
A Fair Workload Allocation Policy for Heterogeneous
Systems

Leonidas Georgiadis
Aristotle University
Faculty of Engineering
Dept. of Electr. Engin.

Thessaloniki
GREECE

leonid@eng.auth.gr

Christos Nikolaou
Computer Science Dept
University of Crete
Heraklion, Crete
GREECE

nikolau@csd.uch.gr

Alexander Thomasian
Computer Science Dept.

New Jersey
Inst. of Technology
Newark NJ 07102

USA
athomas@cs.njit.edu

Abstract

We consider a new workload allocation policy addressing fairness for user level per-
formance measures. More specifically the criterion used for optimal workload allocation
is the one which minimizes the maximum expected response time at computer systems
to which jobs are routed. The policy to attain this criterion is therefore referred to as
the min-max policy. It is shown that this optimization criterion is tantamount to rout-
ing to the fastest M processors, where M depends on system statistics, and equalizing
the expected response times on these processors. The algorithm to compute job routing
probabilities is applicable to increasing continuous functions of system response time
versus the job arrival rate. We next investigate some properties of the minimax policy
and show that it results in minimizing the coefficient of variation of response time when
the job processing times are exponentially distributed. We compare the min-max policy
with the one that minimizes the mean overall response time. It is shown that the new
policy attains fairness by equalizing the mean response times at different systems, at a
tolerable increase in overall response time. Finally, we report on a sensitivity analysis
with respect to changes in job arrival rate and errors in estimating this rate.

1 Introduction

Workload allocation (or routing) is an important factor affecting the performance of dis-
tributed systems.1 This is because the performance of such systems is not determined solely
by the processing capacity of it computer systems, but rather by how well their use is co-
ordinated. Proper workload allocation is a key factor in achieving improved performance
in distributed systems. There has been a lot of activity in this area and we review relevant
research in Section 2, in order to put this work in the proper perspective.

We are interested in the issue of routing jobs to the nodes of a multicomputer system,
where different computers systems exhibit different job processing times. This may be due

1We use workload allocation instead of load sharing or load balancing on purpose. A load balancing
policy strives to equalize the load at the nodes of the distributed system, while a load sharing policy strives
to assure that no node is idle while there are waiting jobs. In our context workload allocation pertains to
the distribution of workload to the nodes of the systems so as to satisfy certain performance objectives.

1

to the fact that the computers are heterogeneous or because each computer has an inherent
load aside from the jobs that are being routed. The inherent load cannot be controlled
(rerouted) and contends for resources with routed jobs. Our optimization criterion is to
minimize the maximum average job response time at the computers to which jobs are
routed (note that, depending on load, some of the slower computers may be excluded). We
therefore refer to this policy as Min-Max Policy (MMP). This is shown in Section 4 to be
tantamount to equalizing the average response times at a subset of the computers selected
for workload allocation.

Jobs arrive at a single router which routes jobs to a number of computer systems ac-
cording to a probabilistic routing policy (see Figure 1). The set of probabilities used for
workload allocation are computed using the algorithm given in Section 4. The algorithm
is applicable when the response time at each compuer system, as a function of the arrival
rate, is continuous and strictly increasing. No convexity assumptions are necessary for this
function.

The obvious question to answer is how does MMP compare to Minimum (average)
Response time Policy (MRP), which has been used in several studies. This policy also uses
probabilistic routing and optimizes the average overall job response time, i.e., the average
response time seen by a job that arrives to the router - see Section 3 for the exact definition.
As will be shown in Section 5.4 this policy may be unfair since the average response time at
the slower computers can be much higher than the average response time at the faster ones.
The MMP policy solves this problem at a tolerable increase in average overall response
time.

The paper is organized as follows. In Section 2 we survey related work. In Section
3 we describe the system model under consideration. In Section 4 we derive the MMP
policy. In Section 5 we study the properties of MMP and compare it with MRP. Section 6
presents a sensitivity analysis of the system with respect to variations in job arrival rate.
Conclusions and proposals for future work appears in Section 7. The Appendix contains
proofs of propositions used in the derivation of the MMP policy.

2 A Brief Survey of Previous Work

There is a very large body of work in the area of scheduling jobs or tasks in a system
consisting of multiple computers. We do not attempt a complete review of the relevant
literature here. Instead, we discuss research efforts that put the work in this paper into
perspective. More related work can be found in the references cited below.

Multicomputer scheduling can be distinguished into two broad categories [15].

• Single program task scheduling and mapping. In this case, a single program is parti-
tioned into a number of interdependent tasks. The objective is to allocate tasks to
computers at appropriate times so that certain performance objectives - most often
program completion time - are optimized. Scheduling algorithms in this class can be
further partitioned in the following categories. Static, where task execution times and
dependencies are known a priori and all scheduling decisions can be done offline, and
dynamic where a priori information is not available and scheduling has to be done
on the fly according to current system state. A thorough review of static scheduling
algorithms can be found in [15]. A unified framework for dynamic load balancing has

2

been presented in [22]. Promising genetic algorithm-based techniques for scheduling
and mapping have been also been proposed - see [6] and the references therein. An
interesting and largely unexplored area of research, imposing new constraints and
modeling assumptions is multiagent computing [5].

• Job scheduling. In this case, independent jobs arrive at the scheduler (router), whose
task it to allocate (route) the jobs to the computers. The actions of the scheduler and
the related algorithms depend on the available information regarding the state of the
system at the time of job arrival, as well as the job resource requirements - e.g., job
execution time. In addition, scheduling actions depend on the performance objective
(job response time, throughput etc.) whose optimization is sought.

When the state of the system upon job arrival is known and the computer systems are
identical, and under certain assumptions on job processing times, early work has shown
that the policy that routes a job to the computer with the shortest queue, satisfies
several optimization objectives [21], [19]. However, as show in [20], these results are
sensitive to the distribution of job processing times: as the variability of job processing
time increases, optimality is lost. A comparison of several scheduling policies for a
system where processors are identical and jobs have highly variable processing times
has been presented in [9]. For heterogenous systems, several heuristics are proposed
and compared in [14] and [2].

When the state of the system upon job arrival in not known, then scheduling must be
based only on information obtained a priori. Such information may be statistics on
job arrival rates, job processing times on various processors etc. From our perspective,
we can subdivide the policies in this case in two classes.

1. Probabilistic routing. A fraction of jobs are routed to each computer system
according to Bernoulli trials. The probability of being routed to each system is
pre-computed so as to optimize a certain performance measure, as for example.

a. Naive Policy (NP): Route jobs in proportion to computer speeds. This policy
attempts to make all computers equally utilized. However, it has been shown
that it has undesirable performance in several cases [12].

b. Minimum Response Policy (MRP): Minimize the average overall response
time. This criterion has been considered in several studies, [4], [17], [18],
[10], [3], [16].

c. Min-Max Policy (MMP): Minimize the maximum response time on all com-
puters selected for routing. This is the policy proposed and analyzed in this
study. The overall job response time will be higher in this case as compared
to the MRP policy. On the other hand the MMP policy is fair in that, as
will be seen, the difference in average response times at the fastest and slow-
est systems is eliminated. Furthermore, this is achieved at the expense of a
small increase in the average overall reponse time.

2. Deterministic routing. In this case jobs are assigned to computers according to a
predetermined pattern, rather than probabilisticaly. An example of such a policy
is the round-robin routing scheme. This scheme was shown to be optimal [19] for
the case of two identical computers provided that their initial state is identical

3

(e.g., both are idle). However, such a simple policy cannot work well when the
system consists of heterogenous computers. In the latter case, one must employ
some type of weighted round robin scheme. Hence the problem of determining
the appropriate weights arises. One possible approach to this problem is to
employ the methodology of probabilistic routing and use the resulting routing
probabilities as weights for the deterministic policy. Such an approach was used
in [16] A deterministic routing policy that apportions jobs at each computer
system according to prespecified weights can also be found in [8].

Before closing this section, we mention that a similar terminology to ours, namely Max-
Min Policy has been used before in [14] in a very different context. The Max-Min Policy
in [14], implemented in SmartNet [7], assumes knowledge of both system state and job
processing times. The policy finds for each job available for routing, the computer on which
it will have the minimum response time and then among these jobs selects the one whose
minimum response time is maximal.

3 The Model of the Heterogeneous System

There are N computer systems each having a single or multiple processors. Jobs arrive at
the job router (see Figure 1) according to a Poisson process with rate λ jobs/second. The
router sends a job for execution to system Si with probability pi(λ). Hence, the arrival
process at Si is Poisson with rate λi = λpi(λ). We refer to pi(λ), i = 1, 2..., N as the
allocation or routing probabilities. The response time of a job at system Si is defined as the
length of time from the instant the job arrives to Si, to the instant the job completes and
exits the system. The Response Time Function (RTF) Ri(x), specifies the average response
time of a job at Si for a job arrival rate x to that system. Provided that pi(λ) and Ri(x)
are given, we can compute the average response time of a job that arrives to the router as

R(λ) =
NX
i=1

Ri(λpi(λ))pi(λ).

We refer to R(λ) as the “average overall response time". Note that we assume that
routing is instantaneous and does not add to response time. This assumption is not essential
but simplifies the discussion.

The average processing time of a job at Si, i.e., the average time needed to execute the
job as system Si at the absence of other jobs, is denoted by βi. The maximum job arrival
rate that Si can sustain without the system becoming saturated is θi (see the discussion
below). We make the following assumptions about the RTF’s:2

Assumptions about Ri(x).

1. Ri(x) is a nonnegative, strictly increasing function of x.

2. Ri(x) is a continuous function of x for x ∈ (0, θi).
3. limx&0 Ri(x) = βi > 0.

2 In what follows x& c means “as x approaches c from above”. Similarly, x% c means “as x approaches
c from below”.

4

Figure 1: Multicomputer system with a central job router.

4. limx%θi Ri(x) =∞.

5. Ri(0) = 0.

The RTF can be computed analytically or can be obtained experimentally through
simulation or benchmarking. Note that no assumption about differentiability or convexity
of the response time functions have been made. Assumption 3 is natural in the sense that the
average processing time of a job is in fact the job response time when the arrival rate to the
system is approaching zero. Assumption 4 states that the system becomes saturated (i.e.,
its average response time increases to infinity) as the arrival rate approaches θi. Assumption
5 is a convention we make to simplify the discussion.

In general we can interpret Ri(x) as the cost experienced by jobs that are processed at
Si, when the arrival rate to this system is x. Moreover, Assumption 4 can be replaced by:
limx%θ1 Ri(x) = Rmax ≤ ∞. For example, in place of the RTFs Ri(x) we can use as cost
functions the probabilities Pr[ri(x)≥ α], i = 1, 2, ..., N , where ri(x) is the random variable
representing the steady state response time of a job processed by Si when the arrival rate is
x and α is a finite constant. In this case limx%θi Pr[ri(x)≥ α] = 1, since ri(x) increases to
infinity as the arrival rate approaches θi. Also, limx&0 Pr[ri(x)≥ α] is the probability that
the processing time of a job at system Si is at least α.

Computern system Si will be called “faster" than Sj if βi ≤ βj . Note that this does not
necessarily mean that the average response times at Si are less then those incurred at Sj for
all job arrival rates. The functions Ri(x) and Rj(x) may intersect at some point., i.e., it may
happen that βi ≤ βj and θi ≤ θj . An example is the following: Si and Sj correspond to an
M/M/1 and M/M/2 queueing system respectively, such that βi < βj < βi×2. It follows from
the fact that the utilization of each system cannot exceed one, that θi = (1/βi) < (2/βj) =
θj (see Figure 2). Although Si is faster than Sj (initially), there is a crossover point after
which Sj becomes faster. Nevertheless, by our definition, Si is considered to be the faster
of the two systems.

5

Figure 2: Example of response time functions.

The notation used in this paper is summarized in Table 1 for reader convenience. Some
of the quantities in the table are introduced in the following sections.

4 Problem Formulation and Solution

The load allocated to the system that exhibits the maximum average response time is the
one that is maximally penalized by the allocation policy. Since our objective is to treat every
portion of the load fairly, keeping the job response times as small as possible, we attempt
to find the policy that minimizes the average response time of the maximally penalized
portion of the load among those that are routed to any of the N systems. According to our

Notation Definition
λ Job arrival rate.
βi Average job processing time at system Si.

Ri(x) Average job response time at Si when the arrival rate is x.
R(x) Average overall response time.
E(x) Average overall response time of MMP policy
θi The arrival rate at which system Si becomes saturated.
pi(λ) Routing probability to Si when job arrival rate is λ.
λi Job arrival rate at system Si (λi = λpi(λ)).
Ai Activation rate for system Si.

Table 1: Summary of Notation

6

definitions, the portion pi(λ) of the load that is routed to system Si, is incurring average
response time Ri(λpi(λ)). Hence we would like to keep Ri(λpi(λ)), for all i = 1, 2...N, as
small as possible. These considerations lead to the following formulation of the criterion of
optimality:

Criterion of Optimality

For a given λ > 0, find the probabilities pi(λ), ı = 1, 2, · · · ,N , so that the
maximum average response time incurred on any system is minimized:

minmax
i
{Ri(λpi(λ))} <∞

where
PN

i=1 pi(λ) = 1, pi(λ) ≥ 0, 1 ≤ i ≤ N .

In what follows we assume, without loss of generality, that the systems are indexed in
nondecreasing order of their average processing times, i.e., β1 ≤ β2 ≤ · · · ≤ βN . Given
that jobs are routed only to the K fastest systems, K < N , it follows that pi(λ) = 0,
K + 1 ≤ i ≤ N .

In Proposition 1 we show that a policy that distributes the load among the K fastest
systems, so that the response times at all these K systems are equalized, is the unique
policy that satisfies the criterion of optimality. Next, in Proposition 2, we show that such
a policy exists whenever the job arrival rate is less than the maximum system throughput
(λ <

PN
i=1 θi). These properties will allow us to design a simple algorithm for determining

the optimal routing probabilities. It will be convenient for the description of the proposition
to define an additional quantity, βN+1 =∞.

Proposition 1 Let there be an integer K, 1 ≤ K ≤ N and a vector of routing probabilities

p = (p1, · · · , pK , 0, · · · , 0) ,

such that Ri(λpi) <∞, i = 1, ..., N and

R1(λp1) = R2(λp2) = · · · = RK(λpK) = E(λ) ≤ βK+1.

Then p is the unique vector satisfying the criterion of optimality.

Proof. Since Rl(λpl) = E(λ) ≥ 0, 1 ≤ l ≤ K and Ri(0) = 0, we have,

E(λ) = max {R1(λp1), · · · , RK(λpK), RK+1(0), ..., RN (0)} . (1)

Hence E(λ) is value of the optimization objective function when the routing probabilities
are pi(λ), i = 1, 2..., N. We will show that under any other different routing probability
vector, the value of the objective function exceeds E(λ).

Let bp=(bp1, · · · ,bpN) be a routing probability vector different than p, and let
bE(λ) = max {R1(λbp1), · · · , RN(λbpN)}

7

It is sufficient to show that bE(λ) > E(λ). If bpi > 0 for i ≥ K + 1, then because of
Assumptions 1 and 3, and the fact that β1 ≤ β2 ≤ ... ≤ βN+1, we have,

R(λbpi) > βi ≥ βK+1 ≥ R(λpj) = E(λ), 1 ≤ j ≤ K.

From these inequalities we conclude,

bE(λ) ≥ R(λbpi) > E(λ).

Assume now that bpK+1 = · · · = bpN = 0. Since p and bp are different and
KX
i=1

pi =
KX
i=1

bpi = 1,
it should be true that bpl > pl for some l such that 1 ≤ l ≤ K. Taking into account that
Rl(x) is strictly increasing we have,

bE(λ) ≥ Rl(λbpl) > Rl(λpl) = E(λ).

Proposition 2 For any N , a unique routing probability vector p(λ), satisfying the condi-
tions of Proposition 1, exists, if and only if 0 < λ <

PN
i=1 θi. Furthermore, the function

E(λ) is strictly increasing, continuous in
³
0,
PN

i=1 θi

´
and the following conditions hold:

a. limλ&0E(λ) = β1,

b. limλ%PN
i=1 θi

E(λ) =∞.

The proof of Proposition 2 is lengthy and is given in the Appendix.
Note that since the average response times at the activated systems are equalized, E(λ)

is the average overall response time under the MMP policy, i.e., R(λ) = E(λ).
Based on Propositions 1 and 2 we can conclude the following. For a given λ, there

is a number Kλ such that the first Kλ fastest processors are activated, i.e. the routing
probabilities to these processors are nonzero. As the job arrival rate λ increases from 0
to
PN

i=1 θi, the number of activated systems increases from 1 to N. For λ >
PN

i=1 θi the
system is saturated. System SK is activated when λ exceeds a threshold arrival rate AK ,
which will be called the activation rate for SK . The activation rates have the following
properties: 3

1. A1 = 0
2. A1 ≤ A2 ≤ · · · ≤ AN−1 ≤ AN <

PN
i=1 θi

3. R(Ak) = βk.
4. Ak = Al when βk = βl
5. When λ ≤ Ak, the traffic is distributed among the systems that have smaller average

processing times than Sk, so that the average response times induced on all active systems
are equalized and are at most βk.

3Note that the systems are ordered according to nondecreasing processing times.

8

Properties 1 and 4 imply that the fastest systems, i.e., those with βi = β1, are always
activated (as long as the load is non-zero). Property 2 means that the ordering of activation
rates is the same as the order of the systems. Property 3 stands for the fact that at the
activation rate of Sk the average overall response time is equal to the job processing time
at system Sk.

The activation rates and the routing probabilities at those rates can be easily computed
as follows. Let R−1i (r) denote the inverse of Ri(λ), i.e., R−1i (r) is the arrival rate that
induces average response time equal to r on Si. Let MK be the number of systems that are
strictly faster than SK . Since, by Property 3, the average response time on Si, 1 ≤ i ≤MK

is equal to βK when λ = AK and λi = AKpi(AK), we conclude that

AKpi(AK) = R−1i (βK), 1 ≤ i ≤MK . (2)

Since
PMK

i=1 pi(AK) = 1, by summing the equation in (2), it follows that

Ak =

MKX
i=1

R−1i (βK). (3)

From (2) and (3) we conclude,

pi(AK) =
R−1i (βK)

AK
=

R−1i (βK)PMK
i=1 R

−1
i (βK)

, 1 ≤ i ≤MK . (4)

From (3) we compute the activation rate for system SK , and from (4) we compute the
corresponding routing probability vector.

Next we describe an algorithm by which the allocation vector and R(λ) can be computed
for an arbitrary λ. Assume first that AK−1 < λ < AK , 2 ≤ K ≤ N . Then the MK fastest
systems will be activated. For a specified overall average response time r, we can obtain the
arrival rate λr, and the routing probability vector p(λr), that induces the specified response
time. Indeed, following the reasoning by which equations (3) and (4) were obtained, we
have that:

λr =

MKX
i=1

R−1i (r), (5)

and

pi(λr) =
R−1i (r)
λr

=
R−1i (r)PMK
i=1 R

−1
i (r)

, i = 1, 2, ...MK . (6)

If λr < λ, then since R(λ) is increasing (see Proposition 2) we conclude that r < R(λ), i.e.,
r is a lower bound on R(λ). Similarly, if λr > λ, then r > R(λ), i.e. r is an upper bound on
R(λ). Therefore, if initial upper and lower bounds Ru, Rl on R(λ) are known, we can obtain

9

R(λ) by a simple binary search on the interval [Rl, Ru]. That is, we try r = (Rl + Ru)/2.
If λr < λ then we set Rl ← r and repeat the process. If λr > λ then we set Ru ← r and
repeat the process. The initial upper and lower bounds are: Rl = βK−1, Ru = βK . The
process ends whenever

max
1≤i≤MK

{Ri(λpi(λr))}− min
1≤i≤MK

{Ri(λpi(λr)} < ε,

where ε > 0 is a small constant, and the routing probability vector is pi(λr), i = 1, 2, ...,MK .
Next assume that AN < λ <

PN
i=1 θi. Then, all systems are activated. In this case,

we can simply test successively increasing values of rn. (e.g. rn+1 = 2rn, r1 = βN), until
λrn ≥ λ, in which case, Ru = rn, and Rl = rn−1. Then, we can perform the standard binary
search. The steps of the algorithm are described below.

Algorithm. Compute the Allocation Vector p(λ)
Input: The response time functions Ri(λ), 1 ≤ i ≤ N and the job arrival rate λ.
Output: The routing probability vector p(λ).

1. Compute activation rates
MK ← number of S0i s with βi < βK , 1 ≤ K ≤ N

AK =
PMK

i=1 R−1i (βK), 1 ≤ K ≤ N.

2. Determine the number of active systems, at rate λ.
If λ ≥PN

i=1 θi then stop /*solution impossible*/
If AK−1 < λ ≤ AK , define J ←MK ; else J ← N ;

3. Initial Upper and Lower Bounds (Ru and Rl)

If λ = AK then Rl = Ru = βK . Else,

If J < N then Rl← βK−1;Ru ← βK . Else do

Rl ← βN ;Ru ← 2×Rl

/*Test increasing values for Ru until λ ≤ λRu */
Until λ ≤PN

i=1 R
−1
i (Ru) do

Rl ← Ru;Ru ← 2×Rl

end

end

4. Initialize iteration
r ← (Rl +Ru)/2
pi = R−1i (r)/

PJ
i=1 R

−1
i (r), 1 ≤ i ≤ J

5. Iterate until convergence criterion is satisfied
Until (max1≤i≤MK (Ri(λpi))−min1≤i≤MK (Ri(λpi))) < ε do

Determine new bounds
if λ <

PMK
i=1 (R

−1
i (r)) then Ru ← r; else Rl ← r

10

Compute average of new bounds
r ← (Ru +Rl)/2

Compute the allocation vector that induces response time r
pi = R−1i (r)/

PJ
i=1 R

−1
i (r), 1 ≤ i ≤ J

end

6. Return pi, 1 ≤ i ≤ J.

End of Algorithm

5 Properties of MMP and Comparison with MRP

In this section we first examine some interesting properties of MMP and we then proceed
to compare this policy to MRP.

5.1 Coefficient of Variation of Mean Response Time for M/M/1 Systems

When the systems are modeled as M/M/1 queues, MMP has the additional property of
minimizing the coefficient of variation of the average overall response time under all prob-
abilistic routing policies. To see this note that under a probabilistic policy, system Si,
i = 1, 2, ..N, behaves like an M/M/1 queue. It is well known [11] that in this case the vari-
ance σ2i of the response time of a job routed to Si is equal to R

2
i , where Ri is the average

response time of a job at Si: Ri = Ri(λ). Therefore, under a probabilistic policy using the
routing probabilities pi, i = 1, 2, ..N , the variance of the overall average response time is
given by (we use the fact that for a random variable X, σ2X = E[X2]− (E[X])2):

σ2total =
NX
i=1

(σ2i +R2i)pi −
Ã

NX
i=1

Ripi

!2
= 2

NX
i=1

R2i pi −
Ã

NX
i=1

Ripi

!2
.

The coefficient of variation cv, of the average overall response time is equal to:

cv =

vuut σ2total³PN
i=1Ripi

´2 =
vuuut 2

PN
i=1R

2
i pi³PN

i=1Ripi

´2 − 1
From Jensen’s inequality [1] we have,

NX
i=1

R2i pi ≥
Ã

NX
i=1

Ripi

!2
,

with equality holding if and only if Ri = Rj , whenever pi 6= 0 and pj 6= 0. Therefore, the
minimum value of cv is 1. Since MMP equalize Ris on the active systems, it achieves this
minimum.

11

5.2 The Effect of Job Processing Time Variation on Activation Rates for
M/G/1 Systems

Let jobs have an inherent processing requirement given by a random variable B. Assume
also that system Si has processing capacity Ci, 1 ≤ i ≤ N . For example, B may correspond
to the number of instructions executed per job and Ci to the MIPS rating for the processor
of Si. It follows that the average processing time of a job at Si is βi = E [B] /Ci.

In this section we consider the effect of variability of job processing times on workload
allocation. Let B1 and B2 denote the processing requirements of two workloads (set of jobs)
to be processed by the same system configuration consisting of N systems. We assume that
E[B1] = E[B2] so that β1i = β2i = βi, 1 ≤ i ≤ N . On the other hand the coefficient of
variation of processing requirements is such that c2v ≥ c1v, i.e., the processing requirements
of the second workload have a higher variability than the first workload.

The RTF at Si for the first and second workload is given by the average response time
equation for M/G/1 queues [11],

R1i(λ) = βi +
λβ2i (1 + c21v)

2(1− λβi)
, 1 ≤ i ≤ N, (7)

R2i(λ) = βi +
λβ2i (1 + c22v)

2(1− λβi)
, 1 ≤ i ≤ N. (8)

The number of systems, MK , that are active before SK is first activated, depends only
on βi, 1 ≤ i ≤ N and hence is the same in both cases. The activation rates are computed
as follows:

A1K =

MKX
i=1

R−11i (βi) (9)

A2K =

MKX
i=1

R−12i (βi). (10)

Since c2v ≥ c1v, it follows from equations (7) and (8) that R2i(λ) ≥ R1i(λ). Therefore,
R−11i (βi) ≥ R−12i (βi). From the last inequality and equations (9) and (10) we conclude that
A1K ≥ A2K . In other words, as the coefficient of variation increases, MMP activates the
slower system at lower job arrival rates.

5.3 Activation Rates for MMP versus MRP

The problem of minimizing the average overall response time is formulated as follows:

min

(
NX
i=1

piRi(λpi)

)
where

NX
i=1

pi = 1, pi ≥ 0.

It can be shown using the Lagrange Multiplier method (see [4] and [17]), that when the
RTFs are strictly increasing, differentiable and convex, a solution with similar properties to

12

those of the MMP policy is obtained. The activation rates in this case are defined as follows:

AMRP
K =

MKX
i=1

f−1i (βi),

where f−1i (λ) is the inverse of fi(λ) which is defined as

fi(λ) = (λRi(λ))
0 = Ri(λ) + λR0i(λ), 1 ≤ i ≤ N.

MK , the number of active systems when SK is activated, is determined exactly as in MMP.
Since Ri(λ) are assumed to be convex, R0i(λ) > 0. Therefore, fi(λ) > Ri(λ), 1 ≤ i ≤ N .
Using the same argument as in the previous section, we conclude that AMRP

K < AMMP
K .

Therefore, MMP is more reluctant to allocate jobs to the slower processors than MRP.

5.4 Comparison of Performance for M/G/1 Systems

MRP minimizes the average overall response time, but the portions of the load allocated
to slower processors may suffer excessively. MMP remedies the situation by equalizing the
average response times on all the active processors, but does not minimize the average
overall response time. In this section we examine in more detail the trade-offs incurred by
the two policies.

Assume that we have two systems S1, S2, and let pMRP
i , pMMP

i , i = 1, 2, be the portion
of traffic that is allocated to Si under MRP and MMP respectively. The average response
times on the two systems and the overall average response time under MRP and MMP are
denoted by RMRP

i (λpi(λ)), i = 1, 2, RMRP (λ) and RMMP
i (λpi(λ)), i = 1, 2, RMMP (λ)

respectively. As before, we order the systems according to their speed, hence, system S1 is
faster than system S2, i.e., β1 < β2.

We concentrate our attention on two measures that represent the trade-offs involved in
applying the two policies. First, we consider the ratio of response times at the slower and
faster system for the MRP policy, provided that both systems are activated:

Qr(λ) =
RMRP
2 (λp2(λ))

RMRP
1 (λp1(λ))

.

Next we consider the ratio of average overall response times for MMP and MRP,

Qo(λ) =
RMMP (λ)

RMRP (λ)
.

Note that for the MMP policy the corresponding ratio Qr(λ) is always one and that
since MRP minimizes the average overall response time, Q0(λ) ≥ 1.

Let us consider first the case when the processing time distribution is exponential. We
can then easily derive simple closed form solutions for both MRP and MMP. We omit the
straigthforward but somewhat tedious calculations. The activation rates under the two
policies are given by:

AMRP
2 =

1

β1
− 1√

β1β2
,

13

AMMP
2 =

1

β1
− 1

β2
.

The routing probabilities of the two policies are:

pMRP
1 (λ) =

(
1 if λ ≤ 1

β1
− 1√

β1β2√
β1β2−β1+ λβ1β2
λβ1(β2+

√
β1β2)

if 1
β1
− 1√

β1β2
< λ < 1

β1
+ 1

β2

, (11)

pMMP
1 (λ) =

(
1 if λ ≤ 1

β1
− 1

β2
1
2 +

1
2 λ

³
1
β1
− 1

β2

´
if 1

β1
− 1

β2
< λ < 1

β1
+ 1

β2

. (12)

For both policies, the average response times on each system and the average overall
response time can be easily computed once the routing probabilities have been determined:

Ri(λ) =
βi

1− βiλpi(λ)
, i = 1, 2, (13)

R(λ) = p1(λ)R1(λ) + p2(λ)R2(λ). (14)

From equations (11) and (13) we find that when the second system is activated,

Qr(λ) =

s
β2
β1
= s ≥ 1 (15)

Qr(λ) does not depend on λ in this case and it increases as the square root of β2/β1. In
contrast, the corresponding ratio is always equal to one under the MMP policy.

Let us now turn our attention to the performance of the two systems in terms of overall
response time. Based on equations (11)-(14) we can compute Qo(λ). It turns out that Qo(λ)
depends on λ and its maximum is achieved when λ = (1/β1 − 1/β2), which is the point at
which the second system is activated under MMP. More specifically, we have,

Qo = max
λ

Qo(λ) =
2 + 2s

3 + s
= 2− 4

3 + s
. (22)

We see that Qo increases with s = √β2/β1 , but remains bounded and never exceeds 2.
In Figures 3 and 4, we plot the various response times under the two policies for β2/β1 =

2 and 6 respectively. It can be observed that while the average overall response times
achieved by MMP and MRP are quite close to each other, there is a significant difference
in response time at the two systems for MRP.

When the processing times are nonexponential, the expression for Qr(λ) and Qo(λ)
are fairly complicated but numerical results can be obtained. Similar to Qo, we define
Qr = maxλQr(λ). In Tables 2 and 3 we provide the values of Qr and Qo, respectively, for

14

Figure 3: Mean response tiems (β1 = 1sec, β2 = 2sec).

Figure 4: Mean response times (β1 = 1sec, β2 = 6sec).

15

various values of β2/β1 and for various values of the coefficient of variation of service time.
We observe that for the values of β2/β1 and Cv used, the same conclusion as for the M/M/1
case holds: Rr increases approximately as the square root of β2/β1, while Rr increases, but
remains bounded and less than 2.

β2/β1 Cv = 0 Cv = 1 Cv = 4 Cv = 10

2 1.50 1.41 1.40 1.40
4 2.24 2.00 1.96 1.96
6 2.83 2.44 2.38 2.38
10 3.78 3.16 3.04 3.04
16 4.92 4.00 3.78 3.75

Table 2: Qr for two M/G/1 systems

β2/β1 Cv = 0 Cv = 1 Cv = 4 Cv = 10

2 1.15 1.09 1.03 1.03
4 1.37 1.20 1.10 1.10
6 1.50 1.26 1.16 1.16
10 1.69 1.35 1.23 1.23
16 1.82 1.42 1.28 1.27

Table 3: Qo for two M/G/1 systems

6 Sensitivity of the Solution to Arrival Rate Estimates

The optimal workload allocation is based on the knowledge of job arrival rate, λ. In an op-
erational system, however, the job arrival rate may fluctuate. Besides, its value is estimated
by using some recent history and therefore, it is not known exactly. Hence it is important to
know the effect of arrrival rate fluctuations and inacurate estimations on the performance of
the system. In Section 5.1 we study how small changes in λ affect the job routing policy and
the average overall response time R(λ) = E(λ). In Section 5.2 we examine the deviation
from the optimum R(λ) due to inaccurate estimation of the job arrival rate.

6.1 Effect of Changes in Job Arrival Rate

Let us assume that the functions Ri(λ), 1 ≤ i ≤ N, are differentiable with respect to λ
(this was not required in the previous section). The derivative of Ri(λ) is denoted by R0i(λ).
In the course of the proof of Propositions 2 in the Appendix, it was shown that pi(λ),
1 ≤ i ≤ N, is a continuous function of λ. Using the continuity of pi(λ), it can be shown that
p0i(λ), 1 ≤ i ≤ N and R(λ), are differentiable for λ 6= AK , 1 ≤ K ≤ N . The corresponding
derivatives for all values of λ 6= AK , 1 ≤ K ≤ N, can be computed as follows:
It will be convenient for the description that follows to define AN+1 =

PN
i=1 θi and

16

MN+1 = N . Let AK < λ < AK+1. Then the following equalities hold (see Proposi-
tion 1):

R(λ) = Ri(λpi(λ)), 1 ≤ i ≤MK+1. (16)

By differentiating the equations in (16) with respect to λ we have:

R0(λ) = (pi(λ) + λp0i(λ))×R0i(λpi(λ)), 1 ≤ i ≤MK+1, (17)

or

R0(λ)
R0i(λpi(λ))

= pi(λ) + λp0i(λ), 1 ≤ i ≤MK+1, (18)

Summing equations (18), we have that

R0(λ)
MK+1X
j=1

1

R0j(λpj(λ))
=

MK+1X
i=1

pi(λ) + λ

MK+1X
i=1

p0i(λ) = 1. (19)

The last equality follows from the fact that
PMK+1

i=1 pi(λ) = 1 and hence
PMK+1

i=1 p0i(λ) = 0.
Therefore, the derivative of R(λ) is given by,

R0(λ) =
1PMK+1

j=1
1

R0j(λpj(λ))

, if AK < λ < AK+1,K ∈ {1, . . . , N}. (20)

From equations (18) and (20), we finally conclude that:

p0i(λ) =
1

R0i(λpi(λ))

λ×PMK+1

j=1
1

R0j(λpj(λ))

− pi(λ)

λ
, if AK < λ < AK+1,K ∈ {1, . . . ,N} (21)

Equations (21) can be used to quickly recompute the job routing policy for small changes
of the arrival rate. Specifically, if the arrival rate becomes λ+ δ, AK < λ+ δ < AK+1, then
the allocation vector becomes approximately,

pi(λ+ δ) ≈ pi(λ) + δp0i(λ), i = 1, 2..., N .

6.2 Effect of Estimation Errors of Job Arrival Rate

To see the effect of estimation errors of job arrival rate on system response time, let us
assume that the exact job arrival rate is λ1, while it was estimated as λ. To simplify the
discussion, we assume that AK < λ1 <AK+1 and AK < λ < AK+1. Since the load allocation
policy has been computed using the estimate λ, the maximum average response time will be

R(λ1, λ) = max
1≤l≤K

{Rl(pl(λ)× λ1)} .

17

We have used the notation R(λ1, λ) to specify the two job arrival rates relevant to the dis-
cussion. The difference between the resulting maximum and the computed one will then be:

R(λ1, λ)−R(λ) = max
1≤j≤MK+1

{Rj(pj(λ)× λ1)−Rj(pj(λ)× λ)} . (22)

In equation (22) we used the fact that R(λ) = Rj(pj(λ)× λ), j = 1, ...,MK+1. If λ1 > λ,
then by dividing equation (22) by λ1− λ and taking the limits when (λ1− λ) → 0, it can
be seen that

lim
λ1&λ

R(λ1, λ)−R(λ)

λ1 − λ
= max
1≤j≤MK+1

©
pj(λ)×R0j(pj(λ)λ)

ª
> 0. (23)

Similarly, if λ1 < λ, we conclude that

lim
λ1%λ

R(λ1, λ)−R(λ)

λ1 − λ
= min
1≤l≤MK+1

©
pl(λ)×R0l(pl(λ)λ)

ª
> 0. (24)

To take the limit in (24), we divide (22) by λ1− λ, a negative number. This explains the
reason that we have a minimum on the right hand side.

Since the RTFs are increasing, their derivatives are positive, and therefore the limits in
equations (23) and (24) are positive. Equations (23) and (24) indicate the deviation of the
attained response time from the computed one when the job arrival rate is underestimated
or overestimated, respectively. Since both limits are positive, the limit in (23) is larger
than the limit in (24) in absolute value. Therefore, for small deviations from the actual job
arrival rate, the deviation of the attained average overall response time from the computed
one, is larger when the arrival rate is underestimated.

Equations (23) and (24) provide information about the deviation of the maximum aver-
age response time from the computed one. It is of interest, however, to know the deviation
of the maximum average response time from the solution we would have obtained if the
rate was correctly estimated, i.e. R(λ1). Using similar reasoning as in the derivations of
equations (23) and (24) we find that for Ak < λ < AK+1, K = 1, . . . , N

lim
λ&λ1

R(λ1, λ)−R(λ1)

λ− λ1
= λ1 × max

1≤j≤MK+1

©
p0j(λ1)×R0j(pj(λ1)λ1)

ª
> 0. (25)

lim
λ%λ1

R(λ1, λ)−R(λ1)

λ− λ1
= λ1 × min

1≤l≤MK+1

©
p0l(λ1)×R0l(pl(λ1)λ1)

ª
< 0. (26)

Since
PM

i=1 p
0
l(λ1) = 0, some of the derivatives p

0
l(λ1) will be positive and some negative. As

a result, the limit in (25) is positive and the limit in (26) is negative. Therefore, the difference
R(λ1, λ)−R(λ1) is positive irrespective of whether the job arrival rate is underestimated or
overestimated. Of course this is to be expected, since R(λ1) is the average overall response
time under the optimal policy. Since the limits in (25) and (26) are of opposite sign, we
cannot determine in general which is greater in absolute value.

18

7 Conclusion

We proposed a new criterion for load balancing in distributed systems, which is based on
optimizing (minimizing) a user level performance measure (average response time), while
taking into account fairness. This criterion is more appealing than minimizing average
overall response time, because such a policy is difficult to justify to users who encounter a
long turnaround time when their job is routed to the slower computer system.

An efficient computational algorithm to obtain the routing probabilities was described.
Although our examples deal with M/G/1 type queueing systems, the proposed algorithm
is applicable to more complex queueing systems, as long as the response time characteristic
of the system is known either analytically or from measurements.

We also described several interesting properties of the proposed policy and compared
its performance with the policy that minimizes the average overall response time.

An important extension to this work is to consider a system with multiple job types.
The fairness criterion in this case should be chosen such that it takes into account the
different processing requirements of each job type.

19

References

[1] R. B. Ash, Real Analysis and Probability, Academic Press, 1972.

[2] T. D. Braum, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I. Reuther, J.
P. Robertson, M. D. Theys and B.Yao, “A Comparison of Eleven Static Heuristics
for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems,” Journal of Parallel and Distributed Computing, 61 (6),(2001), 810-837.

[3] S. C. Borst, “Optimal Probabilistic Allocation of Customer Types to Servers,” Proc.
ACM SIGMETRICS ’95, Ottawa, Ontario, Canada, 116-125, 1995.

[4] J. P. Buzen and P. P. S. Chen, “Optimal Load Balancing in Memory Hierachies,”
Information Processing, North-Holland, New York, 1974, pp. 271—275.

[5] K. Chow and Y. Kwok, “On Load Balancing for Disgtributed Multiagent Computing,”
IEEE Transactions on Parallel and Distributed Computing, 13 (8), (2002), 787-801.

[6] M. K. Dhodhi, Im. Ahmad, A. Yatama and Is. Ahmad, “An Integrated Technique for
Task Matching and Scheduling onto Distributed Heterogenous Computing Systems,”
Journal of Parallel and Distributed Computing, 62, (2002),1338-1361.

[7] R. F. Freung, M. Gherrity, S. Ambrosius, M. Cambell, M. Halderman, D. Hesgen,
E. Keith, T. Kidd, M. Kussow, J.D. Lima, F. Mirabile, L. Moore, B. Rust, and H.
J. Siegel, “Scheduling Resources in Multiuser, Heterogenous Computer Environments
with SmartNet,” Proc. 7th IEEE Heterogenous Computing Workshop, (HCW ’98),
184-199,1998.

[8] B. Hajek, “Extremal Splittings of Point Process,” Mathematics of Operation Research,
10 (4), (Nov 1985),543—556.

[9] M. Harchol-Balter, M. E. Crovella and C. D. Murta, “On Choosing a Task Assignment
Policy for a Distributed Server System,” Journal of Parallel and Distributed Computing,
59, (1999), 204-228.

[10] C. Kim and H. Kameda, “An Algorithms for Optimal Static Load Balancing in Dis-
tributed Computer Systems,” IEEE Transactions on Computers, (41) 3, (March 1992),
381-384.

[11] L. Kleinrock, Queueing Systems Vol 1: Theory, Wiley Interscience, 1975.

[12] R. Leslie and S. McKenzie, “Evaluation of Loadsharing Algorithms for Heterogenous
Distributed Systems.” Computer Communications, 22(4), Mar 1999, 376-389.

[13] J. Li and H. Kameda, “Optimal Static Load Balancing in Start Network Configuration
with Two-Way Traffic,” Journal of Parallel and Distributed Computing, 23 (3), (1994),
364-375.

[14] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R.F. Freud, “Dynamic Mapping
of a Class of Independent Tasks onto Heterogenous Computing Systems,” Journal of
Parallel and Distributed Computing, 59 (2), (1999), 107-131.

20

[15] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors,” ACM Computing Surveys, 31 (4), (Dec. 1999), 406-471.

[16] X. Tang and S. T. Chanson, “Optimizing Static Job Scheduling in a Network of Het-
erogenous Computers,” Proc. of the 29th International Conference on Parallel Process-
ing (ICPP), 373-382, 2000.

[17] A. N. Tantawi and D. Towsley, “Optimal Static Load Balancing in Distributed Com-
puter Systems,” Journal of the ACM, 32 (2), (April 1985), 445—465.

[18] A. Thomasian, “A Performance Study of Dynamic Load Balancing in Distributed
Sytems,” in Proc. 7th Int’l Conf. Distributed Computing Systems, West Berlin, Ger-
many, September 1987, pp. 204—217.

[19] P. Varaiya A. Ephremides and J. Walrand, “A Simple Dynamic Routing Problem,”
IEEE Trans. Automatic Control, vol. AC-25., 4, 690—693, August 1980.

[20] W. Whitt, “Deciding Which Queue to Join: Some Counterexamples,” Operations Re-
search, 34 (1), (Jan. 1986), 226-244.

[21] W. Winston, “Optimality of the Shortest Line Discipline,” Jounal of Applied Proba-
bility, 14, (1977), 181—189.

[22] T. Znati and P. Melhem, “A Unified Framework for Dynamic Load Balancing Strategies
in Distributed Processing Sytems,” Journal of Parallel and Distributed Computing, 23
(2), (1994), 246-255.

21

8 Appendix

In this Appendix we prove Proposition 2. We first need to establish some useful inequalities.
Assume that we have two systems S1 and S2 and assume that there are two arrival rates

λ1 < λ2, for which routing probabilities pi(λ1) and pi(λ2), i = 1, 2, satisfying the conditions
in Proposition 1 can be found. Then the following inequalities are satisfied:

E(λ1) < E(λ2), (27)

λ1p1(λ1) ≤ λ2p1(λ2), (28)

λ1p2(λ1) ≤ λ2p2(λ2), (29)

λ1
λ2

p1(λ1) ≤ p1(λ2) ≤ λ2 − λ1
λ2

+
λ1
λ2

p1(λ1), (30)

λ1
λ2

p2(λ1) ≤ p2(λ2) ≤ λ2 − λ1
λ2

+
λ1
λ2

p2(λ1). (31)

The left hand side of inequality (30) is derived from inequality (28) while the right side
is derived from inequality (29) by setting p2(λ) = 1− p1(λ). Equation (31) is established
in a similar fashion.

To prove inequalities (27), (28) and (29) we distinguish three cases:

1. p1(λ2) = 1: Then
E(λ2) = R1(λ2) ≤ β2. (32)

This implies that p1(λ1) = 1. To see this, note that if p1(λ1) < 1, then since pi(λ2),
i = 1, 2 satisfy the conditions of Proposition 1, we would have

E(λ1) = R1(λ1p1(λ1)) = R2(λ1p2(λ1)) > β2. (33)

But because λ1 < λ2, it holds R1(λ1p1(λ1)) < R1(λ2) ≤ β2. This inequality contra-
dicts (33).

Since for both arrival rates all the load is routed to S1, all three inequalities are
satisfied.

2. p1(λ2) < 1, p1(λ1) = 1: In this case,

E(λ2) = R1(λ2 × p1(λ2)) = R2(λ2 × p2(λ2)) > β2 ≥ R1(λ1 × p1(λ1)) = E(λ1).

Hence inequality (27) is satisfied. Also, since R1(λ) is increasing, we conclude that
λ1 < λ2 × p1(λ2). Inequality (29) is trivially satisfied.

22

3. p1(λ1) < 1, p1(λ2) < 1: Note first that it holds

pi(λ1) > 0, pi(λ2) > 0, i = 1, 2.

Indeed, p2(λj) > 0 since p1(λj) < 1. On the other hand, if p1(λj) = 0 then we would
have

R1(λjp1(λj)) = 0 < β2 < R2(λjp2(λj),

which contradicts the assumptions that pi(λj), i = 1, 2, satisfies the conditions of
Proposition 1.

Since
p1(λ1) + p2(λ1) = p1(λ2) + p2(λ2) = 1,

it must hold for l = 1 or 2,
pl(λ1) ≤ pl(λ2).

Then, since pi(λ1) and pi(λ2) are positive, satisfy the conditions of Proposition 1, and
λ1 < λ2, we have

E(λ1) = Rl(λ1pl(λ1)) < Rl(λ2pl(λ2)) = E(λ2).

Inequalities (28) and (29) are proved as in case 2, using the fact that E(λ1) < E(λ2).

Proof of Proposition 2
The only if part is derived by observing that for routing probabilities pi(λ), 1 ≤ i ≤ N ,

that induce finite average response times on each system we must have λpi(λ) < θi, and
therefore,

λ =
NX
i=1

λpi(λ) <
NX
i=1

θi.

We use induction to prove the if part. That is, we will show by induction that for any N, if

0 < λ <
NX
i=1

θi, (34)

then a unique routing probability vector p(λ) satisfying the conditions of Proposition 1
exists, and such that the induced E(λ) satisfies the properties expressed in Proposition 2.

The statement is true for N = 1. In this case

p1(λ) = 1 and E(λ) = R1(λ).

Now assume that the statement is true for N = M , and denote by EM(λ) the induced
average overall response time when MMP is applied to M systems. Assume that we add a
new system (i.e. SM+1) with βM+1 ≥ βM . To complete the induction, given λ satisfying
(34) we must find a routing probability vector for the set of systems S1, ..., SM , SM+1, having
the desired properties.

23

According to part a) of Proposition 2 we have that

lim
λ&0

EM(λ) = β1 ≤ β2 ≤ · · · ≤ βM+1 = lim
λ&0

RM+1(λ).

If βM+1 > βM , then since EM(λ) is continuous and increases to infinity, there will be a rate
AM+1 such that EM(AM+1) = βM+1. If βM+1 = βM we define AM+1 = AM . With this
definition, and because EM(λ) satisfies condition b) of Proposition 2, we have that

0 ≤ AM+1 <
MX
i=1

θi. (35)

Let pM(λ) = (p1(λ), ..., pM(λ)) be the routing probability vector when MMP is applied
to the M systems. When

0 < λ ≤ AM+1, (36)

define

pM+1(λ) = (p1(λ), ...pM(λ), 0) (37)

EM+1(λ) = EM(λ). (38)

By the inductive hypothesis, pM+1(λ) has the desired properties. Moreover, EM+1(λ) is
continuous, strictly increasing in (0, AM+1] and satisfies part a) of Proposition 2. It remains
to define pM(λ) and EM+1(λ) when,

AM+1 < λ <
M+1X
i=1

θi. (39)

We will show below that for λ satisfying (39) there is a unique number q(λ) satisfying
inequality

max

µ
0,

µ
1− θM+1

λ

¶¶
< q(λ) < min

Ã
1,

Ã
MX
i=1

θi
λ

!!
. (40)

such that,

EM(λ× q(λ)) = RM+1(λ× (1− q(λ))). (41)

Assuming for the moment that such q(λ) exists, we can proceed as follows.
Since by the inductive assumption EM(λ) satisfies Proposition 2 for λ0 = λ × q(λ), we

conclude that there is a set of probabilities p01, · · · , p
0
M such that

R1(λ
0 × p

0
1) = · · · = RM(λ

0 × p
0
M) = EM(λ

0) = RM+1(λ× (1− q(λ))). (42)

Now define for λ satisfying (39),

EM+1(λ) = EM(λ× q(λ)). (43)

24

EM+1(λ) is the required function, while the corresponding routing probability vector is:

pM+1(λ) =
³
p
0
1q(λ), . . . , p

0
Mq(λ), 1− q(λ)

´
. (44)

To see this, note first that pM+1(λ) is a probability vector satisfying the conditions of
Proposition 1. Hence, it remains to show that EM+1(λ) is strictly increasing, continuous
for λ in [AM+1,

PM+1
i=1 θi) and satisfies part b) of Proposition 2.

From relations (36), (38), (39), (41) and (43) we observe that EM+1(λ) can be considered
as the optimal solution applied to two systems: S1 with RTF EM(λ), and S2 with RTF
RM+1(λ). For these two systems the routing probabilities are

p1(λ) =

½
1 0 < λ ≤ AM+1

q(λ) AM+1 < λ <
PM+1

i=1 θi
, p2(λ) = 1− p1(λ).

The fact that EM+1(λ) is strictly increasing follows directly from inequality (27). From
inequality (30) it follows that q(λ) is continuous. The continuity of EM+1(λ) follows from
this fact and equation (43). To prove part b) observe that from inequalities (40) we have that"

λ%
M+1X
i=1

θi

#
⇒ [λ× (1− qM(λ))% θM+1],

and therefore

lim
λ%PM+1

i=1 θi

EM+1(λ) = lim
λ(1−qM (λ))%θM+1

RM+1λ(1− qM(λ)) =∞.

It remains to prove the existence of a number q(λ) satisfying (40) and (41). Let q satisfy
(40) and consider the function

F (q) = EM(λ× q)−RM+1(λ× (1− q)).

F (q) is finite, strictly increasing and continuous for q satisfying (40).
Also,

lim
q&max(0,1−(θM+1/λ))

F (q) =

½ −∞ if λ ≥ θM+1

β1 −RM+1(λ) if λ < θM+1
, (45)

and

lim
q%min

³
1,
³PM

i=1
θi
λ

´´F (q) =
½ ∞ if λ ≥ (θ1 + · · ·+ θM)

EM(λ)− βM+1 if λ < (θ1 + · · ·+ θM)
. (46)

The limit in equation (45) is nonpositive. Also because of equation (39), we have that

EM(λ) > EM(AM+1) = βM+1.

25

Therefore, the limit in (46) is nonnegative. It follows that there is a unique root q(λ) for
F (q) in the range specified by equation (40). Hence

F (q(λ)) = EM(λ× q(λ))−RM+1(λ× (1− q(λ)) = 0

as desired.

26

LEONIDAS GEORGIADIS received the Diploma degree in electrical engineering from
Aristotle University, Thessaloniki, Greece, in 1979, and his M.S. and Ph.D degrees both
in electrical engineering from the University of Connecticut, in 1981 and 1986 respectively.
From 1981 to 1983 he was with the Greek army.

From 1986 to 1987 he was Research Assistant Professor at the University of Virginia,
Charlottesville. In 1987 he joined IBM T. J. Watson Research Center, Yorktown Heights as
a Research Staff Member. Since October 1995, he has been with the Telecommunications
Department of Aristotle University, Thessaloniki, Greece. His interests are in the area of
wireless networks, high speed networks, distributed systems, routing,scheduling, congestion
control, modeling and performance analysis.

Prof. Georgiadis is a senior member of IEEE Communications Society. In 1992 he
received the IBM Outstanding Innovation Award for his work on Goal-Oriented Workload
Management for Multi-class systems.

CHRISTOS NIKOLAOU is Professor at the Dept. of Computer Science, Univ. of
Crete, Greece. Currently he is Rector of the U. of Crete and Chairman of the Greek
Ministry of Education, Committee on Informatics Policy for Education. He has been a
Research Staff Member at IBM Thomas J. Watson Research Center, NY, USA, from 1981
to 1992. His research on resource allocation in high-performance transaction processing
systems led to four US Patents, several IBM awards such as the IBMOutstanding Innovation
Award for Scientific Contributions to Goal-Oriented Workload Management (1993) and
refereed publications in scientific journals and conferences. He is chairman of the Executive
Committee of ERCIM (European Research Consortium for Informatics and Mathematics,
95-98). He is also co-ordinator of the IST/FET Working Group iTrust (2002-2005), a forum
for interdisciplinary investigation of trust as a means for establishing security and confidence
in the global computing infrastructure, and as enabler for mutually beneficial interactions
(www.iTrust.uoc.gr). Prof. Nikolaou is IEEE Senior Member.

ALEXANDER THOMASIAN has been a Professor at the Computer Science Dept.
at the New Jersey Institute of Technology - NJIT since Sept. 2000. He spent fourteen
years at IBM’s T. J. Watson Research Center, one year of which was at the Almaden
Research Center. After obtaining his PhD in Computer Science from UCLA he first became
an Assistant Professor at Case Western University and then the University of Southern
California. He is currently interested in the performance evaluation of computer systems,
especially storage systems and high dimensional indexing methods. He has published several
key papers on database concurrency control and the textbook: “Database Concurrency
Control: Methods, Performance, and Analysis”. He holds four patents, has received the
IBM Innovation Award, and is the author of over 100 papers. A recent paper received the
best paper award at the SPECTS 2003 Int’l Conf. held in Montreal, Canada. He was an
editor of IEEE Trans. Parallel and Distributed Systems and has served on the program
committees of numerous conferences. he has given tutorials at various conferences and
offered short courses on performance evaluation. He is a Fellow of IEEE and a Member of
ACM.

27

