that is,

f(1) = ln (n� 1)++�
�
1

n

�
� f(x) � lim

x!1
f(x) = n�1:

Hence,

ln (n� 1)
N

+�

�
1

nN

�
� N�1

n�1X
l=1

�
n� 1
l

�
(�1)l+1N

�l+1

l

� n

N
: (50)

From (48), (49), (50), and taking into account that ln(n�1) =
lnn+�(1=n); we conclude that,Z 1

1=N

x�1 (1� x)n�1 dx � lnN � lnn�  +�
�
1

n

�
+
n

N
(51)Z 1

1=N

x�1 (1� x)n�1 dx � lnN � lnn�  + lnn
N

+�

�
1

n

�
:

(52)
To develop the lower bound from (46) we also need the
following simple inequality,Z 1

�

x�1(1� x)n�1dx � � (1� �)n�1 ln�: (53)

Summarizing, we have from (45) and (51),
LN (n)

nHNN�1 � lnN
�
1� lnn

lnN
+O

�
1

lnN

�
+O

� n
N

��
;

(54)
while from (46), (52) and (53),

LN (n)

nhNN�1 � lnN
�
1� lnn

lnN
+O

�
1

lnN

�
+O

� n
N

��
:

(55)
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For unicast transmission we have from (47),
UN

HNN�1 � lnN +
1

N
(56a)

UN
hNN�1 � lnN + ln�: (56b)

Part a) of the theorem is derived from (54), (55) and (56).
Case 2: � > 0: We have,Z 1

1=N

x��1 (1� x)n�1 dx =
Z 1

0

x��1 (1� x)n�1 dx

�
Z 1=N

0

x��1 (1� x)n�1 dx:
(57)

Now,

1

�N�

�
1� 1

N

�n�1
�
Z 1=N

0

x��1 (1� x)n�1 dx (58a)

� 1

�N�
; (58b)

and Z 1

0

x��1 (1� x)n�1 dx = �(�)�(n)

�(n+ �)
: (59)

Using the approximation [20],
�(n)

�(n+ �)
= n��

�
1 + �(n�1)

�
;

we obtain from (57), (58), (59),Z 1

1=N

x��1 (1� x)n�1 dx �

�(�)n��

 
1� n�

�(�)�N�

�
1� 1

N

�n�1
+O

�
1

n

�!
(60)Z 1

1=N

x��1 (1� x)n�1 dx �

�(�)n��
�
1� n�

�(�)�N�
+O

�
1

n

�
+O

� n
N

��
: (61)

Summarizing, we have from (45) and (60),

LN (n)

HNN��1n
� �(�)n��

 
1� n�

�(�)�N�

�
1� 1

N

�n�1
+

n�

�(�)N�
+O

�
1

n

�
+O

� n
N

��
; (62)

while from (46), (61),

LN (n)

hNN��1n
� �(�)n��

�
1� n�

�(�)�N�
+O

�
1

n

�
+O

� n
N

�
� 1� �

�

�(�)�
n� (1� �)n�1

�
: (63)

From (47) we obtain,
UN

HNN��1 � ��1
�
1� 1

N�
+

�

N�

�
(64a)

UN
hNN��1 � ��1

�
1� 1

N�
�
�
1� ��

��
: (64b)

Part b) of the theorem is derived from (62), (63) and (64).

C. Main Properties of Mellin Transform
For the reader convenience, we collected here the main

properties of the Mellin transform. For details and proofs see
[10], [20].
Let f (x) be a complex-valued continuous function in

(0;1) :The Mellin transform of f is de�ned as

f�(s) :=M(f(x); s) =

Z 1

0

f(x)xs�1dx: (65)

(M1) FUNDAMENTAL STRIP. The Mellin transform of f(x)
exists in the fundamental strip Re(s) 2 (��;��), where

f(x) = O(x�) (x! 0); f(x) = O(x�) (x!1)

for � < �.
(M2) DIRECT AND INVERSE MELLIN TRANSFORMS. Let c
belong to the fundamental strip. Then

f�(s) :=M(f(x); s) =

Z 1

0

f(x)xs�1dx()

f(x) =
1

2�i

Z c+i1

c�i1
f�(s)x�sds: (66)

(M3) HARMONIC SUM PROPERTY. It holds,

f(x) =
X
k�0

�kg(�kx)() f�(s) = g�(s)
X
k�0

�k�
�s
k : (67)

(M4) MAPPING PROPERTIES (Asymptotic expansion of f(x)
and singularities of f�(s)).

f(x) =
X

(�;m)2A

c�;mx
�(log x)m +O(xM )()

f�(s) �
X

(�;m)2A

c�;m
(�1)mm!
(s+ �)m+1

: (68)

� (i) Direct Mapping. Assume that f(x) admits as x ! 0
the asymptotic expansion (68) for some �M < ��. Then for
Re(s) 2 (�M;��), the transform f�(s) satis�es the singular
expansion (68).

� (ii) Reverse Mapping. Assume that f�(s) = O(jsj�r)
with r > 1, as jsj ! 1 and that f�(s) admits the singular
expansion (68) for Re(s) 2 (�M;��). Then f(x) satis�es
the asymptotic expansion (68) as x! 0.
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