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Abstract— We examine the performance of a dual-hop non-
regenerative system with adjustable relay gain, subject to power
constraints. An optimization problem is formulated and solved
algorithmically for the BPSK BER utility. The model allows for
arbitrary channel statistics. Emphasis is placed on the relation
between the optimal solutions obtained when observing the
channels of either the first or both hops, as well as the comparison
with easily implementable heuristic policies. Numerical results
indicate that simple heuristics perform well for a wide range
of SNR, except for certain high-SNR cases. Finally, the effect
of independent channel assumption on system performance is
evaluated.

Index Terms— Dual-hop systems, fading channels, convex op-
timization.

I. INTRODUCTION

Relayed transmission is a promising technique for improv-
ing the quality of wireless communications. Its advantages
relative to direct link communication include, among others:
ease of implementation and good scalability, increased connec-
tivity, robustness to changing channel conditions and reduced
operating power levels. The latter implies lower interference
levels and, hence, increased capacity. In further support of
the above advantages comes the concept of co-operative user
diversity, which can potentially offer even higher capacity with
a reduced outage probability [1]–[4].

Since co-operative diversity depends on relays to achieve
its goals, the two techniques have been traditionally ex-
amined together and a certain terminology has evolved [5]
(regenerative vs. non-regenerative, blind/semi-blind/CSI etc.).
In [5], the authors examine a semi-blind relay and compare a
regenerative to a non-regenerative system, while [6] presents
an instantaneous-power-constrained optimization problem for
a dual-hop scenario and offers a generalization to a multi-hop
regenerative system. In both cases, Rayleigh fading is assumed
and the outage probability is used as the performance metric
(see [7] for a more general setting).

Boyer et al. examine in [8], for an isolated single-user link,
various combinations of the above cases in a “serial” multi-
hop scenario, where each relay can potentially receive all
signals transmitted by the previous relays, while [9] proposes
distributed codes for a “parallel” multi-hop case where the
original transmitter broadcasts to all relays and a suitably
selected subset of them re-transmits to the desired destination.
In a similar context, [10] examines the effect of relay co-
operation on the overall capacity region. Since diversity is
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outside the scope of this paper, it will not be further discussed
although it will become apparent that the ultimate goal is to
incorporate it into our proposed model.

In this work we consider a dual-hop, non-regenerative
system with arbitrary fading statistics. The relay node may
have knowledge of the CSI of either the first only or both
channels—transmitter to relay and relay to receiver. Our
objective is to investigate the effect of the relay’s knowledge
of each channel’s fading state on the overall performance.
In addition to instantaneous power constraints (such as those
appearing in [6]), we also impose a constraint on either the
(long term) average power output by the relay or the average
power consumed by it, the latter defined as the difference
between the power output by the relay and the power received
by it1. The consumption constraint is especially useful in cases
where the relay is mobile and relies on batteries (hence limited
energy) for its operation.

System performance is formulated as a constrained non-
linear optimization problem with concave performance objec-
tive, which may include average SNR, Bit-Error-Rate (BER),
or Shannon Rate. The control to be exercised is the relay
re-transmission power when some of the channel states are
observed. We present methods for computing this control
depending on the available channel states and examine the ben-
efits of observing either the first channel, or both. Additionally,
using the derived optimal solution as a benchmark, we evaluate
the performance of suboptimal policies such as a modified
inverse gain formula (in the spirit of [11]) and pure SNR-based
optimization. The comparison results are interesting and, to a
certain extent, unexpected.

II. SYSTEM AND CHANNEL MODEL

Consider a transmitter, relay and receiver that communi-
cate over wireless channels. Denote the channels between
transmitter-relay and relay-receiver as channels 1–2, both
exhibiting random fading with coefficients a, b, respectively,
defined as the appropriate power ratios between the transmitter
and receiver for each channel. We denote as A,B the finite sets
over which a, b range, respectively. This assumption, which
seems to contradict the continuous nature of fading, is imposed
in order to reduce the mathematical complexity of the problem.
Though a treatment of continuous fading sets is provided
in [12] using calculus of variations, the main concepts are
essentially the same. Specifically, since all constraints are
either point-wise or appear inside a summation, it can be

1 this distinction creates two problem variants hereafter referred to as the
“output” and “consumption” variant, respectively.



shown that convergence to the continuous solution is achieved
as |A|, |B| → ∞.

In each channel, a positive power gain (g1, g2 respectively)
is used to amplify the base signal at the corresponding trans-
mitter. Hence, assuming that the first transmitter transmits at
unity power and the relay and receiver are subject to AWGN
of powers N1, N2, respectively, it is easy to show that the
instantaneous SNR at the receiver (end-to-end), conditioned
upon the fading coefficients a, b, is given by

γa,b =
g1g2 ab

N2 + bg2N1
=

g1a

N1

bg2

bg2 + N2/N1
. (1)

We hereafter denote η = N2/N1. The term “instantaneous”
is used here in a loose context to denote a time average of
the randomly varying SNR over a time interval equal to the
channel’s coherence time. Since, by definition, a and b remain
constant in such an interval, γa,b is actually a short-term time
average, similar in concept to [13], and it is in this context that
we can regard it as instantaneous. The long-term SNR time
average is by ergodicity equal to the statistical average over
all fading values.

The transmitter gain g1 is arbitrarily fixed, whereas g2 is
allowed to vary as a (yet unknown) deterministic function
of a, b, or only a. The various dependencies physically cor-
respond to different fading states being known at the relay,
i.e. the relay bases its decisions on knowledge of both a, b,
or only a. The case where the relay observes b only is of
little practical interest and has received little, if no, attention
since the relay can always estimate a from its incoming signal
g1a + N1 (assuming that g1 and N1 are known). Therefore,
the b only dependence will not be examined in this paper.

III. PROBLEM STATEMENT

Since γa,b is a random variable, we take the expectation of a
utility function of it as a figure of merit and seek to maximize
this subject to average and instantaneous power constraints as
follows

maximize
g2

E {Φ (γa,b)}
s.t. 0 ≤ g2 (g1a + N1) ≤ p2

0 ≤ E {g2 (g1a + N1)} ≤ P̄2.

(2)

The function Φ is required to be positive, increasing, concave
and continuously differentiable. Functions that satisfy the
above properties include Φ(x) = x (i.e. maximize SNR),
Φ(x) = log(1 + x) (maximize Shannon rate) and most com-
plementary bit error rates (i.e. 1−Pe) of practical modulation
schemes.

Casting (2) into standard “minimize” notation results in

minimize
g2

∑
a∈A

∑
b∈B

−Φ
(

g1a

N1

bg2

bg2 + N2/N1

)
πab (3a)

(P) s.t. 0 ≤ g2 (g1a + N1) ≤ p2, (3b)∑
a∈A

∑
b∈B

g2 (g1a + N1)πab ≤ P̄2, (3c)

where πab is the joint channel pdf and g2 is a function of
either a or both a, b according to the rationale of Section II.
Existence of a solution to (P) follows from continuity of Φ
over the compact constraint set, while uniqueness follows from
strict convexity of the objective functional.

Eqs. (3a)-(3b) describe the output variant. The consumption
variant is formulated by keeping (3a), (3b) and replacing (3c)
by ∑

a∈A

∑
b∈B

[g2 − 1]+(g1a + N1)πa,b ≤ P̂2, (4)

where the [x]+ = max(x, 0) operator is necessary to ensure
non-negative power consumption. Eq. (4) is derived from the
definition of instantaneous consumed power as

Pcons = [Pout−Pin]+ = [g2(g1a+N1)− (g1a+N1)]+, (5)

from which the average constraint follows trivially. The phys-
ical interpretation of the [ ]+ operator is that when g2 ≤ 1, the
relay need not perform any amplification and can just let the
transmitted signal pass through (hence consuming negligible
power).

Finally, when there is no average power constraint (either
output or consumption), the optimization problem always has
the trivial solution g2 = p2/(g1a + N1), since the function
kx/(1 + kx) is increasing with respect to x, Φ is increasing
with respect to its argument and the objective is a positive
weighted sum of increasing functions. Hence, the standard
inverse fading gain formula proposed in [11] is a special case
of our general formulation.

IV. DUAL FORMULATION: THEORY AND ALGORITHMS

We consider the following archetype problem, special cases
of which constitute the discrete problems examined in this
paper

minimize
∑

j

fj(xj) (6a)

s.t. 0 ≤ xj ≤ pj ∀ j (6b)∑
j

cjxj ≤ P̄ , cj ≥ 0, (6c)

where j ranges from 1 to N and each fj is a continuously
differentiable decreasing and strictly convex function with re-
spect to xj . The fact that the output variant, eqs. (3a)-(3b), falls
under this formulation is obvious. The consumption variant
can also be reduced to this form after some manipulations, as
shown in [12].

A necessary and sufficient condition, based on duality
theory, for a vector x∗ to be the solution to (6a)-(6c) is
provided in [14] and, since the analysis is quite standard, we
only present the final results. Specifically, if

∑
j cjpj ≤ P̄ ,

the optimal solution is x∗
j = pj ∀ j. Otherwise it is given

parametrically by2

x∗
j (µ

∗) =

⎧⎨
⎩

G−1
j (µ∗) if Gj(pj) ≤ µ∗ ≤ Gj(0)

0 if µ∗ ≥ Gj(0)
pj if µ∗ ≤ Gj(pj)

, (7)

where Gj(x) = −f ′
j(x)/cj and the parameter µ∗ is defined

through ∑
j

cjx
∗
j (µ

∗) − P̄ = 0. (8)

2 for the consumption variant, 0 must be replaced by 1 in all branches of (7)
and all subsequent references and the summation in (8) must be performed
over the set {j : pj ≥ 1}.



Equivalently, we need to construct a partition of the index
set J as J = J0 ∪ Jp ∪ Ji where x∗

j attains the value 0,
pj or G−1

j (µ∗) if it belongs to set J0, Jp, Ji, respectively.
In computational terms, viewing (7) as a function of µ, this
function is continuous and decreasing ∀ j, so that the weighted
sum of all such functions in (8) retains these properties, since
cj ≥ 0. Also, the LHS of (8), viewed as a function of µ,
changes signs in the interval [minj Gj(pj), maxj Gj(0)].
Hence, a simple bisection algorithm can be used for the
numerical computation of µ∗.

In principle, the analysis above solves (P) in its most general
case and further insight may be gained by examining different
dependence cases. Due to space constraints, the reader is
referred to [12] for more details.

V. NUMERICAL RESULTS

A. Independent channels

An extensive set of simulations was performed to test the
relation between the various dependencies for the Shannon
rate and BPSK BER utilities, for both variants (output and
consumption). Due to space restrictions, only BER graphs for
the output variant will be presented, with similar conclusions
and observations holding for the Shannon rate and other
variant. We assume a, b to be independent and exponentially
distributed with an expected value ratio r = E {a} /E {b} in
the set {0.2, 0.5, 1, 2, 5}, respectively (different values are used
to study the effect of channel asymmetry). The value of g 1

was set to 1 for all cases and the ratio γ̄1 = E {a} /N1, which
corresponds to the first hop average SNR, was set to vary in
the interval 0 to 30 dB. The exponential distribution allows
for unbounded fading values so, in order to keep the fading
set bounded for simulation purposes, a 99.9% confidence
interval was used, which was then uniformly discretized into
500 states. This set contains all fading values of practical
importance.

Setting N1, η to 1, a set of 8 simulations was
performed, one for each (P̄2, p2) pair. The used pairs were
{(0.01, 0.1), (0.2, 0.5), (0.2, 2), (1, 5), (1, 10), (10, 50), (10,
100), (100, 500)}. The pairs were selected so that they cover
a wide average power range (from very small to medium to
large) and in certain cases two pairs with the same average
power but different peak power constraints were chosen so
that the effect of the peak constraint could be determined.
For each pair, the entire range 0–30 dB for γ̄1 was swept and
the optimal solutions for both dependencies were obtained.
Besides the optimal solution, two other candidate solutions
were evaluated. The first one was a modified inverse gain
formula based on the first hop only and given by

g∗2(a, b) = g∗2(a) =
min{P̄2, p2}
g1a + N1

, (9)

for the output variant and

g∗2(a, b) = g∗2(a) = min

(
p2

g1a + N1
,

P̂2

g1a + N1
+ 1

)
(10)

for the consumption variant. The feasibility of both candidates
is easy to verify (notice that in most practical cases it holds
P̄2, P̂2 < p2). The other candidate solution was obtained
as follows: the problem of average SNR maximization was

first solved for a only dependence (i.e. we assumed Φ(x) =
x) resulting in a solution g∗

2S(a). This solution was then
considered to be the solution to the original problem (with
the true Φ utility). This solution was obviously suboptimal,
but at the same time it allowed some algebraic manipulations
which slightly reduced the computational time. Additionally,
since the average SNR is often used as a general (though not
very descriptive) figure of merit for a receiver’s performance
[15], this solution can be regarded as a heuristic performance
indicator. For notational purposes, we denote the solutions
as “a optimal” and “(a, b) optimal” when we solve the
original problem for each dependence type and we use the
terms “inverse” and “SNR” for the two (suboptimal) candidate
solutions previously described.

The above simulations resulted in a huge data set, so that
only the most representative cases will be given in graph
form. The rest of the results will be verbally described. The
following observations were made (unless otherwise stated, all
facts hold for the entire 0–30 dB region) for the output variant

• Channel asymmetry, as captured in the ratio r, affects
system performance of a non-regenerative relay (since
the relay always amplifies the noise of the first hop, it
is important whether channel a is significantly better or
worse than channel b). The asymmetry becomes signifi-
cant as |r − 1| increases (i.e. the performance difference
between r = 0.5 and r = 2 is not as pronounced as when
comparing r = 0.2 and r = 5). Hence, graphs will be
presented only for the r = 0.2 and r = 5 ratios.

• For very large pairs3, such as (100, 500) and to a lesser
extent (10, 100), all solutions are extremely close to each
other, which suggests that the profits of optimization are
minimal in this case. This is not surprising and can be
seen as an example of the principle of diminishing returns
when brute-force (i.e. high P̄2) is available.

• For all pairs, the “SNR” solution is less than an order of
magnitude worse from the “a optimal” one, which makes
it an acceptable policy in practice.

• For all pairs, the inverse solution is extremely close to the
“a optimal” one, which suggests that if the relay observes
a only, the optimal solution is known in essentially closed
form.

The last observation is somewhat unexpected and, considering
its effect, extremely useful. It allows for a policy which
achieves nearly optimal performance and can be dynamically
applied in a trivial manner (since the relay need only observe
the first hop) without any knowledge of the fading statistics. In
order to assert whether this effect depends on the fading pdf,
simulations were performed for Nakagami-m channels (with
m = 0.5, 2, 4), using the same pairs and r ratios, and similar
results were obtained. A pair (0.001, 0.1) was also used and,
for this case, there was an evident difference between the “a
optimal” and “inverse” solutions, although still within a factor
of 2. The final conclusion, arising from simulations only, was
that for the a only dependence, the inverse formula of (9) is
practically the optimal solution provided that P̄2 is not too
low.

This also makes a comparison between the “a optimal”
and “(a, b) optimal” solutions imperative since, in case the

3 in terms of absolute power units, not necessarily their component ratio.



performance difference is not decisively in favor of the latter,
the “inverse” solution (which is very close to the “a optimal”
one) can be considered as a viable alternative due to its striking
simplicity. Fig. 1 presents a comparison among all possible
solutions for the pair (0.2, 2) (as previously mentioned, higher
average power results in minimal performance gains while
lower average power is rarely used in practice) both for
exponential and Nakagami distributions. It is clear that the
superiority margin of the “(a, b) optimal” vs. the “a optimal”
solution depends on the power constraints as well as the fading
distribution. It is seen however that, in all cases, the benefits of
the “(a, b) optimal” solution manifest themselves for relatively
high first hop SNR. An intuitive explanation is the following:
it is clear from (1) that the SNR is a product of two terms,
the latter of which (the one containing the g2 contribution)
is upper bounded by 1. Hence, if the first term of the SNR
(the one containing the a contribution) is too low, then any
kind of optimization will not result in significant gains, since
the maximum that can be achieved is already low in the first
place.

Restricting our attention to the high SNR region (say >20
dB), it is evident that the performance increase from observing
both a, b is quite problem specific. For example, at 30 dB, the
“(a, b) optimal” solution is better than the “a optimal” by a
factor of 10 for the pair (0.2, 2), r = 0.2 and Nakagami-
m fading with m = 2, as shown in Fig. 1(b), while for the
same pair and Nakagami-m with m = 0.5 (graph not shown),
this factor is reduced to 2. However, based on the performed
simulations, it seems that significant gains from observing a, b
are usually achieved for low, rather than high r ratios. This
suggests that observing both channels is essentially required
when channel b is generally much “worse” than channel a. The
latter can be again explained by the same SNR-based intuitive
argument as in the previous paragraph.

B. Correlated channels

The case of dependent fading channels in relay systems has
received little attention, mostly due to the higher mathematical
complexity it entails in its analytical treatment. However, in
physical terms, a geographically homogeneous area, such as a
flat valley or an urban area with buildings of similar type and
height, would imply a dependence between the two channels
(e.g. knowing that a is high/low allows us to infer the range
of b).

Although an analytical treatment is prohibitive, our frame-
work is sufficiently general to handle this case numerically.
Specifically, we consider the following scenario. Let a, b be
dependent discrete RVs. If the conditional pdf πb|a is known a
priori, problem (P) can be solved numerically with an optimal
gain solution of gdep, where the appropriate dependence is
assumed. If πb|a is not known, it must be estimated from
direct channel measurements but this would destroy the off-
line nature of our method, not to mention the additional power
required for transmission of this information between nodes.
Hence, we address the following question: what is the effect
of falsely assuming dependent channels to be independent?
In other words, if we always use the solution g in obtained
for independent channels, what would the objective utility be
compared to the gdep solution? To make this comparison on

a fair basis, the marginal pdfs must obviously be the same
in both cases and the utility computed for g in must use the
conditional πb|a pdf in the calculation.

For the case of a only dependence, it is easy to see that the
gin solution always satisfies the average power constraint of
the dependent problem, since only πa appears in it. Hence,
the utility obtained from gin will be suboptimal compared
to gdep. On the other hand, for a, b dependence, the average
power constraint involves πab which is different between the
dependent and independent cases (πb|aπa and πaπb, respec-
tively). Therefore, for this dependence, a comparison between
the utilities for gin and gdep can have two outcomes: either gin

violates4 the average power constraint of the dependent case,
or it satisfies the constraint, which by construction requires it
to be suboptimal compared to gdep. The former physically
means that the relay’s average lifetime will be less than
required, while the latter is self-explanatory.

To address the previous questions, the case of joint exponen-
tial fading channels was considered [15, eq. (6.2), p. 142]. The
correlation coefficient ρ was set to 0.2, 0.4, 0.6, 0.8 and the
algorithm was applied to pair (0.6, 6) for the output variant.
The findings are summarized in Table I, where the following
convention is used. In each row, the upper/lower number rep-
resents the gdep/gin utility, respectively, for the corresponding
ρ. An inspection of the table reveals the following

TABLE I

OPTIMAL BER FOR a ONLY AND a, b DEPENDENCE WHEN THE CHANNELS

ARE FALSELY ASSUMED TO BE INDEPENDENT.

first hop
SNR (dB)

ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

Optimal BER×10 (a only)

0 3.1114 3.0708 3.0218 2.9606
3.1299 3.0887 3.0402 2.9820

8 1.1158 1.1038 1.0808 1.0395
1.1629 1.1553 1.1410 1.1129

16
0.1929 0.1904 0.1828 0.1652
0.2671 0.2681 0.2688 0.2671

24 0.0303 0.0297 0.0284 0.0257
0.1267 0.1267 0.1265 0.1260

Optimal BER×10 (both a, b)

0 3.0873 3.0474 3.0008 2.9454
3.0919 3.0556 3.0108 2.9536

4 2.0410 2.0140 1.9790 1.9307
2.0503 2.0332 2.0082 1.9688

8
1.0408 1.0344 1.0232 1.0019
1.0474 1.0488 1.0474 1.0384

12
0.3730 0.3772 0.3812 0.3836
0.3738 0.3793 0.3859 0.3934

14 . . . 30 independent solution violates average power constraint

• For the a only dependence, gin is always suboptimal as
previously explained. For the BER utility, the difference
between the two solutions increases with respect to γ̄1 and
becomes significant for large γ̄1 (for example, at 24 dB,
the dependent BER is four times less than the independent
BER for all ρ). Hence, assuming independent channels in
these cases results in inferior performance to what could
be potentially achieved.

4 since the obtained solution is numerical, violates in this sense means that the
average power is larger than 1+δ times the constraint, where δ is the iteration
stopping criterion.
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Fig. 1. Optimal BER vs. inverse and SNR solutions for the pair (0.2, 2) and r = 0.2, 5.

• For the a, b dependence, the average power constraint
violation occurs for γ̄1 ≥ 14 dB, while for lower γ̄1 the
solution obtained assuming independent channels is very
close to the optimal gdep.

From the previous discussion, the following dilemma arises
regarding the relay’s ability to adjust its gain based on either a
or both a, b. Specifically, for sufficiently high γ̄1, if we monitor
both channels, i.e. we compute g2(a, b), we must explicitly
take dependence into account to satisfy the average power
constraint, which in turn requires additional processing and
transmissions. To avoid this, we can compute g2(a) assuming
independent channels and get a utility very close to the truly
optimal gdep(a) utility. The problem is that for high γ̄1, the
g2(a) utility is usually much less than the g2(a, b) utility.
Hence, in order to maximize performance in high γ̄ 1, we
need to explicitly take dependence into account. The proposed
method is general enough to allow for such cases.

VI. CONCLUSIONS

This paper presented a general methodology for computing
the utility-optimal CSI-based relay gain of a dual-hop system,
subject to both average and instantaneous power constraints,
for arbitrary fading pdfs. Emphasis was placed on examining
the different dependencies of the gain on the channel states,
and their effect on system performance, as well as the prac-
tical importance of performing the optimization in the first
place. Simulations were presented for the BER utility, which
indicated that a modified “inverse gain” solution is very close
to optimal expect for certain cases that were demonstrated
(and showed that a considerable performance gain is possible
by exploiting both channel states in sufficiently high first hop
SNRs). The almost-optimality of the “inverse gain” solution
was verified for many fading distributions and was seen to
generally apply with high confidence. This provides a good
rule of thumb for optimal non-regenerative relay operation.

Furthermore, the effect on the system performance of as-
suming dependent channels to be independent, was numeri-
cally investigated and it was seen that this action is allowable
for low first hop SNR, in the sense that it leads to almost
optimal utilities. However, as the first hop SNR increases
it gradually becomes necessary to take the dependence into

account if truly optimal solutions are desired. Future research
includes treatment of the outage probability as a performance
metric and the determination of the corresponding optimal
relay gain in both regenerative and non-regenerative systems.
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