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Abstract

We consider a multi-class M/GI/1 system, in which an average response time objective

is associated with each class. The performance of each class is measured by the ratio of the

average response time over the corresponding value of the objective. To achieve fairness in

service allocation it is required to Þnd a policy that lexicographically minimizes the vector of

performance ratios arranged in non-increasing order. We provide such a policy that is adaptive,

uses only knowledge of arrival and departure instants and is thus easy to implement. We also

consider a variant of this policy which adapts faster to changes in the statistical parameters of

the model. Both policies are analyzed via associated stochastic recursions using techniques of

stochastic approximation.

Keywords: Stochastic Scheduling, Adaptive Control, Stochastic Approximation, Lexicographic

optimization.



1 Introduction

We consider anM/GI/1 queue in which customers belonging to N classes arrive for service. Cus-

tomers of different classes arrive at different rates and have different service requirements. Such

models are used to analyze the performance of shared computer systems and telecommunication

systems with heterogeneous traffic types.

To achieve efficient operation of such systems, a common approach is to provide a scheduling

policy that minimizes the weighted sum of the average response times of the customer classes.

In this case the optimal policy is a simple static priority rule [21],[3],[8]. In fact, with this linear

cost function, Bernoulli feedback of customers into the system upon service completion can also

be handled [26],[27]. See also [38] for the discounted cost case. More generally, these problems

fall in the class of Multi-armed Bandit problems [39] for which simple index policies are known

to be optimal.

In this paper we take a different approach. While the choice of cost function for a particular

system is often ad hoc, it is more natural to associate an average response time objective with each

class and consider its performance relative to the objective. SpeciÞcally, let gi be the response

time objective and let R̄pi denote the long-run average response time (assuming it exists) of class

i customers under a scheduling policy p. Attention is restricted to the class Π of non-idling,

non-preemptive, and non-anticipative policies; the last term means that scheduling decisions do

not depend on future arrival and service times. We are interested in determining a policy in Π

which lexicographically minimizes the vector of performance ratios

(R̄p1/g1, . . . , R̄
p
N/gN)

T , (1)

arranged in non-increasing order (see Section 2 for the deÞnition.) We will refer to this minimiza-

tion as lexicographic.

Results on optimality crucially hinge on the possibility of characterizing the subset A of IRN+
that consists of the vectors of mean response times achievable by policies inΠ. The setA is known
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to be the base of a polymatroid and is described in Section 2. The lexicographic minimization of

vector (1) over the set A yields a unique point θ∗ := (R∗1/g1, . . . , R
∗
N/gN)

T . Such a point has

certain properties that capture fairness in resource allocation. These are described in remarks

following Problem (P) of Section 2. Lexicographic minimization has been studied extensively in

a deterministic context [15], [23].

The main contribution of this paper is two simple adaptive policies that (exactly and ap-

proximately, respectively) minimize (1) lexicographically. Three quantities are needed in order to

specify our policies. Set T0 = 0 and denote by Tn the end of the nth busy period, n = 1, 2, . . . .

For i ∈ N := {1, . . . , N} denote by Ani the number of customers of class i that have been
served by time Tn, incremented by one; the additional unit is included for notational convenience.

It is well known that {Tn+1 − Tn}∞n=0 are i.i.d. random variables whose distribution is invariant
over policies in Π. For each i ∈ N the same holds true for {An+1,i−Ani}∞n=0. Finally, for i ∈ N
and policy u ∈ Π denote by ηui (t) the number of customers of class i that are in the system at
time t ≥ 0, when policy u is employed. We can now describe the Þrst of our policies. Let

θni :=
1

Anigi

Z Tn

0
ηπi (t)dt, i ∈ N , (2)

denote the priority index of customers of class i at time Tn under a policy π ∈ Π which, during
the (n+ 1)st busy period, employs a Þxed priority rule that gives priority to class j over class i

if θnj > θni. Ties can be resolved by assigning priorities according to an arbitrary but Þxed rule.

Thus, policy π gives priority to class j over class i if class j has worse current performance. Set

θn := (θn1, . . . , θnN)
T .

Our Þrst goal is to prove that policy π is optimal. As will turn out, it suffices to show that

lim
n→∞ θn = θ

∗, a.s. (3)

This is the object of Section 3. The analysis is facilitated by writing (2) in recursive form and

applying techniques of stochastic approximation. However, the fact that the history, nπi (t), 0 ≤
t ≤ Tn, is equally weighted in (2), implies that π does not adequately adapt to an instantaneous
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change of the statistical parameters of the model, that occurs at a large time t. An informal

discussion of this point based on the recursive form of (2) and its associated functional law of

large numbers seems worthwhile.

Set τ := E [T1 − T0] and let λi be the rate of the Poisson arrival process of customers of
class i. To derive a recursion for (2) set for n = 1, 2, . . ., i ∈ N ,

Jni(θn−1) :=

R Tn
Tn−1 η

π
i (t)dt

τλigi
, Kni :=

Ani −An−1,i
τλi

, ani :=
Ani
nτλi

, (4)

Jn(·) := (Jn1(·), · · · , JnN(·))T , an := (an1, · · · , anN)T , Kn := (Kn1, · · · ,KnN)
T , with the con-

vention that a0i = 1/τλi. It is easy to check that θn and an satisfy for i ∈ N and n = 0, 1, . . . ,

θn+1,i = θni +
1

n+ 1

h
Jn+1,i(θn)− θniKn+1,i

i
+

1

n+ 1

h
Jn+1,i(θn)− θniKn+1,i

i " 1

an+1,i
− 1

#
(5)

an+1 = an +
1

n+ 1

h
Kn+1 − 1{n≥1}an

i
. (6)

Because of ßuctuations in traffic rates and service requirements that arise in real systems it is

important to consider the following situation. Suppose that, for n0 large, at the end of the n0th

busy period there is an instantaneous change in the statistical parameters of the model such that

the optimal point θ∗ is displaced. This amounts to policy π using indices θn, n ≥ n0, generated
by (5) and (6) with the initial value θn0 being near the old optimal point. It will be seen in

Section 3 that convergence in (5) occurs for all n0 ≥ 0 and all initial vectors θn0. However, the
number of iterations necessary for convergence is an important Þgure of merit of policy π.

A functional law of large numbers for (5) is crucial in providing an estimate for this quantity,

asymptotically as n0 →∞. It states that for every = > 0, T, θ0,

lim
n0→∞

P

(
max

n0≤k≤u(n0,T )
||θk − θ(tk)|| > =

)
= 0, (7)

where the sequence (tk)
∞
k=n0 is given by tn0 = 0, tk+1 = tk + 1/(k + 1), k = n0, n0 + 1 . . .,

u(n0, T ) = min{k : k > n0, tk ≥ T}, and given an initial condition θn0 = θ0, θ(·) is a
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deterministic function on [0,∞) into IRN+ such that θ(0) = θn0 and θ(t) → θ∗ as t → ∞. For
ρ > 0 denote by τρ the Þrst time at which θ(t) enters to a ρ-ball of θ

∗. By picking T > τδ, we

see from (7) that for n0 → ∞, with high probability the process θk will not visit a δ−ball of
θ∗ before time τδ+-. Since tk ∼ ln(k/n0), the number of steps needed for this visit is at least

kδ1 ∼ n0eτδ+# , asymptotically as n0 →∞. Therefore, the adaptivity of policy π, of which kδ1 is
a natural measure, deteriorates with time.

In stochastic approximation this situation is commonly remedied by replacing the 1/(n + 1)

factor in (5) and (6) by a small constant γ > 0. This factor is known as the gain of the recursion.

The second policy proposed in this paper, denoted by πγ, acts as before but uses the indices

of the modiÞed recursions. A law of large numbers for the modiÞed recursions shows that, in

the situation of the previous paragraph, the time to enter a δ-ball of θ∗ for the Þrst time now

becomes τδ+-/γ as γ → 0. However, the policy πγ trades off convergence to θ∗ for improved

adaptability: Its performance indices have a stationary distribution that concentrates on θ∗ as

γ → 0. The trade-off between speed of adaptation and proximity to the optimal is typical in

stochastic approximation. Other choices of the gain in (5) and (6) lead to a variety of policies and

the problem of choosing one for a particular application is of great practical signiÞcance. In [5]

the issue of choosing the appropriate magnitude of a Þxed gain is taken up. Ordinary differential

equation (o.d.e.) limits and their associated diffusion limits which we do not discuss here are

central in this regard too.

The above statements follow from the results of Sections 5 and 6. In Section 5 we establish

a functional law of large numbers (also known as an o.d.e. limit) for our recursions. Since

the vector Þeld deÞned by the drift of the recursions is discontinuous, there arise considerable

technical difficulties which seem to be inherent in applications of stochastic approximation to

queueing systems. Our novel technique should be applicable to other situations as well. In

Section 6 we prove that policy πγ is asymptotically optimal as γ → 0. Bounds are obtained for

the difference between the optimal and the achieved mean response times.
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This introduction concludes with a discussion of related previous work and some practical

heuristics based on our policies. The problem of Þnding a policy p that satisÞes R̄pi = gi for

every i = 1, 2, · · · , N , was considered in [10]. Whenever this is possible, the authors showed that
such a policy can be obtained by mixing N strict priority policies and the mixing proportions can

be obtained by solving a linear program. An adaptive method for determining these proportions

was proposed in [1]. A scheduling policy based on time-dependent priorities was provided in [13].

The problem of minimizing
PM
i=1 ciR̄i subject to R̄j ≤ gj for every j = M + 1, · · · ,M + N ,

was considered in [36]. The authors proposed an algorithm which decomposes the set of classes

into an ordered partition N = ∪ki=1Pi. They prove the existence of an optimal policy which for
1 ≤ i < j ≤ N , gives priority to classes in Pi over classes in Pj.

Compared to the work described above, the formulation we consider and the scheduling

policy we describe have some advantages. When the performance objectives are speciÞed for

some classes independently of the others, it may be the case that there are no solutions to the

problems considered in [10],[36]. In our formulation the policy proceeds to do the �best� that is

possible under the circumstances. In order to implement the policies in [10],[36], knowledge of the

arrival rates and the Þrst and second moments of the service times of all classes is needed. The

policy described in this paper only requires knowledge of arrival and departure instants. Moreover,

from (2) it can be easily seen that θn+1 can be computed from θn, An, An+1 and
R Tn+1
Tn ηπi (t)dt.

Since ηπi (·) is a step function, the last integral can be computed as a summation. Therefore, the
policy can be efficiently implemented on line and the memory requirements are minimal.

Another signiÞcant advantage of the present approach is its generality. It will be seen in

the sequel that the optimality of our policy depends only on the fact that the region of average

response times achievable by various policies in anM/GI/1 queue is the base of a polymatroid and

explicit knowledge of the parameters of the region is not needed. It follows that our results apply

to other systems with the same property. It was shown in [?] that these include systems obeying

�strong� conservation laws. Such examples are multi-class Jackson networks with identical service

rates for all classes at all nodes (see [37]) and multi-class M/GI/c queues with identical service
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distributions for all classes (see [13]). The latter is of particular interest since its region of

achievable average response times has not been calculated exactly. In [13], approximate methods

were developed to deal with this problem. Thus, while none of the methods in [10], [36] can be

used, our method is directly applicable since no knowledge of the region is required.

The necessity to alleviate some of the disadvantages associated with the policies in [10] and

[36] motivated the formulation discussed in this paper. It was Þrst presented in [17], where only

the case of two classes was considered. Some of the results in [17] can be also shown by adapting

the arguments in [32].

A disadvantage of policies that follow Þxed priorities that are determined at the beginning of

each busy period is that the variance of the response times may be high. To improve our policies

in this regard it is natural to shorten the time between updates in (2). In general, it is plausible

that they can be updated at any stopping time of the process of queue lengths without affecting

their optimality property. Examples are Þxed time instants and instants of completion of service.

A policy that seems to have low variance of response times is the one of time-dependent

priorities (see [25], [12].) There, a vector c := (c1, . . . , cN)
T is speciÞed and the priority index of

a customer of class i is ciW whereW is the time the customer has been in the system. The server

is allocated (non-preemptively) to the customer with the highest index. Finding a simple adaptive

rule for choosing c to achieve lexicographic minimization is an interesting problem. The response

times resulting from the intuitive choice ci = 1/gi converge to the optimal only as the utilization

goes to 1 as can be seen from equation (3.48) in p.131 of [25]. However, the convergence is not

uniform in the values of the goals {gi}.

Nevertheless, a modiÞcation of our policies along these lines should further reduce variance:

It will be seen in Remark 3.1 that if θni = θnj for some i, j ∈ N , then no strict priority need be
speciÞed between classes i and j. This suggests that in practice a time-dependent priority policy

can be used to allocate service between classes whose indices only differ by a small value from

each other. This modiÞcation should result in a correspondingly small effect on the optimality of
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the algorithm and some reduction of variance.

In a forthcoming paper, we will focus on the optimality of policies with general update times

and extensions of our results to multi-class M/GI/1 queues with Bernoulli feedback.

A few words on the notation used in this paper. For a set S, |S| denotes its cardinality
and 1S denotes its indicator function. For two sets S1 and S2,

N2
i=1 Si denotes their cartesian

product. For any vectors x, y ∈ IRN , hx, yi denotes their inner product. A diagonal matrix A with
a11, · · · , aNN as the diagonal elements is written as diag{a11, · · · , aNN}. Finally, when i > j, the
expressions

Pj
i and ∪ji will be taken to represent 0 and ∅ respectively and inf{x : x ∈ S} =∞

when S = ∅.

2 Problem formulation

In this section the problem of lexicographic minimization is formulated. Necessary and sufficient

optimality conditions are recalled.

We begin with some additional notation. For customers of class i ∈ N let Bi(·) denote
the distribution of their service requirements. Denote the mean of this distribution by 1/µi > 0.

Throughout, we will assume the usual stability condition:
PN
i=1 ρi < 1, where ρi := λi/µi, i ∈ N .

We make the following assumption on the service times:

(A.1) The service requirements of every class have Þnite fourth moment.

For i ∈ N and policy u ∈ Π denote by Rui (k) the response time of the kth customer of class
i to arrive in the system. Sample means of response times and queue lengths satisfy certain linear

constraints that involve a set of non-negative constants {F (·)} speciÞed as a set function on all
subsets of N ; by convention F (∅) := 0. The rest of the notation used in the next lemma was
introduced in the previous section.
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Lemma 2.1. (a) For all u ∈ Π we have

lim
n→∞

X
i∈N

ρi
1

n

nX
k=1

Rui (k) = F (N ), (8)

lim inf
n→∞

X
i∈S
ρi
1

n

nX
k=1

Rui (k) ≥ F (S), for S ⊂ N . (9)

(b) For any policy u ∈ Π that gives priority to classes in set S over classes in set N\S,
limits exist and equality obtains in (9).

For a proof see [18].

Denote now by Π̄ the set of all policies u in Π for which the sample mean response times

1/n
Pn
k=1R

u
i (k) converge a.s. as n→∞. An example in [18] shows that Π̄ is a strict subset of

Π. From Lemma 2.1 it follows that the set of mean response times achievable by policies in Π̄ is

the polytope

A := {R ∈ IRN+ :
X
i∈N

ρiRi = F (N ),
X
i∈S
ρiRi ≥ F (S), S ⊂ N}. (10)

Multi-class queueing networks whose mean response times are in a set of the form (10) are

said to satisfy conservation laws. This was shown in [?] to imply that the set function F (·) is
supermodular, i.e.,

F (S1 ∪ S2) + F (S1 ∩ S2) ≥ F (S1) + F (S2), S1, S2 ⊂ N . (11)

This property is used crucially in the sequel. Note that it can be established without explicit

knowledge of the constants F (·). While explicit expressions are known for these in the case of
M/GI/1 queues, (see, e.g., [16],) our results can be applied to systems for which these are not

known. Certain difficulties encountered in [13] in the study of multi-class M/GI/c queues with

identical service distributions for all classes, are thus circumvented.

Relation (8) for u ∈ Π̄ has been stated in [22] assuming only two moments on the distribution
of service times. The proof, however, appears incomplete (see equation (11-91) on p.433.) In
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other previous work it has been shown (see [10],) that A is the set of achievable mean response
times if one considers policies in Π̄ whose actions during a busy period are independent of those

taken in previous busy periods. Only Þniteness of the second moment of the service times is

required in this case.

We next present a lexicographic order that captures the notion of fairness in resource allocation

[23], p89. For i ∈ N , let gi > 0 denote the average response time objective of the customers of
class i. These are considered Þxed throughout this paper. DeÞne a map ψ : IRN 7→ IRN as

ψ(x) =

Ã
xi1
gi1
,
xi2
gi2
, · · · , xiN

giN

!T
; (12)

where xi1/gi1 ≥ xi2/gi2 ≥ · · · ≥ xiN/giN .

For later use note that if the vector of indices at the end of a busy period is θ ∈ IRN , then
throughout the next busy period policy π serves classes in a Þxed priority corresponding to one

of the permutations {i1, . . . , iN} of N induced by the map ψ. Denote this permutation by

π(θ) := {iπ1(θ), . . . , iπN(θ)} . (13)

The vector ψ(x) is said to be lexicographically smaller [14] than the vector ψ(y) (to be

denoted ψ(x) ¹ ψ(y) ) if the following condition holds: ψ1(x) ≤ ψ1(y) and ψi(x) > ψi(y)

for some i = 2, . . . , N, implies ψj(x) < ψj(y) for some j < i. We will write ψ(x) ≺ ψ(y) if

ψ(x) 6= ψ(y) and ψ(x) ¹ ψ(y).

We can now state our optimization problem for policies in Π̄. An extension to policies in Π

will be given in Section 4.

Problem (P): Determine a policy p∗ ∈ Π̄ such that R̄p
∗
= R∗ , where R∗ is such that

ψ(R∗) ¹ ψ(R) for all R ∈ A.

The existence of R∗ follows merely because A is compact. Two properties of R∗ and p∗ are
worth noting. They follow easily from the deÞnition.
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1. The vector R∗ is also a minimal element of A in the usual min-max sense. It follows that
if the objectives are achievable, then policy π∗ achieves them, i.e.,

max
i∈N

{R∗i /gi} = min
R∈A

max
i∈N

{Ri/gi} ≤ 1. (14)

2. Policy p∗ is fair in the following ways. First, it achieves a completely equitable allocation

of the server if one is possible: Suppose that there is an R ∈ A such that R1/g1 =

. . . = RN/gN . (Such a point is unique because of the equality constraint in A.) Then,
R = R∗. Second, any policy p ∈ Π̄ that reduces the ith largest performance ratio, i.e.

ψi(R̄
p) < ψi(R̄

p∗) for i = 2, . . . , N , necessarily worsens a performance ratio that is at least

as large, i.e. ψj(R̄
P ) > ψ(R̄p

∗
) for some j < i.

We next recall from [14] a result which establishes uniqueness of R∗ and gives necessary and

sufficient optimality conditions for it. To state it, note that every x ∈ IRN can be uniquely

represented by M(x) real numbers {νk(x)}M(x)k=1 and a partition {Sk(x)}M(x)k=1 of N such that

(i) xi/gi =: νj(x) for every i ∈ Sj(x), j = 1, · · · ,M(x),

(ii) ν1(x) > ν2(x) > · · · > νM(x)(x).

Therefore, the numbers {xi/gi}Ni=1 take M(x) distinct values, for k = 1, 2, · · · ,M(x), νk(x)
denotes the kth largest value and Sk(x) is the set containing the indices of the components which

attain the kth largest value.

Theorem 2.1. The following conditions are necessary and sufficient for a vector R∗ ∈ IRN

to satisfy ψ(R∗) ¹ ψ(R) for all R ∈ A.
X

i∈Sj(R∗)
ρiR

∗
i = F

³
∪ji=1Si(R∗)

´
− F

³
∪j−1i=1Si(R

∗)
´
for every j = 1, · · · ,M(R∗).

Furthermore, the conditions uniquely determine R∗.

For notational convenience, we will writeM∗ :=M(R∗) and for i = 1, . . . ,M∗, ν∗i := νi(R
∗)

and S∗i := Si(R
∗).
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We conclude this section with the observation that the equality constraint in A can be relaxed
without affecting the lexicographic minimum. Set

A0 = {R ∈ IRN :
X
i∈S
ρiRi ≥ F (S) for every S ⊂ N}. (15)

The supermodularity of F (·) implies that for every R ∈ A0 there exists R0 ∈ A such that

R0i ≤ Ri for all i ∈ N . The following result is therefore immediate from Theorem 2.1.

Corollary 2.1. ψ(R∗) ≺ ψ(R) for every R ∈ A0 \ A.

3 Optimality of policy π

The goal of this section is to prove the optimality of policy π deÞned in the Introduction.

It turns out that if the indices {θn} deÞned in (2) converge a.s. as n → ∞, then policy π
belongs to Π̄. To see this note that for all u ∈ Π,Z Tn

0
ηui (t)dt =

Ani−1X
k=1

Rui (k), n = 1, 2, . . . . (16)

Therefore, the convergence of {θn} implies that for i ∈ N , (1/Ani)PAni−1
k=1 Rui (k) converges a.s.

as n→∞. By an argument similar to that used to establish partial reward limits from the known
limits of renewal reward processes, see e.g. [40, Section 2.3], it follows that (1/n)

Pn
k=1R

u
i (k)

converges a.s. as n→∞. Therefore, policy π solves Problem (P) of Section 2 if we prove

Theorem 3.1. Under assumption (A.1) one has

lim
n→∞ θn = θ

∗ := (R∗1/g1, . . . , R
∗
N/gn)

T , a.s. (17)

In the remaining of this section we develop a proof of this statement in several steps.

For convenience let us Þrst restate recursion (5). For i ∈ N and n = 0, 1, . . .,

θn+1,i = θni+
1

n+ 1

h
Jn+1,i(θn)−θniKn+1,i

i
+

1

n+ 1

h
Jn+1,i(θn)−θniKn+1,i

i " 1

an+1,i
− 1

#
, (18)
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with some initial value θ0. Assuming that all the processes involved are constructed on a suit-

able probability space (Ω,F , P ), for n = 0, 1, . . . , let Fn ⊂ F be the σ-Þeld generated by

{(θk,Kk), 0 ≤ k ≤ n}. Note that for each n ≥ 1 the vector Kn is independent of the policy and

that the vector Jn(·) depends on Fn−1 only through the permutation π(θn−1), deÞned in (13),
that speciÞes the priority in which classes are being served during the nth busy period. It follows

that the second term on the right in (18) is conditionally independent of Fn given θn.

Recursion (18) can thus be written in the stochastic approximation form

xn+1 = xn +
1

n+ 1
f (1)(xn, yn+1) +

1

(n+ 1)1+δ
f (2)(xn, yn+1, wn+1), n = 0, 1, · · · . (19)

for some δ > 0, and appropriate measurable functions f (1)(·), f (2)(·). The ith term in (19)

identiÞes with the ith term in (18) for i = 1, 2, 3 and yn+1 = (Kn+1, Jn+1(θn)), wn = an. The

triple (xn, yn, wn) is Gn-measurable, where {Gn}∞n=0 is a family of increasing σ-Þelds such that
yn+1 is conditionally independent of Gn given xn. As a consequence, the drift of (19) can be
deÞned as

h(xn) := E
h
f (1)(xn, yn+1)|Gn

i
. (20)

Results on the convergence of recursions of the form (19) exist for a variety of different

assumptions. Typically, under some conditions on f (2), the third term in (19) is of higher order

and convergence is determined only from the properties of f (1). Due to some special features of

our problem, application of existing results seems tedious. Instead we modify the general method

of proof developed in [35], [20] and [33] . We Þrst give a brief account of the method and indicate

the difficulties and our modiÞcations.

In order to show that (19) converges to a point x∗, it often suffices to provide a quadratic

Liapunov-type function, i.e. a function

V (x) =
1

2
||Ψ(x− x∗)||2, (21)

where Ψ is a N ×N matrix satisfying the condition: for all = > 0,

inf
||x−x∗||>-

hΨ(x∗ − x),Ψh(x)i > 0. (22)
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Thus, matrix Ψ transforms IRN so that the drift in (19) always has a component toward x∗

uniformly for x outside each =-ball of x∗.

A.s. convergence of V (xn) to a Þnite limit is obtained from the following result of Robbins

and Siegmund [35].

Lemma 3.1. On a probability space (Ω,F , P ) equipped with a sequence of σ-Þelds F0 ⊂
. . . ⊂ Fn ⊂ F let zn, ξn and ζn be non-negative and Fn-measurable random variables such

that

E [zn+1|Fn] ≤ zn + ξn − ζn, n = 0, 1, . . . . (23)

Then, limn→∞ zn exists and is Þnite and
P∞
k=0 ζk <∞ a.s. on the event( ∞X

k=0

ξk <∞
)
. (24)

This is applied with zn = V (xn), ζn = 1/(n + 1) hΨ(x∗ − xn),Ψh(xn)i and ξn is higher order
terms. Finally, that limn→∞ V (xn) = 0 follows from (22) by an argument that is presented at

the end of this section.

Application of these results to our recursion (18) was carried out in a previous version of this

work [6]. The factor (1/an+1,i−1) in the third term of (18) makes it complicated to obtain bounds
on the Fn-conditional expectation of this term. In what follows this difficulty is circumvented by
a truncation technique.

We proceed by determining the drift of (18). For a Þxed vector θ ∈ IRN+ consider the Þxed
priority policy which serves classes in the order of the permutation π(θ) deÞned in (13); denote

this policy also by π(θ). Let R̄(θ) denote the vector of mean response times of policy π(θ) and

set J̄i(θn) := E [Jn+1,i(θn)|Fn]. From (16) and the point-wise regenerative theorem it follows

that

R̄i(θ)

gi
= lim

n→∞
1

Anigi

n−1X
k=0

Z Tk+1

Tk
η
π(θ)
i (t)dt =

E
hR T1
T0
η
π(θ)
i (t)dt

i
λiτgi

= J̄i(θ), (25)

and the drift in (18) is given by

E [Jn+1,i(θn)− θniKn+1,i|Fn] = J̄i(θn)− θni, i ∈ N . (26)

13



The next result shows that (22) is satisÞed for the matrix

Ψ := diag
n
(ρ1g1)

1/2, . . . , (ρNgN)
1/2
o
, (27)

and hence that

V (θ) :=
1

2

NX
i=1

ρigi(θi − θ∗i )2, (28)

is a Liapunov-type function for (18).

Lemma 3.2. For all = > 0,

inf
||θ−θ∗||>-

NX
i=1

ρigi(θ
∗
i − θi)(J̄i(θ)− θi) > 0. (29)

Proof. Rewriting the left hand side of (29) as

NX
i=1

ρigi(θ
∗
i − θi)(J̄i(θ)− θ∗i ) +

NX
i=1

ρigi(θi − θ∗i )2, (30)

it will clearly suffice to show that

NX
i=1

ρigiθi(J̄i(θ)− θ∗i ) ≤ 0, (31)

NX
i=1

ρigiθ
∗
i (J̄i(θ)− θ∗i ) ≥ 0. (32)

For (31), recalling the deÞnition of i1, · · · , iN from (12), applied to θ, write for k = 1, . . . , N−
1,

θik =
N−1X
l=k

(θil − θil+1) + θiN . (33)

Substituting in (31) and interchanging the order of summation yields the equivalent

N−1X
l=1

(θil − θil+1)
lX

m=1

ρimgim(J̄im(θ)− θ∗im) + θiN
NX
m=1

ρmgm(J̄m(θ)− θ∗m) ≤ 0. (34)

From Lemma 2.1 (b) and (25) note that for k = 1, . . . , N − 1,
kX
l=1

ρilgil J̄il(θ) =
kX
l=1

ρilR̄il(θ) = F ({i1, . . . , ik}) ≤
kX
l=1

ρilgilθ
∗
il
, (35)

14



and equality holds in (35) for k = N . Since by deÞnition θil ≥ θil+1, for l = 1, · · · , N − 1, (34)
follows.

For (32), recalling the deÞnition of {ν∗i }, {S∗i }, rewrite it as
M∗X
i=1

ν∗i
X
j∈S∗i

ρjgj(J̄j(θ)− θ∗j ) ≤ 0, (36)

and set ν∗i =
PM∗−1
l=i (ν∗l − ν∗l+1) + ν∗M∗, i = 1, . . . ,M∗ − 1. The proof concludes as before by

noting that from Theorem 2.1 and for k = 1, . . . ,M∗ − 1,
kX
i=1

X
j∈S∗i

ρjgjθ
∗
j = F (∪ki=1Si) ≤

kX
i=1

X
j∈S∗i

ρjgjJ̄j(θ), (37)

and equality holds in (37) for k =M∗. 2

Remark 3.1. Note that if θil = θil+1 for some 1 ≤ l ≤ N − 1, (34) and Lemma 3.2 hold
for policies that do not necessarily use a Þxed priority between il and il+1. It can be seen that

the remaining of the proof of Theorem 3.1 also goes through for this kind of policies and this

suggests the heuristic presented in the Introduction.

We proceed by writing a recursion for (28). Using (18) we have for n = 0, 1, . . . ,

V (θn+1) = V (θn) − 1

n+ 1

X
i∈N

ρigi(θ
∗
i − θni) [Jn+1,i(θn)− θniKn+1,i] (38)

+
1

n+ 1

X
i∈N

ρigi

Ã
1

an+1,i
− 1

!
(θni − θ∗i ) [Jn+1,i(θn)− θniKn+1,i]

+
1

(n+ 1)2
1

2

X
i∈N

ρigi

Ã
1

an+1,i

!2
[Jn+1,i(θn)− θniKn+1,i]

2 .

Our goal is to apply Lemma 3.1 for zn = V (θn). We must therefore turn our attention to

the Fn-conditional expectation of the third and fourth terms of (38). The following truncation
scheme is crucial.

Let
n
{AMn }∞n=1

o∞
M=1

be a collection of events such that:

(C.1) For M = 1, 2, . . ., the sets AMn are decreasing in n and belong to Fn, n = 1, 2, . . . .

15



(C.2) The sequence AM := ∩∞n=0AMn is increasing in M and

P
³
∪∞M=1AM

´
= 1. (39)

Set V M(n) := V (θn)1AMn , n = 1, 2, . . ..

Lemma 3.3. If limn→∞ V M(n) = 0, a.s. M = 1, 2, . . . , then limn→∞ V (θn) = 0, a.s.

Proof. Note that

{ lim
n→∞V

M(n) = 0} = (AM)c ∪ (AM ∩ { lim
n→∞V (θn) = 0}), (40)

and therefore that

lim
M→∞

P{ lim
n→∞V

M(n) = 0} = lim
M→∞

µ
P
³
(AM)c

´
+ P

µ
AM ∩ { lim

n→∞V (θn) = 0}
¶¶
. (41)

The left hand side equals 1 by hypothesis. From (39) we conclude that P{limn→∞ V (θn) = 0} =
1. 2

To proceed we need to bound the quantity

σ2n+1,i(θn) := E
h
(Jn+1,i(θn)− θniKn+1,i)

2 |Fn
i
. (42)

To this end note that assumption (A.1) implies (see [19],)

E[(A1i −A0i)4] <∞ for i ∈ N and E[(T1 − T0)4] <∞. (43)

Since Kn+1,i is independent of Fn, (43) implies that

E
h
K2
n+1,i|Fn

i
= E

h
K2
1i

i
<∞, i ∈ N . (44)

The Cauchy-Schwartz inequality implies that

sup
θ∈IRN+

E
h
J2n+1,i(θn)|θn = θ

i
= sup

θ∈IRN+
E


R T1T0 ηπ(θ)i (t)dt

λiτgi

2


≤
Ã

1

λigiτ

!2
E
h
(T1 − T0)2(A1i −A0i)2

i

≤
Ã

1

λigiτ

!2
E
h
(T1 − T0)4

i1/2
E
h
(A1i −A0i)4

i1/2
<∞.(45)
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Expanding (42) and from the Cauchy-Schwartz inequality we get

σ2n+1,i(θn) ≤
µ³
E
h
J2n+1,i(θn)|Fn

i´1/2
+ θni

³
E
h
K2
n+1,i

i´1/2¶2
. (46)

The following events will be used in the truncation scheme. For M = 1, 2, . . . , n = 1, 2, . . .

and some δ ∈ (1/2, 1), set

DM
1n := {Kki ≤Mkδ, i ∈ N , k = 1, . . . , n}, (47)

DM
2n := {1/aki ≤M, i ∈ N , k = 1, . . . , n}, (48)

DM
3n := {|aki − 1| ≤M/k1−δ, i ∈ N , k = 1, . . . , n}, (49)

DM
4n := {||θk − θ∗|| ≤M, k = 1, . . . , n}. (50)

These satisfy conditions (C.1) and (C.2) above. Only the veriÞcation of (39) is not immediate.

Lemma 3.4. For j = 1, . . . , 4, P
³
∪∞M=1 ∩∞n=1 DM

jn

´
= 1.

Proof. For j = 1, note that since
³
∪i∈N{Kni > n

δ, inÞnitely often(i.o.)}
´c ⊂ ∪∞M=1 ∩∞n=1

DM
1n, it suffices to show that P{Kni > nδ, i.o.} = 0, i ∈ N . From Chebychev inequality

P{Kni > n
δ} ≤ E [K2

1i] /n
2δ, n = 1, 2, . . . , and the result follows from the fact that E[K2

1i] <∞
and the Borel-Cantelli lemma since δ > 1/2.

Similarly for j = 2, recall that for n = 1, 2, . . .,

ani =
1

λiτn
+
1

n

nX
l=1

Kli > 0. (51)

It suffices to show that P{ani < 1− =, i.o.} = 0 for 0 < = < 1. But this follows from the strong
law of large numbers.

For j = 3, (51) and the law of iterated logarithm [9] applied to {Kni}∞n=1 implies that for
δ > 1/2 and a.s.,

1

λiτn
− 1

n1−δ
≤ ani − 1 ≤ 1

λiτn
+

1

n1−δ
, (52)

for all but Þnitely many values of n. This implies the result as in the cases above.
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Finally for j = 4 note that from Lemma 2.1 (a) and (16) we have that

lim
n→∞

X
i∈N

ρigiθni = lim
n→∞

X
i∈N

ρi
1

Ani

Ani−1X
k=1

Rπi (k) = F (N ).

This implies that lim supn→∞ ||θn − θ∗|| <∞ a.s. and the result follows. 2

Proof of Theorem 3.1. By Lemma 3.3 it will suffice to show that limn→∞ V M(n) = 0,

M = 1, 2, . . . , for

V M(n) := V (θn)1DM
1n
1BMn−1 , n ≥ 2 . . . , (53)

where BMn := DM
2n∩DM

3n∩DM
4n. Taking conditional expectation in (38) and using the monotonicity

in n of the sets DM
jn, j = 1, · · · , 4, we can write for n ≥ 2,

E
h
V M(n+ 1)|Fn

i
≤ V M(n) (54)

− 1

n+ 1

X
i∈N

ρigi(θ
∗
i − θni)E [Jn+1,i(θn)− θniKn+1,i|Fn] 1BMn 1DM

1n

+
1

n+ 1

X
i∈N

ρigi|θni − θ∗i |E
h
|Jn+1,i(θn)− θniKn+1,i| 1{Kn+1,i>M(n+1)δ}

¯̄̄
Fn
i
1BMn 1DM

1n

+
1

n+ 1

X
i∈N

ρigi|θni − θ∗i |E
"¯̄̄̄
¯ 1

an+1,i
− 1

¯̄̄̄
¯ |Jn+1,i(θn)− θniKn+1,i| 1DM

1,n+1

¯̄̄
Fn
#
1BMn

+
1

(n+ 1)2
1

2

X
i∈N

ρigiE

Ã 1

an+1,i

!2
(Jn+1,i(θn)− θniKn+1,i)

2 1DM
1,n+1

¯̄̄
Fn
 1BMn .

By TMj (n) denote the ith term on the right hand side of (54) j = 2, . . . , 5. Note that from

Lemma 3.2, TM2 (n) ≤ 0. For the remaining terms the following bounds are obtained for n ≥ 2,
where CM is a large enough deterministic constant that depends only on M .

(a) TM3 (n) ≤ CM/n1+δ: From the Cauchy-Schwartz inequality and (42) we get

E
h
|Jn+1,i(θn)− θniKn+1,i| 1{Kn+1,i>M(n+1)δ}

¯̄̄
Fn
i
≤ σn+1,i(θn)P

³
Kn+1,i > M(n+ 1)

δ
´1/2
(55)

From (44)-(46) it follows that σn+1,i(θn) is uniformly bounded on D
M
4n. The desired bound now

follows from (44) and the Chebychev inequality.
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(b) TM4 (n) ≤ CM
³
1/n2 + 1/n2−δ

´
: Observe that an+1,i ≥ n/(n+ 1)ani and therefore,¯̄̄̄

¯ 1

an+1,i
− 1

¯̄̄̄
¯ ≤ 1

an+1,i

µ
1

n+ 1
+ |ani − 1|+ Kn+1,i

n+ 1

¶
≤ 2

ani

µ
1

n+ 1
+ |ani − 1|+ Kn+1,i

n+ 1

¶
.

(56)

The bound now follows from (47)-(50) and the uniform boundedness of σn+1,i(θn) on D
M
4n.

(c) TM5 (n) ≤ CM/n2 : This bound follows from (56) and the uniform boundedness of σn+1,i(θn)
on DM

4n.

Setting �TM(n) := TM3 (n)+T
M
4 (n)+T

M
5 (n), the above bounds imply that

P∞
n=0

�TM(n) <∞
a.s.. Lemma 3.1 applied for zn = V

M(n), ζn = −TM2 (n), ξn = �TM(n) yields that limn→∞ V M(n)

exists and is Þnite and that −P∞
n=0 T

M
2 (n) <∞ a.s.. To show that P

n
limn→∞ V M(n) > 0

o
=

0, it suffices to show that P
n
limn→∞ V M(n) > 1/m

o
= 0, m = 1, 2, . . .. Observe that on

{limn→∞ V M(n) > 1/m}, we necessarily have 1DM
1n
= 1BMn = 1 for n ≥ 2 and therefore, from

Lemma 3.2, −P∞
n=0 T

M
2 (n) =∞, which can only happen on a set of probability zero. 2

4 A generalization

In this section we present an extension of Problem (P) of Section 2 for all policies in Π. Recall

that Rpi (n) denotes the response time of the n
th departing customer of class i and Rp(n) is the

associated vector in IRN .

Problem (P�): Determine p∗ ∈ Π that satisÞes

ψ

Ã
lim sup
n→∞

Ã
1

n

nX
k=1

Rp
∗
(k)

!!
¹ ψ

Ã
lim sup
n→∞

Ã
1

n

nX
k=1

Rp(k)

!!
, a.s., for every p ∈ Π.

Our result is that policy π solves this problem as well.

Theorem 4.1. For all p ∈ Π,
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ψ

Ã
lim
n→∞

Ã
1

n

nX
k=1

Rπ(k)

!!
¹ ψ

Ã
lim sup
n→∞

Ã
1

n

nX
k=1

Rp(k)

!!
a.s. (57)

Proof. Lemma 2.1 implies that for p ∈ Π,
NX
i=1

ρi lim sup
n→∞

Ã
1

n

nX
k=1

Rpi (k)

!
≥ lim sup

n→∞

NX
i=1

ρi

Ã
1

n

nX
k=1

Rpi (k)

!
= F (N )

and for every S ⊂ N , S 6= N ,
X
i∈S
ρi lim sup

n→∞

Ã
1

n

nX
k=1

Rpi (k)

!
≥ lim inf

n→∞
X
i∈S
ρi

Ã
1

n

nX
k=1

Rpi (k)

!
≥ F (S).

Therefore, the vector lim supn→∞
³
1
n

Pn
k=1R

p(k)
´
belongs to A0 deÞned in (15). However as

shown in Section 3, R̄π = limn→∞ 1
n

Pn
k=1R

π(k) = R∗ and (57) follows from Corollary 2.1. 2

5 Finite time asymptotic behavior

As was seen in the Introduction, in order to assess the adaptivity of our policies π and πγ it

is necessary to study laws of large numbers for the indices used by these policies. A statement

of this law for π was given in (7). The notation will be simpler if we work with the indices of

πγ. The modiÞcations needed to obtain result (7) for the indices of π are straightforward and

standard in stochastic approximation (see, e.g., [30].)

Let us Þrst state the recursions for the indices of πγ.

θγni = θγn−1,i + γ
h
Jni(θ

γ
n−1)− θγn−1,iKni

i
+ γ

h
Jni(θ

γ
n−1)− θγn−1,iKni

i " 1
aγni

− 1
#

(58)

aγn = aγn−1 + γ
h
Kn − 1{n−1≥1}aγn−1

i
, n = 1, 2, . . . , (59)

with some initial conditions θγ0 ,a
γ
0 .

It was seen in the Section 3 that convergence in (5) was determined primarily by its drift

which satisÞed (22). The third term in (5) is of higher order and has no effect on convergence.
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The situation in Sections 5 and 6 is similar. The results only depend on the drift of (58) and the

treatment of higher order terms is lengthy but inessential and can be done in a straightforward

manner. For the sake of clarity we will make a simpliÞcation that leads to a recursion with the

same drift but without the higher order terms. Henceforth assume that the arrival rates {λi} are
known and remain Þxed. Then, it is natural to employ policy π0 which in the (n + 1)-st busy

period serves classes in the order of permutation π(Pn) (see (13),) where

Pi(Tn) :=
1

λigiTn

Z Tn

0
ηπ

0
i (t)dt, i ∈ N

or, equivalently, in the order of permutation π(θn) where

θni := Pi(Tn)
Tn
nτ
=

1

λiginτ

Z Tn

0
ηπ

0
i (t)dt, i ∈ N . (60)

Now {θn} satisÞes for n = 1, 2, . . .,

θn = θn−1 +
1

n
[Jn(θn−1)− θn−1] , (61)

where

Jni(θn−1) =
1

τλigi

Z Tn

Tn−1
η
π(θn−1)
i (t)dt, i ∈ N . (62)

Replacing 1/n by γ, 0 < γ < 1 in (61) we obtain

θγn = θγn−1 + γ [Jn(θ
γ
n−1)− θγn−1] . (63)

Observe that the conditional expectations of the second terms on the right hand side of (58) and

(63) coincide.

The main result of this Section is a functional law of large numbers for (63). This is stated

below as Theorem 5.2 where the deterministic limit θ(·) is given by (65). Such limits have been
studied extensively in in this context, [4], [29], and they also arise in a variety of other situations,

[11]. There, the deterministic limit of a stochastic recursion is obtained as the unique integral

curve of the vector Þeld determined by the drift of the recursion and the initial condition. It is
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for this reason that none of the results in the literature seem to apply to our recursion. The term

E
h
Jni(θ

γ
n−1)

¯̄̄
θγn−1 = θ

i
=

1

τλigi
E

"Z T1

T0
η
π(θ)
i (t)dt

#
:= J̄i(θ), i ∈ N , (64)

in the drift of (58) is a discontinuous function of θ. To see this note that its points of discontinuity

are, except in degenerate cases, the points of discontinuity of the permutation π(·) deÞned in
(13). More importantly, the limit of recursion (63) can evolve on surfaces of discontinuity of J̄i(θ)

as will be seen in Case 2 of Theorem 5.2 below. Thus, the limit of (63) cannot be characterized as

the unique integral curve of the vector Þeld deÞned by the drift and the initial condition. Indeed,

it does not seem easy to guess what the deterministic limit is and whether it exists at all. Therein

lies the contribution of this section.

To summarize our intentions, in Sections 5 and 6 we will assume that arrival rates are known

and that the indices (60) are employed. In the remaining of this section we derive a functional law

of large numbers for (63) and in Section 6 we study the long-term behavior of that recursion. The

simpliÞcations made allow us to present only the novel aspects of our results. The corresponding

results for (58) can be obtained by straightforward but lengthy modiÞcations. Finally, let us

remark that one may be able to obtain the result of Section 3 from the o.d.e. limit of (58),

provided that the estimates based on Lemma 5.4 below are sharpened. However, since one may

only be interested in the optimality of policy π, the much shorter and direct proof of Section 3

seems worthwhile.

The limit

The limit of recursion (63) will be seen to be the solution of a �piecewise linear� o.d.e.. Each

piece is determined by the region of IRN+ in which the solution happens to be. To describe the

limit, some additional notation is needed.

For a partition U = (Si)Mi=1 of N , a policy p ∈ Π̄ is said to be of type U if, at every decision
instant, customers of classes belonging to Si are given priority over customers of classes belonging

to Sj for 1 ≤ i < j ≤ M . Observe that for such a policy p ∈ Π̄, the long-run average response
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times {R̄pi }Ni=1 satisfy X
i∈∪kj=1Sj

ρiR̄
p
i = F

³
∪kj=1Sj

´
for every k = 1, · · · ,M .

A vector θ ∈ IRN is said to be of type U = (Si)Mi=1 if i ∈ Sk, j ∈ Sl and k < l implies that
θi > θj. For a partition U , let

DU :=
n
θ ∈ IRN+ : θ is of type U

o
.

The set of partitions of N with cardinality N will be denoted by P.

For a partition U = (Si)Mi=1 of N we will need to describe the set of average response time

vectors achievable by a policy of type U . To this end, set for k = 1, . . . ,M and S ⊂ Sk,

F̄k(S) := F
³
∪k−1i=1 Si ∪ S

´
− F

³
∪k−1i=1 Si

´
,

ASk :=

x = (xi)i∈Sk ∈ IR|Sk|+ :
X
Sk

ρixi = F̄k (Sk) ;
X
S0
ρixi ≥ F̄k (S0) , S0 ⊂ Sk

 .
For x ∈ IRN+ and S ⊂ N , let x|S denote the vector in IR|S| with coordinates in S.

The following result is a well known (see [15]) property of polymatroids.

Lemma 5.1 For every k = 1, · · · ,M ,

(i) F̄k(·) is supermodular and

(ii) ASk =
n
R̄p|Sk : policy p ∈ Π0 is of type

³
∪k−1i=1 Si, Sk, ∪Mi=k+1Si

´o
.

For θ ∈ IRN+ with representation U(θ) = {Si(θ)}M(θ)i=1 , {νi(θ)}M(θ)i=1 (see Section 2), let

Θ(k)(θ) :=
³
Θ
(k)
i (θ)

´
i∈Sk(θ)

be such that ψ(Θ(k)(θ)) ¹ ψ(Θ) for every Θ ∈ ASk(θ). From
Lemma 5.1 and Theorem 2.1, we have that Θ(k)(θ) exists and is unique. DeÞne the vector

Θ(θ) := (Θ1(θ), · · · ,ΘN(θ))T by setting, for every i ∈ N , Θi(θ) := Θ(k)i (θ) whenever i ∈ Sk(θ).

We are now ready to describe the limit in probability of recursion (63) as γ → 0 and

over Þnite time intervals growing at rate 1/γ. For an initial condition θ0 ∈ IRN+ , let U(θ0) =

23



{Si(θ0)}M(θ0)i=1 , {νi(θ0)}M(θ0)i=1 and Θ(θ0) be as deÞned before. Let

τDU(θ0) := inf
n
s ≥ 0 : θ(s) 6∈ DU(θ0)

o
.

For times 0 ≤ t < τDU(θ0) , the limit is the solution of the o.d.e.

úθ(t) = Θ(θ0)− θ(t), θ(0) = θ0.

For times beyond τDU(θ0), the limit is obtained by repeating the above procedure with θ
³
τDU(θ0)

´
as the initial condition. The function obtained in this way can be easily shown to be the unique

solution of the integral equation

θ(t) = θ0 +
Z t

0
(Θ (θ (s))− θ (s)) ds. (65)

Recall the deÞnition of matrix A from (27) and of θ∗ ∈ IRN from (17).) We conclude the

description of the limit by showing that the solution of (65) converges to θ∗as t → ∞, for any
initial condition. We Þrst need the following result that can be derived by mimicking the proof

of Lemma 3.2.

Lemma 5.2. For every θ ∈ IRN+ ,

hΨθ −Ψθ∗,ΨΘ(θ)−Ψθ∗i ≤ 0.

and equality holds if and only if θ = θ∗.

Theorem 5.1. The vector θ∗ is a globally asymptotically stable point of (65).

Proof. We show that V (θ) := 1/2||Ψθ − Ψθ∗||2 is a Liapunov function for (65). Indeed,
whenever θ(t) is differentiable and different from θ∗ we obtain, from Lemma 5.2, that

d

dt
V (θ(t)) = hΨθ(t)−Ψθ∗,ΨΘ (θ(t))−Ψθ∗i < 0.

2

Preliminary results
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The results in this subsection are preparatory for the convergence proofs that follow. Recursion

(63) is Þrst written in an appropriate form and followed by three technical lemmas.

Recall from (64) the deÞnition of J̄ . Also, let Jσ := J1(θ0) when θ0 is of type σ ∈ P, and
J̄σ := E [Jσ | θ0]. Recursion (63) can be written as

θγn = θγ0 + γ
n−1X
k=0

Jk+1(θ
γ
k)− γ

n−1X
k=0

θγk

= θγ0 + γ
n−1X
k=0

J̄(θγk)− γ
n−1X
k=0

θγk +M
γ
n , (66)

where Mγ
n := γ

Pn−1
k=0(Jk+1(θ

γ
k) − J̄(θγk)), is a martingale with respect to the history Fγn of the

process {θγn}∞n=0.

In the sequel, for a sequence {Xk}∞k=0, we denote the right-continuous process Xbt/γc by
X(t), where b·c denotes the integer part of a non-negative number. Then, (66) can be written
in the integral form

θγ(t) = θγ(0)−
Z γbt/γc

0
θγ(s)ds+ γ

bt/γc−1X
k=0

J̄(θγk) +M
γ(t) (67)

We will need the following Lemmas.

Lemma 5.3. (Gronwall) For φ : [0,∞)→ IR+ and non-negative constants K0, K1, K2,

the integral inequality

φ(t) ≤ (K0 +K1t) +K2

Z t

0
φ(s)ds, t ≥ 0,

implies that

φ(t) ≤ K0e
K2t +

K1

K2

³
eK2t − 1

´
, t ≥ 0.

For a proof see [31].

Lemma 5.4. (Lenglart) Let (Mn,Fn)∞n=0 be an IR-valued, zero mean square integrable martin-
gale with quadratic variation {hMin =

Pn−1
k=0 E [(Mk+1 −Mk)

2|Fk]}∞n=0. For any Fn-stopping
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time T , we have

P
½
max
0≤n≤T

|Mn| ≥ =
¾
≤ δ

=2
+ P {hMiT ≥ δ} ,

for all δ > 0, = > 0.

For a proof see [24].

Corollary 5.1. For all = > 0,

lim
γ→0P

(
sup
0≤s≤t

kMγ(s)k ≥ =
)
= 0.

Proof. Let L = maxσ∈P EkJσk2. Notice that by assumption (A.1) and (45), L < ∞. From
the deÞnition of Mγ(t) we have

hMγit = γ2
bt/γcX
k=1

EkJk(θγk−1)− J̄(θγk−1)k2 ≤ Lγ t,

and the result follows from Lemma 5.4. 2

The symbol ⇒ denotes weak convergence.

Lemma 5.5. If θγ(0)⇒ θ(0) as γ → 0, then for K > maxσ∈P kJ̄σk+ kθ(0)k,

lim
γ→0P

(
sup
0≤s≤t

kθγ(s)− θγ(0)k > K
³
et − 1

´)
= 0.

Proof. From (67) we obtain

θγ(s)− θγ(0) = γ
bs/γcX
k=1

J̄(θγk−1)−
Z s

0
θγ(u)du+ (s− bs/γc γ) θγ(s) +Mγ(s).

By adding and subtracting appropriate terms involving θ(0) and θγ(0) and using the triangle

inequality it follows that

(1− γ) kθγ(s)− θγ(0)k ≤ s
µ
max
σ∈P

kJ̄σk+ kθ(0)k
¶
+ (s+ γ)kθγ(0)− θ(0)k

+γkθ(0)k+ kMγ(s)k+
Z s

0
kθγ(u)− θγ(0)kdu,
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and by Lemma 5.3 (Gronwall),

kθγ(s)− θγ(0)k ≤ (1− γ)−1
Ã
sup
0≤s≤t

kMγ(s)k+ γkθ(0)k+ (t+ γ)kθγ(0)− θ(0)k
!
et/1−γ

+
µ
max
σ∈P

kJ̄σk+ kθ(0)k
¶³
et/1−γ − 1

´
.

The result now follows from Corollary 5.1. 2

Convergence

We intend to show the following result.

Theorem 5.2. For every = > 0, t ≥ 0 and θ(0) ∈ IRN+ , if θγ(0)⇒ θ(0) as γ → 0, then

lim
γ→0P

(
sup
0≤s≤t

kθγ(s)− θ(s)k ≥ =
)
= 0.

The essential difficulty in proving Theorem 5.2 is that the drift h(θγn−1) = J̄(θγn−1) − θγn−1
in (63) is a discontinuous function on IRN+ . Suppose that θ(0) belongs to Dσ for some σ ∈ P.
Then, the Þnite time analysis of (63) can be carried out using standard results of stochastic

approximation [29] and [33] only in the time interval [0, τDσ).

For clarity of presentation, we Þrst give convergence proofs for two special cases of initial

conditions (Theorems 5.3 and 5.4). Convergence for arbitrary initial conditions follows easily by

combining these two special cases.

Case 1: We begin by considering the situation in which θ(0) is of type σ ∈ P. In this case the
limit is the solution of the differential equation

úθ(t) = J̄σ − θ(t), t ≥ 0. (68)

The next result establishes the convergence in the time interval [0, τDσ ]. Our technique is

closest to the one of [28]. For a subset D of IRN+ deÞne the Fγt -stopping time

τγD := inf {t ≥ 0 : θγ(t) 6∈ D} .
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Theorem 5.3. If θγ(0)⇒ θ(0) as γ → 0, where θ(0) is of type σ ∈ P, then for every = > 0
and 0 ≤ t <∞,

lim
γ→0P

(
sup

0≤s≤τDσ∧t
kθγ(s)− θ(s)k ≥ =

)
= 0.

Proof. The main difficulty is that the drift h(θ) is discontinuous at τDσ . The proof is carried

out in two steps.

Step 1: We prove that for 0 ≤ t < τDσ and all = > 0 ,

lim
γ→0P

(
sup
0≤s≤t

kθγ(s)− θ(s)k ≥ =
)
= 0.

From (67) and the observation that for s ≤ τγDσ , J̄(θγk) = J̄σ, 0 ≤ k ≤ bs/γc− 1, we obtain

θγ(s)− θ(s) = (θγ(0)− θ(0))−
Z s

0
(θγ(u)− θ(u)) du+ (s− γ bs/γc)(θγ(s)− θ(s))

+ (s− γ bs/γc) θ(s) +Mγ(s)− (s− γ bs/γc) J̄σ.

By setting Uγ(s) := kθγ(s)− θ(s)k, we have that

(1− γ)Uγ(s ∧ τγDσ) ≤ Uγ(0) +
Z s

0
Uγ(u ∧ τγDσ)du

+ sup
0≤u≤t∧τγDσ

kMγ(u)k+ γ
µ
max
0≤s≤t

kθ(s)k+max
σ
kJ̄σk

¶
,

which after the application of Lemma 5.3 (Gronwall) gives

Uγ(s∧τγDσ) ≤ (1− γ)−1
Uγ(0) + sup

0≤u≤t∧τγDσ
kMγ(u)k+ γ

µ
max
0≤s≤t

kθ(s)k+max
σ
kJ̄σk

¶ et/(1−γ).
From Corollary 5.1 and the convergence of the initial condition we have that for all = > 0,

lim
γ→0P

(
sup
0≤s≤t

Uγ(s ∧ τγDσ) ≥ =
)
= 0. (69)

It remains to remove the stopping time in the supremum of the event above. For this note that

P

(
sup
0≤s≤t

Uγ(s) ≥ =
)
≤ P

n
t ≥ τγDσ

o
+ P

(
sup
0≤s≤t

Uγ(s ∧ τγDσ) ≥ =
)
. (70)
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It therefore suffices to show that

lim
γ→0P

n
t ≥ τγDσ

o
= 0. (71)

Since t < τDσ there exists a ζ > 0 such that

inf
s≤t
ρ (θ(s),Dc

σ) > ζ,

where ρ(x,D) = inf {kx − yk : y ∈ D} denotes the distance of the set D from x. Now note

that
n
t ≥ τγDσ

o
⊂
n
sup0≤s≤t U

γ(s ∧ τγDσ) > ζ
o
. Relation (71) follows as a consequence of (69).

Step 2: To complete the proof of the theorem, it suffices to show that if τDσ ≤ t <∞, then
there exists a t0 ∈ [0, τDσ) such that

lim
γ→0P

(
sup

t0≤s≤τDσ
kθγ(s)− θ(s)k ≥ =

)
= 0. (72)

Observe that for all t0 ∈ [0, τDσ)

sup
t0≤s≤τDσ

kθγ(s)−θ(s)k ≤ sup
t0≤s≤τDσ

kθγ(s)−θγ(t0)k+kθγ(t0)−θ(t0)k+ sup
t0≤s≤τDσ

kθ(t0)−θ(s)k. (73)

Pick t0 < τDσ large enough so that supt0≤s≤τDσ kθ(s)−θ(t0)k < =/3, and so that, for the constant
K in Lemma 5.5, K

³
eτDσ−t

0 − 1
´
< =/3. Note that from Step 1 above we have as a corollary

that θγ(t0)⇒ θ(t0) as γ → 0. Using Lemma 5.5, (72) follows from (73) and the proof is complete.

2

Case 2: We now consider the situation in which

θi(0) = θj(0), i, j ∈ N . (74)

As mentioned before, the limit in this case is the solution of

úθ(t) = θ∗ − θ(t), t ≥ 0.

The difficulty here is that the drift in (63) is discontinuous at the initial condition θ(0), and

furthermore, the trajectory of θ(t) may not leave the set where the drift is discontinuous. Assume

that θ(0) 6= θ∗.
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It will be convenient to transform the state space IRN+ by multiplying all vectors by the matrix

Ψ. A transformed vector X will be denoted by �X. Deviating slightly from this rule we set,

�J(θ) := ΨJ̄(θ).

Instead of considering the vector θγk we consider the projection and the vertical distance of

�θγk − �θ(0) from the line determined by the points �θ(0) and �θ∗. They are deÞned as follows.

Qγk :=
D
�θγk − �θ(0), �θ∗ − �θ(0)

E
,

Zγk := �θγk − �θ(0)− uQγk,

where

u :=
�θ∗ − �θ(0)

k�θ∗ − �θ(0)k2 .

The basic idea of the proof is to show that Zγ(t) converges to zero (Corollary 5.3) and Qγ(t)

converges to �θ(s)−�θ(0) (Theorem 5.4) as γ → 0, where in both cases convergence is in probability

and uniformly over Þnite time intervals.

Observe that
D
�J(θ)− �θ∗, �θ(0)

E
= 0 for θ(0) satisfying (74). Then from Lemma 3.2 we obtain,

for all θ ∈ IRN+ , D
�θ∗ − �θ(0), �J(θ)− �θ∗

E
≥ 0, (75)D

�θ − �θ(0), �J(θ)− �θ∗
E
≤ 0. (76)

From (75), we also have

h�θ∗ − �θ(0), �J(θ)− �θ(0)i ≥ k�θ∗ − �θ(0)k2. (77)

Note that equality holds in (75) and (77) when θ is of type U(θ∗).

Let

∆k(θ
γ
k−1) := Ψ

³
Jk(θ

γ
k−1)− J̄(θγk−1)

´
In terms of this notation the sequence {Qγk}∞k=0 can be written as

Qγk+1 = (1− γ)k+1Qγ0 + γ
kX
l=0

(1− γ)l
D
�J(θγk−l)− �θ(0), �θ∗ − �θ(0)

E
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+γ
kX
l=0

(1− γ)l
D
∆k+1−l(θ

γ
k−l), �θ

∗ − �θ(0)
E

≥ (1− γ)k+1Qγ0 +
³
1− (1− γ)k+1

´
k�θ∗ − �θ(0)k2

+γ
kX
l=0

(1− γ)l
D
∆k+1−l(θ

γ
k−l), �θ

∗ − �θ(0)
E
, (78)

the inequality following from (77). When θγl is of type U(θ∗) for every l = 0, 1, · · · , k, then
equality holds in (78).

Lemma 5.6. For every = > 0,

lim
γ→0P

 sup0≤s≤t
γ

¯̄̄̄
¯̄bs/γc−1X

l=0

(1− γ)l
D
∆bs/γc−l(θ

γ
bs/γc−l−1), �θ

∗ − �θ(0)
E¯̄̄̄¯̄ ≥ =

 = 0.

Proof. Set

V γk+1 := γ
kX
l=0

(1− γ)l
D
∆k+1−l(θ

γ
k−l), �θ

∗ − �θ(0)
E
.

{V γk }∞k=0 satisÞes the recursion

V γk+1 − V γk = γ
D
∆k+1(θ

γ
k),
�θ∗ − �θ(0)

E
− γV γk ,

which in integral form can be written as

V γ(s) = γ
bs/γc−1X
k=0

D
∆k+1(θ

γ
k),
�θ∗ − �θ(0)

E
−
Z s

0
V γ(u)du+ (s− γ bs/γc)V γ(s).

From the triangle inequality we have that for 0 ≤ s ≤ t,

(1− γ) |V γ(s)| ≤ sup
0≤s≤t

¯̄̄̄
¯̄γ bs/γcX

k=0

D
∆k+1(θ

γ
k),
�θ∗ − �θ(0)

E¯̄̄̄¯̄+ Z s

0
|V γ(u)| du.

From Lemma 5.3 (Gronwall),

sup
0≤s≤t

|V γ(s)| ≤ (1− γ)−1 sup
0≤s≤t

¯̄̄̄
¯̄γ bs/γc−1X

k=0

D
∆k+1(θ

γ
k),
�θ∗ − �θ(0)

E¯̄̄̄¯̄ et/1−γ.
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Observe that γ
Pbs/γc−1
k=0

D
∆k+1(θ

γ
k),
�θ∗ − �θ(0)

E
is a Fγs -martingale. The result follows now, by a

similar argument as in Corollary 5.1. 2

Corollary 5.2. If θγ(0)⇒ θ(0) as γ → 0, then, for every = > 0,

lim
γ→0P

½
inf
0≤s≤t

h
Qγ(s)− (1− e−s)k�θ∗ − �θ(0)k2

i
≤ −=

¾
= 0.

Proof. Since θγ(0)⇒ θ(0) as γ → 0, we have that for all = > 0,

lim
γ→0P

(
sup
0≤s≤t

(1− γ)bs/γcQγ0 ≥ =
)
= 0.

Using in addition Lemma 5.6, we conclude from (78) that

lim
γ→0P

½
inf
0≤s≤t

³
Qγ(s)− (1− (1− γ)bs/γc)k�θ∗ − �θ(0)k2

´
≤ −=

¾
= 0.

The result follows by observing that limγ→0(1− γ)bs/γc = e−s, uniformly in s ∈ [0, t]. 2

We now turn our attention to the sequence {Zγk}∞k=0. Let T γC := inf {s ≥ 0 : kZγ(s)k > C}
for C > 0, and

Γk(θ
γ
k−1) := ∆k(θ

γ
k−1)− u

D
∆k(θ

γ
k−1), �θ

∗ − �θ(0)
E

H(θγk−1) := �J(θγk−1)− �θ(0)− u
D
�J(θγk−1)− �θ(0), �θ∗ − �θ(0)

E
.

We Þrst show the following result.

Lemma 5.7. If θγ(0)⇒ θ(0) as γ → 0, then for every = > 0 and C > 0,

lim
γ→0P

 sup
0≤s≤t∧TγC

kZγ(s)k ≥ =
 = 0.

Proof. It can be easily seen that {Zγk}∞k=0 satisÞes the following recursion.

Zγk+1 = (1− γ)Zγk + γH(θγk) + γΓk+1(θγk). (79)
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From the deÞnition of H(θγk) and Γk+1(θ
γ
k), we have the existence of Þnite constants UH and UΓ

such that, maxk kH(θγk)k2 ≤ UH a.s., and maxk EkΓk+1(θγk)k2 ≤ UΓ. From (79) we have

kZγk+1k2 ≤ kZγkk2 + γ2UH + γ2Γk+1(θγk) + 2γ2 hH(θγk),Γk+1(θγk)i
+2γ(1− γ) hZγk ,Γk+1(θγk)i+ 2γ(1− γ) hZγl ,H(θγl )i ,

from which it follows that

kZγ(s)k2 ≤ kZγ0 k2 + γsUH + γ2
bs/γc−1X
l=0

kΓl+1(θγl )k2

+2γ2
bs/γc−1X
l=0

hH(θγl ),Γl+1(θγl )i+ 2γ(1− γ)
bs/γc−1X
l=0

hZγl ,Γl+1(θγl )i

+2γ(1− γ)
bs/γc−1X
l=0

hZγl , H(θγl )i . (80)

The Lemma will be proved if for every term, Tk(s), k = 1, . . . , 6, on the right hand side of

(80), it is shown that for every = > 0,

lim
γ→0P

 sup
0≤s≤t∧TγC

|Tk(s)| ≥ =
 = 0.

We consider each term separately.

a) T1(s) := kZγ0 k2: The assertion follows from the weak convergence of the initial condition.
b) T2(s) := γsUH : Obvious.

c) T3(s) := γ
2Pbs/γc−1

l=0 kΓl+1(θγl )k2: Since the terms in the summation are non-negative,

sup
0≤s≤t

|T3(s)| ≤ γ2
bt/γc−1X
l=0

kΓl+1(θγl )k2.

Since γ2E
³Pbt/γc−1

l=0 kΓl+1(θγl )k2
´
≤ γtUΓ, the result follows by Chebyshev�s inequality.

d) T4(s) := γ
2Pbs/γc−1

l=0 hH(θγl ),Γl+1(θγl )i: Observe that the sum is a Fγs -martingale. For the
quadratic variation, hT4i·, of the sum we have that,

EhT4it ≤ γ4
bt/γcX
l=0

E hH(θγl ),Γl+1(θγl )i2 ≤ γ3tUHUΓ.
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The result now follows from Lemma 5.4, by applying Chebyshev�s inequality to hT4i·.
e) T5(s) := γ(1 − γ)Pbs/γc−1

l=0 hZγl ,Γl+1(θγl )i: Again, the sum is a Fγs -martingale. Since

kZγ(s)k ≤ C for s < T γC , hT5it∧TγC → 0 a.s. and the result follows from Lemma 5.4 (Lenglart).

f) T6(s) := 2γ(1− γ)Pbs/γc−1
l=0 hZγl , H(θγl )i: Set

C(θγl ) := 1−
D
�J(θγl )− �θ(0), �θ∗ − �θ(0)

E
k�θ∗ − �θ(0)k2 .

Observe that UC := maxθ∈IRN+ C(θ) <∞. From the deÞnitions of Z
γ
k and H(θ

γ
k), it follows that

hZγl ,H(θγl )i =
D
�θγl − �θ(0),H(θγl )

E
= C(θγl )Q

γ
l +

D
�θγ(l)− �θ(0), �J(θγl )− �θ∗

E
≤ C(θγl )Q

γ
l

where the inequality follows from (76). From (77), we have that C(θγl ) ≤ 0 for every l and

consequently, from (78), we obtain

|T6(s)| ≤ 2UC |Qγ0 |+ 2γ2UC

bs/γc−1X
l=0

¯̄̄̄
¯
l−1X
m=0

(1− γ)m
D
∆l−m(θ

γ
l−m−1), �θ

∗ − �θ(0)
E¯̄̄̄¯ . (81)

From the convergence of the initial condition, we have that the Þrst term in (81) converges to 0

as γ → 0. The second term is dominated by

2 t UC sup
0≤l≤t

γ

¯̄̄̄
¯̄bl/γc−1X
m=0

(1− γ)m
D
∆bl/γc−m(θ

γ
bl/γc−m−1), �θ

∗ − �θ(0)
E¯̄̄̄¯̄

for which Lemma 5.6 applies. This completes the proof of Lemma 5.7. 2

The stopping time T γC can be removed from the supremum as in Step I in the proof of Theorem

5.2 (see (70)).

Corollary 5.3. Under the same assumptions as in Lemma 5.7,

lim
γ→0P

(
sup
0≤s≤t

kZγ(s)k ≥ =
)
= 0.
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We will need the following simple geometric result. For any θ ∈ RN , let Q(θ) and Z(θ)
denote, respectively, the projection and the vertical distance of θ − θ(0) from the line joining

θ∗ and θ(0); i.e., Q(θ) := hθ − θ(0), θ∗ − θ(0)i and Z(θ) := θ − θ(0) − uQ(θ), with u =
kθ∗ − θ(0)k−2 (θ∗ − θ(0)). Recall that θ(0) satisÞes (74).

Lemma 5.8. For every =o > 0, there exists δ > 0 such that for every θ ∈ RN with Q(θ) > =o
and kZ(θ)k < δ, θ∗i > θ∗j implies θi > θj .

Proof. We need to consider only the case where θ∗i 6= θ∗j for some i, j ∈ N . If we choose

δ :=
=o
2

min
n
|θ∗i − θ∗j | : θ∗i 6= θ∗j

o
kθ∗ − θ(0)k2 ,

then θ∗i > θ
∗
j implies

θi − θj = Zi(θ)− Zj(θ) + (ui − uj)Q(θ)
≥ −δ + =o

³
θ∗i − θ∗j

´
kθ∗ − θ(0)k−2 > 0.

2

Recall that θ(·) is the solution of the integral equation (65).

Theorem 5.4. If θγ(0) ⇒ θ(0) as γ → 0 and θ(0) satisÞes (74), then for every = > 0,

0 ≤ t <∞,
lim
γ→0P

(
sup
0≤s≤t

kθγ(s)− θ(s)k ≥ =
)
= 0.

Proof. Assume Þrst that θ(0) 6= θ∗. Set Q(s) := (1−e−s)k�θ∗− �θ(0)k2. Since �θγ(s)− �θ(0) =
uQγ(s) + Zγ(s), and �θ(s)− �θ(0) = (1− e−s)

³
�θ∗ − �θ(0)

´
, we have

k�θγ(s)− �θ(s)k ≤ kZγ(s)k+ kuk · |Qγ(s)−Q(s)|

and, in view of Corollary 5.3, it suffices to show that for = > 0,

lim
γ→0P

(
sup
0≤s≤t

|Qγ(s)−Q(s)| ≥ =
)
= 0. (82)
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Observe that

sup
0≤u≤s

|Qγ(u)−Q(u)| ≤ sup
0≤u≤s

|Qγ(u)−Qγ(0)|+ |Qγ(0)|+ sup
0≤u≤s

|Q(u)| .

Fix = > 0 and pick so > 0 small enough such that (i) sup0≤u≤so |Q(u)| < =/3; and (ii)

lim
γ→0P

(
sup

0≤u≤so
|Qγ(u)−Qγ(0)| ≥ =

3

)
= 0.

The Þnal choice can be made by virtue of Lemma 5.5. From the convergence of the initial

condition we have that

lim
γ→0P

(
sup
0≤s≤so

|Qγ(s)−Q(s)| ≥ =
)
= 0. (83)

It remains to show that

lim
γ→0P

(
sup
so≤s≤t

|Qγ(s)−Q(s)| ≥ =
)
= 0. (84)

Consider the events

Ωγ1 :=
½
inf

so≤s≤t
[Qγ(s)−Q(s)] > −Q(so)/2

¾
Ωγ2 :=

(
sup
so≤s≤t

kZγ(s)k < δ
)
,

where δ corresponds to the choice =o = Q(so)/2 in Lemma 5.8. From Lemma 5.8, we have that

for all sample paths in Ωγ := Ωγ1 ∩Ωγ2 , θγ(s) is of type U(θ∗) for every so ≤ s ≤ t. Consequently,
for all these paths, an equality holds in (78) for k = bso/γc , · · · , bt/γc − 1 and we obtain, for
so ≤ s ≤ t,

Qγ(s) = (1− γ)bs/γc−bso/γcQγ(so) +
h
1− (1− γ)bs/γc−bso/γc

i
k�θ∗ − �θ(0)k2

+ γ
bs/γc−1X
l=bso/γc

(1− γ)l
D
∆bs/γc−l(θ

γ
bs/γc−l−1), �θ

∗ − �θ(0)
E
. (85)

From Corollary 5.2 and Corollary 5.3, we have that limγ→0 P (Ωγ) = 1. On the set Ωγ, replace

Qγ(s) with the right hand side of (85). From the choice of so and Lemma 5.6, we have that

lim
γ→0P

(
sup
so≤s≤t

|Qγ(s)−Q(s)| ≥ =
)
= lim

γ→0P

(
Ωγ ∩ { sup

so≤s≤t
|Qγ(s)−Q(s)| ≥ =}

)
= 0.
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Finally, suppose that θ(0) = θ∗. With this initial condition, θ(t) ≡ θ∗. The proof in this case
is derived by using the recursion

θγn − θ∗ = (1− γ)θγn−1 + γ
h
J̄(θγn−1)− θ∗

i
+ γ

h
Jn(θ

γ
n−1)− J̄(θγn−1)

i
and the techniques of Lemma 5.7. 2

We provide now an outline of the proof of Theorem 5.2

Proof of Theorem 5.2. Let τ0 := τDU(θ0) , and for n ≥ 1, τn := inf
n
s > τn−1 : θ(s) 6∈ DU(θτn−1 )

o
.

For the solution of (65) we have that τL ≥ t for some L ≥ 0. It is sufficient to show that

lim
γ→0P

(
sup

τn−1≤s≤t∧τn
kθγ(s)− θ(s)k ≥ =

)
= 0, n = 1, · · · , L,

and this will follow by induction if it is shown that

lim
γ→0P

(
sup

0≤s≤t∧τ0
kθγ(s)− θ(s)k ≥ =

)
= 0. (86)

Recall that x|S denotes the vector in IR|S| with coordinates in S ⊂ N . Using Lemma 5.1, the
methodologies of the proof of Theorem 5.4 and step 1 of Theorem 5.3 it can be shown that for

every = > 0 and t < τ0,

lim
γ→0P

(
sup
0≤s≤t

°°°θγ(s)|Sk(θ0) − θ(s)|Sk(θ0)°°° ≥ =
)
= 0, k = 1, · · · ,M(θ0).

Using the same procedure as in the proof of step 2 of Theorem 5.3, we have that

lim
γ→0P

(
sup

0≤s≤t∧τ0

°°°θγ(s)|Sk(θ0) − θ(s)|Sk(θ0)°°° ≥ =
)
= 0, k = 1, · · · ,M(θ0),

which implies (86). 2

6 Long time asymptotic behavior of policy πγ

In this section we establish the asymptotic optimality of policy πγ as γ → 0. SpeciÞcally we show

that the long run average of the vector of response timesÃ
g1
1

n

n−1X
k=0

Jk+1,1(θ
γ
k), . . . , gN

1

n

n−1X
k=0

Jk+1,N(θ
γ
k)

!T
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under policy πγ converges a.s. to a Þnite limit as n → ∞. The magnitude of the difference
between this limit and the lexicographically minimum vector θ∗ is bounded from above and the

bound converges to zero as γ → 0.

We Þrst restate recursion (63) as

θγn = θγn−1 + γ [Jn(θ
γ
n−1)− θγn−1] (87)

= (1− γ)nθ0 + γ
n−1X
k=0

(1− γ)n−1−kJk+1(θγk). (88)

The behavior of the sample mean response times is closely related to the long run behavior of

{θγn}. We begin by considering the existence of a stationary distribution of the IRN -valued time-
homogeneous Markov chain {θγn}∞n=0. The reader is referred to [34] for related deÞnitions and
results. The following result shows that for every n = 1, 2, · · ·, the conditional distribution of
Jn(θ

γ
n−1) given θ

γ
n−1 has a component that is absolutely continuous with respect to Lebesgue

measure, c(·), restricted to an appropriate set. The assumption of Poisson arrivals is crucial.

Lemma 6.1. There exists G :=
NN
i=1[αi, βi] ⊂ IRN such that for every (Borel) measurable

D ⊂ G, we have

P {Jn(θγn−1) ∈ D | θγn−1 = θ} ≥ c c(D), n = 1, 2, · · · , (89)

for some constant c > 0.

Proof. Observe that it suffices to show (89) for sets of the form D =
NN
i=1Di, where Di is a

measurable subset of [αi, βi] for every i ∈ N . Indeed, then it is easy to show that (89) holds for
Þnite disjoint unions of sets of the above form and, invoking the monotone class theorem, (89)

would hold for all measurable subsets of G.

Since Bi(0) < 1 for every i ∈ N , there exists ci > 0 such that Bi(ci + =i) − Bi(c−i ) > 0

for every =i > 0; here Bi(t
−) := lims↑tBi(s). Set = = mini(ci/3), α1 = (2c1 + 2=)/(τλ1g1),

β1 = 3c1/(τλ1g1), and αi = (ci + =)/(τλigi), βi = (ci−1 + ci)/(τλigi) for every i = 2, · · · , N .
Consider the event E in which, during the time interval [Tn−1, Tn], exactly N + 1 customers
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arrive: a customer of class 1 arrives at time Tn−1, yet another customer of class 1 arrives during

its service time and after that, a customer of class i arrives during the service time of a customer

of class i−1 for i = 2, 3, · · · , N . Since the policy is non-idling and non-preemptive, on this event
E , the response times of the customers are independent of the policy and we can write

P {Jn(θγn−1) ∈ D | θγn−1 = θ} ≥ P {(Jn(θγn−1) ∈ D) ∩ E | θγn−1 = θ}
= P {(Jn(θγn−1) ∈ D) ∩ E} . (90)

ForD ⊂ IR and x ∈ IR, letD−x denote the set {y−x : y ∈ D}. Also, let dB(s̄1, s1, s2, · · · , sN) :=
dB1(s̄1)

QN
i=1 dBi(si). Then the right hand side in (90) can be written asZ

P {(Jn,i(θγn−1) ∈ Di, i ∈ N ) | E , s̄1, s1, · · · , sN}P {E | s̄1, s1, · · · , sN} dB(s̄1, s1, · · · , sN).

For convenience, set D̄i := {τλigix : x ∈ Di} for i ∈ N . From the memoryless nature of the

arrivals and the independence of the arrivals and service times, it follows further that the above

integral is equal to

Z c ³{D̄1 − s̄1 − s1} ∩ [0, s̄1]´
s̄1

NY
i=2

c
³
{D̄i − si} ∩ [0, si−1]

´
si−1

P (E|s̄1, s1, · · · , sN) dB(s̄1, s1, · · · , sN).
(91)

Consider the integral only over the set

Do = {c1 ≤ s̄1 ≤ c1 + = and ci ≤ si ≤ ci + =, i ∈ N} .

Observe that for the speciÞc choices of {αi} and {βi}, we have that D̄1 − s̄1 − s1 ⊂ [0, s̄1] and
D̄i − si ⊂ [0, si−1] for every i = 2, 3, · · · , N whenever (s̄1, s1, s2, · · · , sN) ∈ Do. Using this fact
and the translation invariance of the Lebesgue measure, it follows that (91) is no smaller than

c(D)

Ã
NY
i=1

τλigi

!Z
Do

Ã
s̄1

NY
i=2

si−1

!−1
P {E | s̄1, s1, · · · , sN} dB(s̄1, s1, · · · , sN).

From the choice of {ci}, we have that dB measure of Do is positive and the result follows by

setting the coefficient of c(D) above to c > 0. 2
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Let c1G(·) := c(G∩·) with G :=NN
i=1[αi, βi] as deÞned in Lemma 6.1. We will now show that

the chain {θγn} is c1G-irreducible and will identify Ḡ ⊂ G such that every bounded measurable

set C ⊂ IRN with c1Ḡ (C) > 0 is a small set for the chain. Our approach is similar to that in
example (f) (p. 5,12,15) of [34]. Let

V γn := γ
n−1X
k=0

(1− γ)n−1−kJk+1(θγk),

Gn :=
NO
i=1

h
{1− (1− γ)n}αi + =n, {1− (1− γ)n}βi − =n

i
.

with =n < 2
−1[1− (1− γ)n](βi − αi) and =n → 0 as n→∞. Fix θ ∈ IRN . From Lemma 6.1, it

follows by an inductive argument (see Appendix ), that there exists cn > 0 (that is independent

of D) such that

P {V γn ∈ D | θγ0 = θ} ≥ cn c(D), ∀ D ⊂ Gn, n = 1, 2, · · · . (92)

Pick D such that c1G(D) > 0. Then from (88) and (92), we have

P {θγn ∈ D | θ0 = θ} ≥ P {V γn ∈ Gn ∩ [D − (1− γ)nθ] | θγ0 = θ}
≥ cn c (Gn ∩ [D − (1− γ)nθ]) . (93)

Since c(G ∩ D) > 0 and Gn → G, the quantity on the right is (strictly) positive for some n,

sufficiently large and we have shown that

Lemma 6.2. The Markov chain {θγn} is c1G-irreducible.

Let Ḡ :=
NN
i=1[αi + =, βi − =] with 0 < = < (βi − αi)/2 for every i ∈ N . Let C ⊂ IRN be a

bounded measurable set. Since Gn → G, it follows from the boundedness of C that there exists

no (independent of θ) sufficiently large so that for every n ≥ no,³
D ∩ Ḡ

´
− (1− γ)nθ ⊂ Gn, ∀θ ∈ C. (94)

Applying (94) and the translation invariance of Lebesgue measure in (93), we now have, for every

D ⊂ IRN and θ ∈ C:

P
n
θγno ∈ D | θ0 = θ

o
≥ P

n
θγno ∈ (D ∩ Ḡ) | θ0 = θ

o
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≥ cno c
³³
D ∩ Ḡ

´
− (1− γ)noθ

´
= cno c1Ḡ (D) .

This shows that

Lemma 6.3. For the Markov chain {θγn}, any bounded measurable set C ⊂ IRN such that
c1Ḡ(C) > 0 is a small set.

We are now ready for our main result.

Theorem 6.1. For every 0 < γ < 1, the Markov chain {θγn} is Harris ergodic. The limiting
r.v. θγ∞ has Þnite mean and E||θγ∞ − θ∗||2 ≤ cγ, for some c > 0.

Proof. We Þrst establish positive Harris recurrence. With Ψ deÞned as in (27), let V (θ) :=

1
2
||Ψθ −Ψθ∗||2. Using (87) we can write

V (θγn) = (1− γ)2 V (θγn−1) + γ2
1

2
||ΨJn(θγn−1)−Ψθ∗||2

+ γ(1− γ) hΨθγn−1 −Ψθ∗,ΨJn(θγn−1)−Ψθ∗i . (95)

Taking conditional expectation given θγn−1 on both sides of (95) and using Lemma 3.2 we obtain

E [V (θγn)− V (θγn−1) | θγn−1] ≤ γ(γ − 2) V (θγn−1) + γ2c1 (96)

for some positive constant c1. If we choose

C :=
n
θ ∈ IRN : ||θ − θ∗|| ≤M

o
,

a sufficiently large choice of M gives (see (96)): (a) supθ∈Cc E [V (θ
γ
n)− V (θγn−1) | θγn−1 = θ] <

0, (b) supθ∈C E [V (θ
γ
n) | θγn−1 = θ] < ∞, and (c) c1Ḡ(C) > 0. Positive recurrence now follows

from Proposition 5.10 (page 77) in [34] and Lemmas 6.2 and 6.3.

Arguing as in Lemma 6.3, we can easily show that there exists c2 > 0 and an integer no such

that

P {θγn ∈ D | θγ0 = θ} ≥ c2 c1Ḡ(D), n = no, no + 1,
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for every D ⊂ IRN and θ ∈ C, C ⊂ IRN being a bounded and measurable set with c1Ḡ(C) > 0.
From Problem 3.2 (p. 157) in [2], it follows that the chain {θγn} is aperiodic and therefore Harris
ergodic.

We now show that Eθγ∞ <∞. Without loss of generality assume that EV (θγ0) <∞. Taking
expectation in (96) we obtain

EV (θγn) ≤ (1− γ)2EV (θγn−1) + γ2c1,

and iterating, this yields

EV (θγn) ≤ (1− γ)2nEV (θγ0) + γc1/(2− γ). (97)

Therefore, lim supn→∞EV (θ
γ
n) ≤ γc1. Since θ

γ
n converges weakly to θ

γ
∞ as n → ∞, from

Theorem 6.3 in [7], we obtain

EV (θγ∞) ≤ lim inf
n→∞ EV (θγn) ≤ γc1 < ∞. (98)

From Jensen�s inequality, it follows that Eθγ∞ <∞.

Finally, (98), implies that E||θγ∞ − θ∗||2 ≤ c1
mini∈N (ρigi)

γ. 2

As an immediate consequence we have that the long run average of the response times under

πγ exists and that this limit approaches R∗ as γ → 0.

Corollary 6.1. For 0 < γ < 1,

θγ := lim
n→∞

1

n

n−1X
k=0

Jk+1(θ
γ
k)

exists a.s. and ||θγ − θ∗|| ≤ √cγ, where c is as in Theorem 6.1.

Proof. Some algebra (using (87)) shows that

1

n

n−1X
k=0

θγk =
1

n

n−1X
k=0

Jk+1(θ
γ
k) +

(θγ0 − θγn)
nγ

.

From Theorem 6.1, we have 1/n
Pn−1
k=0 θ

γ
k converges a.s. which implies θ

γ
n/n converges to 0

a.s.. Therefore θγ exists and is equal to Eθγ∞. The rest follows from Theorem 6.1 and Jensen�s

inequality. 2
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7 Appendix

In this appendix we present a proof of the inequality (92) in Section 6. Let

ani := {1− (1− γ)n}αi + =ni
bni := {1− (1− γ)n}βi − =ni
Gn =

NO
i=1

[ani, bni] .

We have to show that for every n = 1, 2, · · ·, there exists cn > 0 (independent of D) such that

P {V γn ∈ D | θ0 = θ} ≥ cn c(D), D ⊂ Gn. (99)

Let us Þrst choose {=n} so that in addition to satisfying =n < [1 − (1 − γ)n](βi − αi)/2 and
=n → 0 as n→∞, we have

=n+1 = (1− γ) (=n + δn) , (100)

and δn > 0 and δn → 0 as n→∞. That this is always possible can be seen, for example, from
the choice

=ni :=
ei
n
[1− (1− γ)n] ,

δni :=
γei − (1− γ)=ni
(n+ 1)(1− γ) , i ∈ N ,

with ei = (βi − αi)/4.

Lemma 6.1 shows that (99) holds for n = 1. Assuming that (99) holds for n, we will

show that it holds for n + 1 as well. Consider Þrst the case in which D ⊂ Gn+1 is such that

D ⊂ ⊗Ni=1[ci, di] ⊂ Gn+1 with 0 < di − ci = γ(βi − αi)/2 for every i ∈ N . For c ∈ IR and

D ⊂ IR, letD+c := {θ+c : θ ∈ D} andD/c := {θ/c : θ ∈ D}. Also, let θ̄(v) := (1−γ)nθ + v.
Since

V γn+1 = (1− γ)Vn + γJn+1(θ
γ
n),

θγn = (1− γ)n θ0 + V γn ,
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we can write

P {V γn+1 ∈ D | θ0 = θ} =
Z
P
n
Jn+1(θ̄(v)) ∈ [D − (1− γ)v]/γ

¯̄̄
V γn = v, θ0 = θ

o
dP

n
V γn ≤ v

¯̄̄
θ0 = θ

o
=

Z
P
n
Jn+1(θ̄(v)) ∈ [D − (1− γ)v]/γ

¯̄̄
θγn = θ̄(v)

o
dP

n
V γn ≤ v

¯̄̄
θ0 = θ

o
. (101)

Assume Þrst that there exists Do ⊂ IRN such that

Do ⊂ Gn; [D − (1− γ)v]/γ ⊂ G = ⊗Ni=1[αi, βi], ∀v ∈ Do; and c(Do) > 0. (102)

Consider the integral in (101) only over the set {v ∈ Do}. From Lemma 6.1, we have, using the
translation invariance of Lebesgue measure, that the quantity on the right in (101) is no smaller

than

c/γN c(D) P {V γn ∈ Do | θ0 = θ} .

Setting cn+1 := ccnc(Do)/γ
N > 0, the induction hypothesis now gives (99) for the special choice

of the set D. Since an arbitrary set D ⊂ Gn+1 can be written as a Þnite disjoint union of sets of
this type the proof of (99) for the general case is straightforward.

It remains to show that Do ⊂ IRN can be chosen so that (102) holds. Some algebra (using
the deÞnitions of {an} and {bn}) shows that

an+1,i = (1− γ)ani + γαi + (1− γ)δni,
bn+1,i = (1− γ)bni + γβi − (1− γ)δni,

and this implies that (recall that D ⊂ Gn+1)

inf
θ∈D

Ã
θi − γαi
1− γ

!
≥ ani + δni; sup

θ∈D

Ã
θi − γβi
1− γ

!
≤ bni − δni, i ∈ N . (103)

From the choice of {ci} and {di}, we have further that

sup
θ∈D

Ã
θi − γβi
1− γ

!
≤ di − γβi

1− γ <
ci − γαi
1− γ ≤ inf

θ∈D

Ã
θi − γαi
1− γ

!
, i ∈ N ,

44



and

inf
θ∈D

Ã
θi − γαi
1− γ

!
− sup

θ∈D

Ã
θi − γβi
1− γ

!
>

γ (βi − αi)− (di − ci)
1− γ

=
γ(βi − αi)
2(1− γ) . (104)

If we let

li := max

(
ani, sup

θ∈D

Ã
θi − γβi
1− γ

!)
,

ui := min

(
bni, inf

θ∈D

Ã
θi − γαi
1− γ

!)
, i ∈ N ,

then from (103)-(104), we have that

ui − li ≥ min

Ã
bni − ani, δni, γ(βi − αi)

2(1− γ)
!
> 0

for every i ∈ N . DeÞne Do := ⊗Ni=1[li, ui]. It follows from the choices of {li} and {ui} that
(102) holds and the proof is complete.
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