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Abstract

We consider the problem of scheduling packets over channels with time-varying
quality. This problem received a lot of attention lately in the context of devising methods
for providing quality of service in wireless communications. Earlier work in this problem
considered two cases. One case is that the arrival rate vector is in the throughput region
and then policies that stabilize the system are pursued. The other case is that all packet
queues are saturated and then policies that optimize an objective function of the channel
throughputs are investigated. In this paper we address the case where no assumption
on the arrival rates is made. We obtain a scheduling policy that maximizes the weighted
sum of channel throughputs. Under the optimal policy, in the general case, the system
may operate in a regime where some queues are stable while the rest become saturated.
If stability for the whole system is at all possible, it is always achieved. The optimal
policy is a combination of a criterion that gives priorities based on queue lengths and a
strict priority rule. The scheduling mechanism switches between the two criteria based
on thresholds on the queue lengths and is modulated by the availability of the channels.
The analysis of the operation of the system involves the study of a vector process which
in steady state has some of its components stable while the others are unstable. We
adopted a novel model for time-varying channel availability that dispenses with the
statistical assumptions and makes a rigorous description of system dynamics possible.

1 Introduction

The primary motivation of this work is to address the problem of scheduling transmissions
of multiple data flows sharing the same wireless channel under general arrival rates. The
relative delay tolerance of data applications, together with the bursty traffic characteristics,
opens up the potential for scheduling transmissions so as to optimize throughput [3]. Given
the above considerations, we examine a time-slotted parallel queue system with a single
server. The condition of the associated channel of every queue varies with time between
“on” and “off” states. In every time slot only one packet from a given queue can be
transmitted, if the associated channel is in the “on” state and the queue is non empty. For
such a system we design of scheduling policy that allocates the server to the queues in such
a way that the weighted sum of channel throughputs is maximal.
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A related approach along these lines is proposed in [1], where the authors identify opti-
mality properties for scheduling downlink transmissions to data users in CDMA networks.
For arbitrary-topology networks, the problem of admission control and rate allocation to
the users so that certain quality-of-service requirements are met, is investigated. A math-
ematical programming formulation is obtained for determining the optimal transmission
schedule. The effect of wireless channels on the performance of transmission protocols such
as TCP is examined through simulations in [2]. The authors conclude that channel state
dependent scheduling can lead to significant improvement in channel utilization.

The problem of scheduling wireless channels with time-varying connectivity has been
addressed in the past in several different contexts. In [15], optimal scheduling for a wireless
system consisting of multiple queues and a single server is studied. The arrival processes to
the queues are assumed i.i.d Bernoulli. The wireless channels can be in the “on” or in the
“off” state according to i.i.d Bernoulli processes. The authors derived the system stability
region; moreover, they showed that the policy that among the queues whose channel is “on”
serves longest one, stabilizes the system whenever the arrival rates are within the stability
region. In [16], Tassiulas considered a system that generalizes the one in [15] in the following
aspects. First, a network with arbitrary topology is considered. Second, the topology is
represented by a hidden Markov model instead of an independent and identically distributed
(i.i.d) process. Third, anticipative scheduling policies are taken into consideration. Fourth,
multiple link transmission rates are considered. In that context, after the characterization
of the region of achievable throughputs, a transmission scheduling policy is proposed that
achieves all throughput vectors achievable by any anticipative policy.

The problem of scheduling transmissions over a wireless channel with time-varying trans-
mission rates is considered in [12], [3], [9] and [10]. The problem of providing a scheduling
policy that stabilizes the system whenever the arrival rate vector lies within the stability
region is dealt in [12] and in [10]. In [12], a finite set of channel states is assumed and
every channel can be in one of these states. With each state there is an associated data
rate representing the rate at which the queue is served if selected for transmission. The
arrival processes to the queues are assumed mutually independent, ergodic, Markov chains
with countable state space. Under these assumptions it was shown that the scheduling
policy, called the exponential rule, makes the queues stable if there exists any policy that
can do so. In [10], the authors consider the problem of power and server allocation in a
multi-beam satellite downlink which transmits data to different ground locations over time-
varying channels. The authors establish the stability region of the system and develop a
power allocation policy, which stabilizes the system whenever the system is stabilizable and
when the arrival and channel state processes are i.i.d.

In [9] and [3] the problem of developing a scheduling policy for efficient channel utiliza-
tion is considered for the case that all the queues are infinite. In [9] the state of a channel
is modeled by a stochastic process, which represents the level of performance of the given
channel. A scheduling policy is provided which maximizes the average system performance
given that a predetermined time-fraction assignment is achieved for all channels. In [3], the
authors consider a base station serving data-users. The feasible rates of the users vary over
time according to some stationary discrete-time stochastic process. A scheduling policy that
exploits the variations in the channel conditions and maximizes the minimum throughput
is developed.

The main contribution of this paper is the design and analysis of a scheduling policy
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for a wireless system with time-varying connectivity, for general arrival rates. This is an
important situation that arises in practice, since the channel parameters and the arrival
rates may not be known apriori, or may vary over time. In such a case, scheduling policies
proposed before for maximizing throughput under various assumptions on the arrival rates
may fail, and the system may have a rather erratic behavior. In the current work we
consider the scheduling problem of maximizing the weighted sum of user throughputs. We
provide a scheduling policy that is optimal under any arrival rates. In the most general case,
under the optimal policy we propose, some queues will be stable while others will operate
in saturation. Such a dynamic behavior makes the analysis of the system rather difficult.
Instrumental in the analysis of our policy was the adoption of a “bounded burstiness” model
for the variability of the channel inspired by “burstiness constrained” traffic models that
have been used over the last several years in the analysis of communication networks [5],
[4], [8].

The paper is organized as follows. In Section 2, the traffic and channel model is in-
troduced. Specifically, the constraints on the arrival and channel availability processes are
given. In Section 3 we provide the problem formulation and define the scheduling policy. In
Section 4 the optimality proof of the proposed policy is given. Conclusions and suggestions
for further work are discussed in Section 5.

1.1 Notations and Conventions

Before proceeding, we present some of the notations and conventions that we use throughout
the paper. Sets of numbers are denoted by calligraphic capital letters. In particular we
define N = {1, ...,N} . A subset S of a set D is denoted by S ⊆ D and a strict subset
by S ⊂ D. In several places we will use sets as subscripts or arguments, say F (S). To
simplify notation and if there is no possibility for confusion, instead of F ({i1, ..., ik}) we
write F (i1, ..., ik). We write

P
S yi to denote

P
i∈S yi. If S = ∅, then we define

P
S xi = 0.

Also, ∪li=kDi = ∅ if k > l. The cardinality of a set S is denoted by |S| . If X = [xij ] and
Y = [yij ] are matrices, then X ≤ Y (X < Y) means that xij ≤ yij (xij < yij) for all i and
j. Finally, by XT we denote the transpose of X.

2 Traffic and Channel Model

We consider a system consisting of N channels. With each channel there is an associated
queue holding packets that are to be transmitted over the given channel. Packets are of
fixed size and time is divided in slots of unit length, equal to the transmission time of a
packet. Slot t ≥ 1 refers to the interval (t− 1, t]. In the interval (t− 1, t] (slot t), ai(t) new
packets join queue i to be transmitted over the corresponding channel. At the beginning of
slot t, i.e., at time t − 1, one packet among those already in one of the N queues may be
chosen for transmission at slot t. The number of packets from queue i transmitted in slot t
is bi(t) (therefore, bi(t) is either 0 or 1) and the number of packets in queue i at time t ≥ 0
is qi(t). Hence the number of packets at queue i, i ∈ N , evolves with time according to the
equation

qi (t) = (qi (t− 1)− bi (t))
+ + ai (t) , (1)

where (x)+ = max {0, x} .
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Define aS(t) =
P
S ai(t) and bS(t) =

P
S bi(t). That is, aS(t) is the number of arrivals in

slot t to be transmitted over channel set S, and bS(t) is the number of packets transmitted
over the channels in S, in slot t. Since only one packet may be transmitted in one slot, we
have

bS(t) =

½
1, if bi(t) = 1 for one of the channels in S
0, otherwise

.

At slot t, channel i may or may not be available for transmission of queue i packets. If
the channel is available for transmission, we say that the channel is in the “on” state. We
define for S ⊆ N , S 6= ∅,

cS(t) =

½
1, if at least one channel in S is “on” in slot t
0, otherwise

,

and c∅(t) ≡ 0. For example, Figure 1 shows the channel availability for 3 channels during
15 time slots. According to the figure

• c{1}(t) = 1 for 1 ≤ t ≤ 12 and zero elsewhere.

• c{3}(t) = 1 for 2 ≤ t ≤ 7, 9 ≤ t ≤ 14 and zero elsewhere.

• c{1,2}(t) = 1 for 1 ≤ t ≤ 15 and zero elsewhere.

• c{1,3}(t) = 1 for 1 ≤ t ≤ 14 and zero elsewhere.

• c{1,2,3}(t) = 1 for 1 ≤ t ≤ 15 and zero elsewhere.

Transmission over channel i may take place (bi(t) = 1) only if the channel is in the “on”
state and hence,

bS(t) ≤ cS(t). (2)

If x(t) is any of the quantities defined above, we denote

X(s, t) =
tX

τ=s+1

x(τ).

We make the following assumptions regarding the traffic and channel availability pro-
cesses.
Traffic Model.

Ai(s, t) is (σ
U
i , σ

L
i , αi)-constrained, i.e., for any t ≥ s ≥ 0, it holds

αi(t− s)− σLi ≤ Ai(s, t) ≤ αi(t− s) + σUi , (3)

where
∞ > σLi ≥ 0, ∞ > σUi ≥ 0, ∞ ≥ αi ≥ 0.

Parameter αi is the packet arrival rate to queue i ( i.e., αi = limt→∞
Ai(0,t)

t ) for
transmission over the corresponding channel. We allow for the possibility that
αi = ∞, in order to include the case that some of the queues are infinite for
t ≥ 1. It follows from the definition that if Ai(s, t) is (σ

U
i , σ

L
i , αi)-constrained

for i ∈ S, then AS (s, t) is
¡P

S σ
U
i ,
P
S σ

L
i ,
P
S αi

¢
-constrained.
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Figure 1: Channel Availability (“on” state) for 3 channels.

Channel Availability Model.

CS(s, t), is (θ
U
S , θ

L
S , F (S))-constrained, i.e., for any t ≥ s ≥ 0, it holds

F (S)(t− s)− θLS ≤ CS(s, t) ≤ F (S)(t− s) + θUS , (4)

where
∞ > θLS ≥ 0, ∞ > θUS ≥ 0.

We also use the convention F (∅) = θL∅ = θU∅ = 0.

We refer to the inequalities in (3) and (4) as “burstiness constraints”.
The definitions for the traffic model are standard, see e.g., [5], [6], [4], [8]. We elaborate

on the Channel Availability Model. From (4) it follows that

lim
t→∞

CS(0, t)

t
= F (S), (5)

that is, F (S) is equal to the long-term fraction of time that at least one of the channels in
S is in the “on” state. Also, from the definition of cS(t) we have that for any subsets S and
T of N , and for every t, it holds

cT (t) ≤ cS(t), if T ⊆ S,
cS(t) + cT (t) ≥ cS∪T (t) + cS∩T (t),

and hence

CT (s, t) ≤ CS(s, t), if T ⊆ S, (6)

CS(s, t) + CT (s, t) ≥ CS∪T (s, t) + CS∩T (s, t). (7)
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From (5), (6), (7) we conclude that F (S) satisfies the following relations for any subsets
T and S of N .

F (∅) = 0, (8a)

F (T ) ≤ F (S), T ⊆ S, (8b)

F (T ) + F (S) ≥ F (T ∪ S) + F (S ∩ T ). (8c)

The last property is known as the submodularity property.
As an example, suppose that the channel availability pattern in Figure 1, is repeated

indefinitely, i.e., we have a periodic channel availability process. Consider the first channel,
i.e., S = {1} . It holds

c{1}(t) =

½
1, for 1 ≤ t ≤ 12
0, for 13 ≤ t ≤ 15

and c{1}(t+ 15) = c{1}(t), for every time-slot t ≥ 1. Therefore we have¹
t− s

15

º
12 ≤ C{1}(s, t) ≤

»
t− s

15

¼
12, or

12

15
(t− s)− 12 ≤ C{1}(s, t) ≤

12

15
(t− s) + 12.

In conjunction with definition (4), the above inequality states that C{1}(s, t) is (θ
U
{1}, θ

L
{1}, F (1))-

constrained, with θU{1} = θL{1} = 12 and F (1) = 12/15, i.e., F (1) is equal to the long-term

fraction of time that the first channel is on. Similarly we have that CS(s, t) is (θ
U
S , θ

L
S , F (S))-

constrained and according to the figure

• For S = {3}, θU{3} = θL{3} = 12 and F (3) = 12/15.

• For S = {1, 2}, θU{1,2} = θL{1,2} = 0 and F (1, 2) = 1.

• For S = {1, 3}, θU{1,3} = θL{1,3} = 14 and F (1, 3) = 14/15.

• For S = {1, 2, 3}, θU{1,2,3} = θL{1,2,3} = 0 and F (1, 2, 3) = 1.

We close this section with a few comments on the adopted traffic and channel mod-
els. The assumption that the channel can be it two states only is applicable in networks
with changing topology, e.g., Low-Earth-Orbit (LEO) satellite communications, metor-burst
communication networks and networks with mobile users [16]. Furthermore the adopted
burstiness-constrained model for the channel availability process is suitable for the repre-
sentation of periodic connectivity processes arising in LEO satellite communications. While
the “on-off” channel model is valid for several systems (see also [13], [14], [15]) it does not
cover the case where several transmission rates are available depending on the channel state.
We adopt this model here in order to simplify the situation and get a better insight into the
problem at hand. Extension to multiple rates is an important open research topic. As will
be seen, the adopted burstiness-constrained models make possible the complete description
of system dynamics using mainly elementary (although not straightforward) techniques.
Compared to introducing statistical assumptions for these models, there are both advan-
tages and disadvantages. Note that the stationarity assumption is not needed in our model,
although the existence of long-term averages is implied. On the other hand deterministic
rather than stochastic bounds on process fluctuations are imposed.
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3 Problem Formulation

Consider a scheduling policy π that at the beginning of slot t, i.e., at time t − 1, decides
which packet (if any) to transmit to one of the channels that are “on” at time t. Let

rπi = lim inf
t→∞

Bπ
i (0, t)

t
,

be the “throughput” of channel i under policy π.
Given costs wi, i ∈ N , w1 ≥ w2 ≥ .... ≥ wN ≥ 0, our objective is to determine a policy

such that the weighted sum of throughputsX
N

wir
π
i ,

is maximal.
Assume that the channel state at a given slot is known to the scheduler at the beginning

of that slot and consider the following policy.
Scheduling Policy π∗.

With queue i associate an index Ii(q) of the form

Ii(q) = min (q, (N + 1− i)T ) ,

where T > 0. At time t, consider the nonempty queues whose channel is “on”.
Among these queues, let i be the one with largest index Ii(qi(t)) (if there are
multiple such queues select one arbitrarily). Transmit a packet from queue i at
slot t+ 1.

Our objective is to show that for T large enough, policy π∗ maximizes the weighted
sum of throughputs, irrespective of whether the overall system is stable or not. It is worth
observing the following.

• Only the order of the costs wi, i ∈ N , not the actual values, determine policy π∗. This
situation is similar to the well-known µc-rule in queueing theory.

• As will be seen, the traffic and channel model parameters determine how large T should
be chosen. In other words, the policy depends on these parameters only through T.
Again, the actual costs wi do not have an effect on T . Although estimates of T can in
principle be obtained through the analysis that follows, these will be too conservative.
Moreover, in practice the traffic and channel parameters may not be known before-
hand. Of course, one can pick very large values of T but this implies larger delays and
slower convergence. Hence, development of adaptive schemes for determining T seems
a more appropriate plausible way for choosing T. The development of such schemes
is an important subject requiring further research work.

• Following the definition in [15], we call “Longest Connected Queue (LCQ) First”, the
scheduling policy which among the queues whose channels are “on”, selects the one
with the largest number of packets (if there are at least two such queues, pick one
arbitrarily). Policy π∗ has similarities with LCQ. In fact, when qi(t) ≤ T for all i ∈ N ,
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Figure 2: Operating diagram of policy π∗

the two policies are identical. On the other hand, when qi(t) ≥ NT for all i ∈ N , then
Ii(qi(t)) = (N + 1− i)T and hence π∗ operates as a strict priority rule, giving higher
priority to lower indexed queues. It is easy to see that this latter rule is optimal when
all queues have always packets to transmit. In general, π∗ operates as combination
of the LCQ and the strict priority policy, and this enables it to provide the optimal
throughput under any conditions on the arrival rates. The operating diagram of policy
π∗ is given in Figure 2. The comments seen in Figure 2 are true when all queue sizes
belong to the intervals pointed by the brackets, e.g., the comment “all queues except
queue N are served according to LCQ” is true when qi(t) ≤ 2T, for all i ∈ N .
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3.1 Achievable Throughput Space and Related Linear Optimization Prob-
lem

Consider that the system operates under an arbitrary scheduling policy π. From (2), the
definitions of BS(s, t), CS(s, t) and (5), we have for any S ⊆ N ,

F (S) = lim
t→∞

CS(0, t)

t

≥ lim inf
t→∞

Bπ
S(0, t)

t

= lim inf
t→∞

P
S B

π
i (0, t)

t

≥
X
S
lim inf

t→∞
Bπ
i (0, t)

t

=
X
S

rπi . (9)

In addition, the fact that Ai(0, t) ≥ Bπ
i (0, t) and (3) imply that for any i ∈ N , it holds

0 ≤ rπi ≤ αi. (10)

From (9) and (10) we see that the maximum weighted sum of throughputs that can be
achieved by any scheduling policy cannot exceed the value of the following optimization
problem.

Linear Optimization Problem.

max
{xi}Ni=1

NX
i=1

wixi,

subject to, X
S

xi ≤ F (S), S ⊆ N , (11a)

xi ≤ αi, i = 1, ..., N, (11b)

xi ≥ 0, i = 1, ...,N. (11c)

and F (S) satisfies (8a), (8b), (8c).
Let Nk = {1, ..., k} , and N0 = ∅. It can be shown that the solution to the previous

optimization problem is given recursively by

x∗k = min

(
αk, min

D⊆Nk−1

(
F (k ∪D)−

X
D

x∗i

))
, (12)

for k = 1, ..., N. The proof is given in the Appendix A.1.
Our objective in the next section is to show that scheduling policy π∗ achieves the

throughputs defined by (12) and therefore is optimal. Before proceeding with the details of
the proof we discuss the problems encountered when one applies either the strict priority
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Figure 3: Throughput space for a symmetric system with two users.

rule or the LCQ policy to maximize the weighted sum of throughputs for all arrival rate
vectors.

Regarding the strict priority rule, in [15] it is shown that there are cases where the arrival
rates are within the throughput space of the system, and yet this rule renders the system
unstable. That is, for at least one user the throughput is smaller than the arrival rate.
However, as mentioned before the strict priority rule is optimal when all queues are infinite.
On the other hand LCQ always stabilizes the system when the arrival rates are within
the throughput space [15], and hence achieves the maximum weighted sum of throughputs
(equal to weighted sum of arrival rates in this case). Next we give an example where the
LCQ policy is suboptimal when the arrival rates are outside the throughput space.

Example 1. In Figure 3 we see the achievable throughput space (see equations (9) and
(10)) of a symmetric system with two users. By symmetric we mean that the arrival as well
as the channel constraints for the two users are identical. When the arrival rate vector is
outside the stability region, e.g., point B, then the operating point under LCQ is C, which
belongs to the boundary of the stability region and is such that both users receive equal
throughputs (this follows from the symmetry of the system and the operation of LCQ).
However, since w1 ≥ w2 it can be shown easily that point D is the one that maximizes the
weighted sum of throughputs. Hence D is the optimal point and LCQ, operating at point
C, is suboptimal in this scenario.

From the above discussion it is evident that both LCQ and the strict priority rule while
optimal for some cases, cannot maximize the weighted sum of throughputs for all arrival
rates. Intuitively the proposed policy π∗, which switches between these two “extreme”
policies according to system state, will be able to provide optimal throughputs regardless
of any assumptions imposed on the arrival rates.
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4 Optimality Proof

Since we deal only with policy π∗ in this section, in order to simplify the notation we
eliminate π∗ from all related notations, e.g., we use ri in place of r

π∗
i .

Before going into the details of the proof, we give an outline of the approach. In the
general case, it can be shown that under π∗, a subset U of the queues will grow to infinity,
while the rest of the queues will receive the maximum possible throughput, i.e., we have
ri = αi, i ∈ N − U . Call queues in N − U “stable”, and those in U “unstable”. It can be
proved that for any stable queue i, we have ri = x∗i . To determine the throughputs of the
unstable queues we first show that for T large enough, each of the stable queues fluctuates
in a certain range around kT, for some k, 0 ≤ k ≤ N. This fact and the manner the indices
are used to determine the scheduling decisions, implies that rk = x∗k for all unstable queues.
We mention that in the course of the proof, the fact that ri = x∗i , is established by starting
from the smallest indices and moving to the largest, rather than by first proving the result
for the stable and then for the unstable queues.

The following lemma will be useful in the sequel.

Lemma 1 For any subsets S1, S2 of N and any t it holdsX
S1

qi (t)−
X
S2

qi (t) ≤X
S1

qi (t− 1)−
X
S2

qi (t− 1) +
X
S1

αi +
X
S1

σUi + F (S2) + θUS2 .

Proof. This is immediate from the burstiness constraints on the arrival and channel
availability processes and equation (1).

We use the term “a set G has priority at time t over a set Q”, if given that at time t
policy π∗ chooses for transmission one of the packets in G∪Q, this packet must belong to G
provided that the queues in G have at least one packet and the associated channel is “on”.

In order to simplify notation in the proofs, in the following we will use the symbol O,
to denote a finite nonnegative quantity that depends only on the parameters of the arrival
and channel availability processes. In particular O depends neither on the time t nor on
the policy parameter T . As will be clear from the proofs, in principle O can be explicitly
computed, e.g., in Lemma 1, O =

P
S1 αi +

P
S1 σ

U
i + F (S2) + θUS2 .

Lemmas 2 and 3 below are used to determine the range around kT in which each of
the stable queues fluctuates. To elucidate the meaning of Lemma 2, consider some set L
of queues. Note that the average number of slots available for transmission of packets from
the queues in a set S ⊆ N −L is at least F (L∪ S)− F (L) (with equality when the queues
in L have always packets to transmit and the set L has priority over set S). Assume now
that for any subset S ⊆ D = N − L it holds,X

S
αi ≤ F (L ∪ S)− F (L).

These inequalities state that the packet arrival rate to any subset S of D is smaller that
the average number of slots available for transmission of packets from S. It is intuitively
plausible and it can be shown that these inequalities are sufficient conditions for the queues
in D to be bounded under the LCQ policy. In our case, however, the situation is more
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complicated since π∗ does not always operate as the LCQ policy, and in general we will
have D ⊆ N − L, i.e., there may be other queues in N − L competing with the queues in
D, which may have priority at certain times. It turns out, however, that for the queues in
D to remain bounded it is sufficient to ensure that whenever the queues in a subset of D
are above a certain threshold, they have priority over the queues in N − L and are served
according to LCQ policy. This is made precise in the following lemma.

Lemma 2 Suppose that there are queue sets L ⊂ N , D ⊆ N − L, such that the following
inequalities hold for any S ⊆ D.X

S
αi ≤ F (L ∪ S)− F (L). (13)

Suppose further that there are numbers H (T ) ≥ 0, Φ (T ) > 0, with limT→∞ Φ (T ) = ∞,
such that when π∗ operates with parameter T, the following hold.

a) The set G(t) = {i ∈ D : qi(t) > H (T )} , has priority at time t over the queues in
N − L.

b) If maxi∈D {qi(t)} ≤ H (T )+Φ (T ) , the queues in the set G(t) are served according to
LCQ policy.

Then, there is a number O such that, if Φ(T ) ≥ O and maxi∈D {qi(0)} ≤ H(T ), it holds

max
i∈D

{qi(t)} ≤ H (T ) +O, for all t ≥ 0. (14)

Proof. The proof is given in Appendix A.2.
The next lemma provides conditions under which it is known that the queue sizes of a set

of queues do not fall below certain threshold after some time. We are essentially dealing with
the inverse situation of Lemma 2. However, we need different arguments mainly because
we can claim the truth of the lemma only after some time large enough to remove the effect
of initial conditions.

Lemma 3 Suppose that there are queue sets L ⊂ N , D ⊆ N − L, such that the following
inequalities hold for all S ⊆ D, S 6= ∅.X

S
αi > F (L ∪D)− F (L ∪ S), (15)

where S = D−S. Suppose further that there is a number H(T ) ≥ 0, such that when π∗

operates with parameter T , the following hold.
a) The queues in L always have packets to transmit and have higher priority than the

queues in G(t) = {i ∈ D : qi(t) < H(T )} .
b) The queues in the set G(t) are served according to LCQ policy and have lower priority

than the queues in D−G(t).
Then there it a time τ0 such that mini∈D {qi(t)} ≥ H(T )−O, for all t ≥ τ0.

Proof. The proof is given in Appendix A.3.
Next we need to examine in more detail the structure of the optimal linear programming

solution (12). According to (12), x∗k may take values less than or equal to αk. An index
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Figure 4: Partitioning of the index set.

such that x∗k = αk is called “stable”, while an index such that x
∗
k < αk, “unstable”. We

therefore have that for a stable index k and for any set D ⊆ Nk−1,

αk ≤ F (k ∪D)−
X
D

x∗i . (16)

Similarly, for an unstable index k and for any set Dk ⊆ Nk−1 such that

x∗k = F (k ∪Dk)−
X
Dk

x∗i ,

it holds
F (k ∪Dk)−

X
Dk

x∗i < αk. (17)

The general structure of the vector {x∗k}k∈N is as follows. The set of indices is partitioned
into index sets Isi , i = 1, ..., ls, Iui , i = 1, ..., lu such that

• Indices in the set ∪lsi=1 Isi are stable. Indices in the set ∪
lu
i=1 Iui are unstable.

• Index set Ixi , x ∈ {s, u} consists of successive integers.

• If i > j then all indices in Ixi , x ∈ {s, u} are larger than the indices in Ixj . Figure
4 shows an example of the partition of the index set for N = 10 channels. For
convenience in the discussion we assume that for a given i, the indices in Isi are
smaller than the indices in Iui . Hence, for consistency, if index 1 is unstable, we define
Is1 = ∅.

Denote by u1 < u2 < ... < uL, L =
¯̄̄
∪lui=1Iui

¯̄̄
the unstable indices. The following lemma

describes some useful properties of stable and unstable indices, that are simple consequences
of the definitions.

13



Lemma 4 Consider the vector {x∗k}k∈ N defined for k = 1, ..., N, by the recursion

x∗k = min

(
αk, min

D⊆ Nk−1

(
F (k ∪D)−

X
D
x∗i

))
.

a) For any set S ⊆ Is1 it holds, X
S
αi ≤ F ( S) .

b) For index k ∈ Iuj , j = 1, ..., lu, there is at least one index set Dk such that Dk ⊆ N k−1,X
k∪Dk

x∗i = F (k ∪Dk) ,

and for all D ⊆ Nk−1,

F (k ∪Dk)−
X
Dk

x∗i ≤ F (k ∪D)−
X
D

x∗i .

c) If k ∈ Iuj is an unstable index, then for any set S ⊆ ∪lsi=1Isi −Dk, it holdsX
S

αi ≤ F (k ∪Dk ∪ S)− F (k ∪Dk) .

Proof. a) Let S ⊆ Is1 and let k be the largest index in S. Then, since S − {k} ∈ Nk−1,
we have from (16) that

αk ≤ F (k ∪ (S − k))−
X
S−k

αi

or, X
S

αi ≤ F (S) . (18)

b) This follows directly from the definition of an unstable index.
c) Let l be the largest index in S. If l ∈ ∪ji=1 Isi , then S ⊆ ∪

j
i=1 Isi − Dk ⊆ Nk−1. By

part b),

F (k ∪Dk)−
X
Dk

x∗j ≤ F (k ∪Dk ∪ S)−
X
Dk∪S

x∗j ,

hence, taking into account that S ∩Dk = ∅ and x∗i = ai for i ∈ S, we have,X
S

a∗i ≤ F (k ∪Dk ∪ S)− F (k ∪Dk).

Assume next that l ∈ ∪lsi=j+1Isi . Since k ∪Dk ∪ (S − l) ⊆ Nl−1, and (k ∪Dk)∩ (S − l) = ∅,
we have from (16),

αl ≤ F (l ∪ k ∪Dk ∪ (S − l))−
X
k∪Dk

x∗i −
X
S−l

αi

= F (k ∪Dk ∪ S)− F (k ∪Dk)−
X
S−l

αj ,

14



where we used the fact that by part b) of the lemma,X
k∪Dk

x∗i = F (k ∪Dk).

Therefore, X
S

αj ≤ F (k ∪Dk ∪ S)− F (k ∪Dk).

For an unstable index k ∈ Iuj define by Pk the class of index sets that satisfy part b)
of Lemma 4. In the next lemma, part a) essentially identifies stable indices in Is1 whose
corresponding queues, as will be be shown in conjunction with Lemma 3, stay above a given
threshold after some time. Part b), is used to derive further lemmas that permit to extend
this identification to indices in Isi , i ≥ 2.

Lemma 5 a) For index u1, there is a unique index set bDu1 ∈ Pu1 such that for all D ⊂ bDu1

it holds
x∗u1 = F

³
u1 ∪ bDu1

´
−
X
Du1

x∗i < F
¡
u1 ∪D

¢
−
X
D

x∗i . (19)

or, with D = bDu1 −D 6= ∅,X
D

ai > F
³
u1 ∪ bDu1

´
− F

¡
u1 ∪D

¢
. (20)

b) For every index uj , j ≥ 2 there is an index set eDuj ∈ Puj such that u1 ∪ bDu1 ⊆ eDuj .

Proof. a) Inequality (20) is immediate from (19) by observing that D ⊆ Is1 and there-
fore, x∗i = ai, i ∈ D. To prove (19), we will show that if D1, D2 belong to Pu1 , then so does
D1 ∩D2. This implies that the set bDu1 = ∩D∈Pu1D,

is the only one in Pu1 satisfying the required property.
According to the definition, it holds for any D ⊆ Nu1−1

x∗u1 = F (u1 ∪D1)−
X
D1

x∗i ≤ F (u1 ∪D)−
X
D

x∗i , (21)

x∗u1 = F (u1 ∪D2)−
X
D2

x∗i ≤ F (u1 ∪D)−
X
D

x∗i . (22)

Replacing D by D1 ∪D2 in (21) and by D1 ∩D2 in (22), we have,

F (u1 ∪D1)−
X
D1

x∗i ≤ F (u1 ∪D1 ∪D2)−
X
D1∪D2

x∗i ,

F (u1 ∪D2)−
X
D2

x∗i ≤ F (u1 ∪ (D1 ∩D2))−
X
D1∩D2

x∗i .
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Adding these two inequalities and observing thatX
D1

x∗i +
X
D2

x∗i =
X
D1∪D2

x∗i +
X
D1∩D2

x∗i ,

we obtain

F (u1 ∪D1) + F (u1 ∪D2) ≤ F (u1 ∪D1 ∪D2) + F (u1 ∪ (D1 ∩D2)),

which by the submodularity property implies that,

F (u1 ∪D1) + F (u1 ∪D2) = F (u1 ∪D1 ∪D2) + F (u1 ∪ (D1 ∩D2)). (23)

Replacing D by D1 ∪D2 both in (21) and (22) we have

F (u1 ∪D1)−
X
D1

x∗i + F (u1 ∪D2)−
X
D2

x∗i ≤ 2

F (u1 ∪D1 ∪D2)−
X
D1∪D2

x∗i

 ,

or,

F (u1 ∪D1) + F (u1 ∪D2)−
X
D1∪D2

x∗i −
X
D1∩D2

x∗i ≤ 2

F (u1 ∪D1 ∪D2)−
X
D1∪D2

x∗i

 .

Using (23) we conclude

F (u1 ∪ (D1 ∩D2))−
X
D1∩D2

x∗i ≤ F (u1 ∪D1 ∪D2)−
X
D1∪D2

x∗i .

A similar argument shows that

F (u1 ∪D1 ∪D2)−
X
D1∪D2

x∗i ≤ F (u1 ∪ (D1 ∩D2))−
X
D1∩D2

x∗i ,

and therefore,

F (u1 ∪D1 ∪D2)−
X
D1∪D2

xi = F (u1 ∪ (D1 ∩D2))−
X
D1∩D2

x∗i .

Finally,

2x∗u1 = F (u1 ∪D1)−
X
D1

xi + F (u1 ∪D2)−
X
D2

x∗i

= F (u1 ∪D1 ∪D2)−
X
D1∪D2

x∗i + F (u1 ∪ (D1 ∩D2))−
X
D1∩D2

x∗i

= 2

F (u1 ∪ (D1 ∩D2))−
X
D1∩D2

x∗i

 ,

where the second equality follows from (23). Therefore D1 ∩D2 ∈ Pu1 .
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b) Let D ∈ Puj , j ≥ 2. Since D ∪ u1 ∪ bDu1 ⊆ Nuj−1, it holds,

F (uj ∪D)−
X
D

x∗i ≤ F
³
uj ∪D ∪ u1 ∪ bDu1

´
−

X
D∪u1∪Du1

x∗i (24)

= F
³
uj ∪D ∪ u1 ∪ bDu1

´
−

X
u1∪Du1

x∗i −
X

D−(u1∪Du1 )

x∗i

= F
³
uj ∪D ∪ u1 ∪ bDu1

´
− F (u1 ∪ bDu1)−

X
D−(u1∪Du1)

x∗i .

Taking into account that
P
D x∗i −

P
D−(u1∪Du1 )

x∗i =
P
D∩(u1∪Du1 )

x∗i , we have from the

above inequality,X
D∩(u1∪Du1 )

x∗i ≥ F (uj ∪D) + F (u1 ∪ bDu1)− F (uj ∪D ∪ u1 ∪ bDu1)

≥ F
³
(uj ∪D) ∩

³
u1 ∪ bDu1

´´
(25)

= F
³
D ∩

³
u1 ∪ bDu1

´´
, (26)

where inequality (25) follows from the submodularity property and equality (26) from the

fact that since j > 1, uj ∩
³
u1 ∪ bDu1

´
= ∅. HenceX

D∩(u1∪Du1)

x∗i ≥ F
³
D ∩

³
u1 ∪ bDu1

´´
. (27)

Since {x∗i }
N
i=1 is a feasible point of the linear optimization problem, it satisfies equation

(11a), which for S =D ∩ (u1 ∪ bDu1) ⊆ N givesX
D∩(u1∪Du1)

x∗i ≤ F
³
D ∩

³
u1 ∪ bDu1

´´
.

Form the last inequality and (27) we obtainX
D∩(u1∪Du1)

x∗i = F
³
D ∩

³
u1 ∪ bDu1

´´
.

Observe that because of (24), this equality is true only if

F (uj ∪D)−
X
D

x∗i = F
³
uj ∪D ∪ u1 ∪ bDu1

´
−

X
D∪u1∪Du1

x∗i ,

i.e., only if D ∪ u1 ∪ bDu1 ∈ Puj and the lemma follows by setting eDuj = D ∪ u1 ∪ bDu1 .

Lemma 6 The indices in the set N −
³ bDu1 ∪ u1

´
satisfy the recursion

x∗k = min

(
αk, min

D⊆ Nk−1−(u1∪Du1)

(
F1 (k ∪ D)−

X
D
x∗i

))
,
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where
F1 (D) = F

³
u1 ∪ bDu1 ∪ D

´
− F (u1 ∪ bDu1).

Proof. Consider an unstable index uj , j ≥ 2. According to part b) of Lemma 5 and
part b) of lemma 4, we have for any S ⊆ Nuj−1

x∗uj = F (uj ∪ eDuj )−
X
Duj

x∗i ≤ F (uj ∪ S)−
X
S

x∗i ,

where eDuj = u1 ∪ bDu1 ∪ Duj , Duj ⊆ Nuj−1 −
³
u1 ∪ bDu1

´
. Consider now any set D ⊆

Nuj−1 −
³
u1 ∪ bDu1

´
. Setting S = D ∪

³
u1 ∪ bDu1

´
in the inequality above, we obtain,

x∗uj = F (uj ∪ u1 ∪ bDu1 ∪Duj )−
X

u1∪Du1∪Duj

x∗i ≤ F (uj ∪ u1 ∪ bDu1 ∪D)−
X

u1∪Du1∪D

x∗i . (28)

Since
³
u1 ∪ bDu1

´
∩Duj = ∅ we haveX

u1∪Du1∪Duj

x∗i =
X

u1∪Du1

x∗i +
X
Duj

x∗i = F (u1 ∪ bDu1) +
X
Duj

x∗i

Similarly, X
u1∪Du1∪D

x∗i = F (u1 ∪ bDu1) +
X
D

x∗i .

Replacing in (28) we obtain

x∗uj = F1(uj ∪Duj )−
X
Duj

x∗i ≤ F1(uj ∪D)−
X
D

x∗i ,

which together with the fact that x∗uj < auj implies the lemma for k = uj .

Next, let k ∈ Is1 −
³ bDu1 ∪ u1

´
and D ⊆ Nk−1 −

³ bDu1 ∪ u1
´
. Since k ∪ D ⊆ Is1 − bDu1 ,

we have by replacing in part c) of Lemma 4, S with k ∪D and k with u1,X
k∪D

ai ≤ F (u1 ∪ bDu1 ∪ k ∪D)− F (u1 ∪ bDu1),

or,

ak ≤ F1(D)−
X
D

x∗i ,

which implies the lemma for k ∈ Is1 −
³ bDu1 ∪ u1

´
.

Finally, assume that k ∈ ∪lsj=2Isj and let D ⊆ Nk−1 −
³ bDu1 ∪ u1

´
. Since in this case

u1 ∪ bDu1 ∪D ⊆ Nk−1,

18



we have by the definition of x∗k and taking into account that
³
u1 ∪ bDu1

´
∩D = ∅,

x∗k = ak ≤ F (k ∪ u1 ∪ bDu1 ∪D)−
X

u1∪Du1∪D

x∗i

= F (k ∪ u1 ∪ bDu1 ∪D)−
X

u1∪Du1

x∗i −
X
D

x∗i

= F (k ∪ u1 ∪ bDu1 ∪D)− F (u1 ∪ bDu1)−
X
D

x∗i

= F1(k ∪D)−
X
D

x∗i ,

which again implies the lemma.

Based on Lemma 6 we can now apply Lemma 5 with index set N −
³
u1 ∪ bDu1

´
, to

conclude the existence of a unique set bDu2 ⊆ Nu2−1 −
³
u1 ∪ bDu1

´
such that for all D ⊆

Nu2−1 −
³
u1 ∪ bDu1

´
x∗u2 = F1

³
u2 ∪ bDu2

´
−
X
Du2

x∗i ≤ F1 (u2 ∪D)−
X
D

x∗i ,

and for all D ⊂ bDu2 ,

x∗u2 < F1
¡
u2 ∪D

¢
−
X
D

x∗i .

In a similar manner, applying repeatedly Lemmas 6 and 5 we define the sets bDuj , j = 1, ..., L.
The next theorem provides the range within which the queues in N fluctuate.

Theorem 7 Under policy π∗, if qi(0) = 0, i ∈ N , then for T large enough, the queues in
∪luj=1Iuj tend to infinity. Moreover, there is a number M = O such that for 1 ≤ j ≤ L it
holds

max
i∈Duj

{qi(t)} ≤ (N + 1− uj)T +M for all t ≥ 0,

min
i∈Duj

{qi(t)} ≥ (N + 1− uj)T −M for all t ≥ τ0,

and
max

i∈∪lsj=1Isj−∪Lj=1Duj
qi(t) ≤M for all t.

It suffices to take T > 2M.

In the course of the proof of Theorem 7 we also prove the main result of this paper, that
is,
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Theorem 8 The throughputs achieved by policy π∗ for T large enough, satisfy the recursive
equations

x∗k = min

(
αk, min

D⊆Nk−1

(
F (k ∪D)−

X
D

x∗i

))
,

for k = 1, ...,N.

Proof of Theorem 7. From part a) of Lemma 4 we have that (13) holds in Lemma
2. Set now, D = Is

1
, H (T ) = H = (N + 1− u1)T, Φ (T ) = Φ = T, and L = ∅. Conditions

a), b), of the lemma 2 hold because of the definition of policy π∗. Indeed, for i ∈ G(t),
Ii( qi(t)) > H while the queues in N − G(t) have index at most H, so that condition a)
is satisfied. Moreover, for i ∈ G(t), Ii (qi(t)) = qi(t) whenever qi(t) ≤ H + T and hence
condition b) also holds.

Since qi(0) = 0 ≤ H, i ∈ N , we conclude that for all t ≥ 0,

max
i∈Is

1

{qi(t)} ≤ (N + 1− u1)T +O (29)

provided that T ≥ O.
Since Bi(0, t) = Ai(0, t)− qi(t), from (29) we conclude that for i ∈ Is1 ,

ri = lim
t→∞

Bi(0, t)

t
= lim

t→∞
Ai(0, t)

t
= αi = x∗i . (30)

Since bDu1 ⊆ Is1 we have from (17) and the definition of Is
1
that

F (u1 ∪ bDu1)−
X
Du1

αi < αu1 . (31)

Observing that X
u1∪Du1

qj(t) = Au1∪Du1
(0, t)−Bu1∪Du1

(0, t)

≥ Au1∪Du1
(0, t)− C

u1∪Du1
(0, t)

≥

 X
u1∪Du1

αi − F
³
u1 ∪ bDu1

´ t−O,

and taking into account (31) we conclude that

lim
t→∞

X
u1∪Du1

qj(t) =∞.

Since by (29) qi(t) is finite for i ∈ bDu1 ⊆ Is1 , we conclude that limt→∞ qu1 (t) =∞.

Consider now Lemma 3 with L = u1, D = bDu1 and H(T ) = H = (N + 1 − u1)T .
Inequalities (15) hold since according to (20) in Lemma 5 for any nonempty subset S ⊆ bDu1

we have X
S

αi > F
³
u1 ∪ bDu1

´
− F

³
u1 ∪

³ bDu1 − S
´´

.
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Notice also that since bDu1 ⊆ Is1 , by the definition of the queue indices Ii(q), the queues inbDu1 are served according to the LCQ policy when they are smaller than H = (N +1−u1)T
and the queues in G(t) =

n
i ∈ bDu1 : qi(t) < H

o
have lower priority than the queues inbDu1 −G(t), hence condition b) of Lemma 3 also holds. Moreover, since limt→∞ qu1 (t) =∞,

it holds that Iu1 (qu1 (t)) = H, for t larger than or equal to some time t0. Hence, for t ≥ t0
queue u1 has priority over the queues in S ⊆ bDu1 whenever maxi∈S {qi (t)} ≤ H. Therefore,
condition a) holds as well. We conclude that there is some time τ10 ≥ t0 such that for

i ∈ bDu1 , and for all t ≥ τ10, it holds

min
i∈Du1

{qi(t)} ≥ (N + 1− u1)T −O. (32)

From Lemma 4, c) it follows that for any subset S ⊆ E1 = ∪lsj=1Isj − bDu1 it holdsX
S

αi ≤ F
³
u1 ∪ bDu1 ∪ S

´
− F

³
u1 ∪ bDu1

´
.

Applying now Lemma 2 with D = E1, H = (N + 1 − u2)T , Φ = T and L = u1 ∪ bDu1 , we
conclude that for all t ≥ 0,

max
i∈E1

{qi(t)} ≤ (N + 1− u2)T +O, (33)

provided that T ≥ O. Pick now T large enough so that

T −O > O. (34)

Then since u2 > u1, it holds

(N + 1− u1)T −O > (N + 1− u2)T +O. (35)

Inequalities (32), (33) and (35) and the fact that qu1(t)→∞, ( i.e., Iu1 (qu1 (t)) = (N + 1− u1)T,
for t ≥ τ10) imply that the queues in u1∪ bDu1 have higher priority over the rest of the queues

for t ≥ τ10 and that they are nonempty. Therefore, the queues in u1∪ bDu1 use all the available
channel slots and we have

Bu1∪Du1
(τ10, t) = Cu1∪Du1

(τ10, t).

Hence

lim
t→∞

B
u1∪Du1

(0, t)

t
= lim

t→∞

C
u1∪Du1

(0, t)

t
.

Taking into account (30) and the fact that

lim
t→∞

Cu1∪Du1
(0, t)

t
= F

³
u1 ∪ bDu1

´
,

we conclude that limt→∞(Bu1(0, t)/t) exists and

ru1 = lim
t→∞

Bu1(0, t)

t
= F

³
u1 ∪ bDu1

´
−
X
Du1

αi,

that is, ru1 = x∗u1 .

For the indices in the set N−
³
u1 ∪ bDu1

´
and based on the definition of bDuj , we can

use similar arguments to verify the rest of the claims.
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5 Conclusions

In this paper we considered the problem of scheduling transmissions to multiple users over
a wireless channel with time-varying connectivity. We presented a scheduling policy that
maximizes the weighted sum of channel throughputs in a general setting where no assump-
tions on the arrival rates are imposed. Instrumental in the analysis was the adoption of a
burstiness-constrained model for the description of the wireless channel. This model makes
the rigorous description of the system dynamics possible, without relying on statistical
assumptions.

The proposed optimal scheduling policy is fairly simple and the only parameter that
needs to be determined is T . The analysis presented in this work applies to “on-off” channels
models. A subject of further study is the extension of the analysis to include multi-rate
channels and more general optimization functions. In addition the consideration of packet
delays is a practical matter that needs to be addressed. Another issue for further study is the
development of an adaptive control mechanism for determining the value of policy parameter
T according to observed system performance. Finally a general topic, where intense research
is devoted lately in the area of wireless communications, is that of exploring the interaction
of scheduling policies with higher layer protocols. In this respect, an interesting subject of
future work is to assess the interaction of the proposed policy with the congestion control
mechanism of the TCP/IP protocol.
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A Appendix

A.1 Proof of the Solution to the Linear Optimization Problem (equation
(12))

In this appendix we prove formula (12). Specifically, we prove the following theorem, where
we denote min {x, y} = x

W
y.

Theorem 9 Let w1 ≥ w2 ≥ ... ≥ wN ≥ 0. The point

x∗k = αk
W W
D⊆Nk−1

(
F (k ∪D)−

X
D

x∗i

)
, k ∈ N , (36)

maximizes
PN

i=1wixi subject to the constraintsX
S

xi ≤ F (S), S ⊆ N , (37)

xi ≤ αi, i = 1, ..., N, (38)

xi ≥ 0, i = 1, ..., N. (39)

We first need some auxiliary lemmas.

Lemma 10 The point x∗ is a feasible point, i.e., satisfies (37), (38), (39).
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Proof. Let D ⊆ N and let n be the largest coordinate index in D. Then,

X
D

x∗i = x∗n +
X
D−n

x∗i ≤
W

G⊆Nn−1

(
F (n ∪ G)−

X
G

x∗i

)
+
X
D−n

x∗i

≤ F (n ∪ {D − n})−
X
D−n

x∗i +
X
D−n

x∗i = F (D).

In the second inequality above we used the fact that D − n ⊆ Nn−1. On the other hand,
by definition we have x∗k ≤ ak. Hence equations (37) and (38) are satisfied. To show (39),
notice that since

P
D x∗i ≤ F (D), we have

x∗k = αk
W W
D⊆Nk−1

(
F (k ∪D)−

X
D

x∗i

)
≥ αk

W W
D⊆Nk−1

{F (k ∪D)− F (D)} ≥ 0,

where the last inequality follows from (8b) and from the fact that αk ≥ 0.

Lemma 11 For every subset G ⊆ N −Nk it holds

W
D⊆Nk

F (G ∪D) +
X
Nk−D

x∗i

 ≥ W
D⊆Nk

F (G ∪D) +
X
Nk−D

αi

 .

Proof. For k = 1 the lemma states that for G ⊆ N −N1,

(F (G) + x∗1)
W
F (G ∪ 1) ≥ {F (G) + α1}

W
F (G ∪ 1).

Indeed, since x∗1 = a1
W
F (1) we have

F (G) + x∗1 = {F (G) + α1}
W
{F (G) + F (1)} ≥ {F (G) + α1}

W
F (G ∪ 1),

where the last inequality follows from the fact that F (G)+F (1) ≥ F (G ∪ 1) and G ∩ 1 = ∅.
Assume that it is true for k − 1. Let G ⊆ N −Nk. Then by splitting the sets in Nk in

those that contain k and those that do not, we have

W
D⊆Nk

F (G ∪D) +
X
Nk−D

x∗i

 =

W
D⊆Nk−1

F (G ∪ k ∪D) +
X

Nk−1−D
x∗i

W W
D⊆Nk−1

F (G ∪D) + x∗k +
X

Nk−1−D
x∗i

 .

Now, by the induction hypothesis, and because G ∪ k ⊆ N −Nk−1, it holds,

W
D⊆Nk−1

F (G ∪ k ∪D) +
X

Nk−1−D
x∗i

 ≥ W
D⊆Nk−1

F (G ∪ k ∪D) +
X

Nk−1−D
αi

 .
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Next,

F (G ∪D) + x∗k +
X

Nk−1−D
x∗i =

F (G ∪D) + ak
W( W

Q⊆Nk−1

(
F (k ∪Q)−

X
Q

x∗i

))
+

X
Nk−1−D

x∗i

=

ak + F (G ∪D) +
X

Nk−1−D
x∗i

W
W

Q⊆Nk−1

F (G ∪D) + F (k ∪Q)−
X
Q

x∗i +
X

Nk−1−D
x∗i

 .

Using (8c), we can write for Q, D, subsets of Nk−1

F (G ∪D) + F (k ∪Q)−
X
Q

x∗i +
X

Nk−1−D
x∗i

≥ F (G ∪ k ∪Q ∪D) + F (Q ∩D)−
X
Q∩D

x∗i +
X

Nk−1−(D∪Q)
x∗i

≥ F (G ∪ k ∪Q ∪D) +
X

Nk−1−(D∪Q)
x∗i ,

where the last inequality follows from the fact that F (Q ∩D) ≥
P
Q∩D x∗i .

Hence,

F (G ∪D) + x∗k +
X

Nk−1−D
x∗i

≥

αk + F (G ∪D) +
X

Nk−1−D
x∗i

W W
Q⊆Nk−1

F (G ∪ k ∪Q ∪D) +
X

Nk−1−(D∪Q)
x∗i

 ,

and
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W
D⊆Nk−1

F (G ∪D) + x∗k +
X

Nk−1−D
x∗i

 ≥
ak +

W
D⊆Nk−1

F (G ∪D) +
X

Nk−1−D
x∗i


W

W
D⊆Nk−1

W
Q⊆Nk−1

F (G ∪ k ∪Q ∪D) +
X

Nk−1−(D∪Q)
x∗i


=

αk +
W

D⊆Nk−1

F (G ∪D) +
X

Nk−1−D
x∗i


W W

D⊆Nk−1

F (G ∪ k ∪D) +
X

Nk−1−D
x∗i


≥

αk +
W

D⊆Nk−1

F (G ∪D) +
X

Nk−1−D
αi


W W

D⊆Nk−1

F (G ∪ k ∪D) +
X

Nk−1−D
αi


=

W
D⊆Nk

F (G ∪D) +
X
Nk−D

αi

 ,

where we used the fact that

W
D⊆Nk−1

W
Q⊆Nk−1

F (G ∪ k ∪Q ∪D) +
X

Nk−1−(D∪Q)
x∗i

 =
W

D⊆Nk−1

F (G ∪ k ∪D) +
X

Nk−1−D
x∗i

 ,

because if D ⊆ Nk−1 and Q ⊆ Nk−1 then Q ∪ D ⊆ Nk−1. In the last equality we used
as before the argument for splitting the sets in Nk in those that contain k and those that
do not and the last inequality follows from the induction hypothesis. From the above we
conclude that

W
D⊆Nk

F (G ∪D) +
X
Nk−D

x∗i

 ≥ W
D⊆Nk−1

F (G ∪ k ∪D) +
X

Nk−1−D
αi

W
W

D⊆Nk

F (G ∪D) +
X
Nk−D

αi

 =
W

D⊆Nk

F (G ∪D) +
X
Nk−D

αi

 .

Lemma 12 If y is a point satisfying (37), (38), (39), it holds

kX
i=1

yi ≤
W

D⊆Nk

(X
D

αi + F (Nk −D)
)
=

kX
i=1

x∗i .

Proof. We have for any set D ⊆ Nk

kX
i=1

yi =
X
i∈D

yi +
X

i∈Nk−D
yi ≤

X
D

αi + F (Nk −D).

26



Hence
kX
i=1

yi ≤
W

D⊆Nk

(X
D

αi + F (Nk −D)
)
.

We will use induction to show

kX
i=1

x∗i =
W

D⊆Nk

(X
D

αi + F (Nk −D)
)
.

For k = 1 this follows from the definition (36). Assume now that it holds for k − 1. Then,
we have

kX
i=1

x∗i = x∗k +
k−1X
i=1

x∗i

=

(
αk
W W
D⊆Nk−1

(
F (k ∪D)−

X
D

x∗i

))
+

k−1X
i=1

x∗i

=

(
k−1X
i=1

x∗i + αk

)W W
D⊆Nk−1

F (k ∪D) +
X

Nk−1−D
x∗i


=

W
D⊆Nk−1

(X
D

αi + αk + F (Nk−1 −D)
)W W

D⊆Nk−1

F (k ∪D) +
X

Nk−1−D
x∗i

 ,

where the last equality follows from the induction hypothesis. Using now Lemma 11 we
have

kX
i=1

x∗i ≥
W

D⊆Nk−1

(X
D

αi + αk + F (Nk−1 −D)
)W W

D⊆Nk−1

F (k ∪D) +
X

Nk−1−D
αi

 .

Where we used the fact that

W
D⊆Nk−1

F (k ∪D) +
X

Nk−1−D
αi

 =
W

D⊆Nk−1

(X
D

αi + F (Nk −D)
)
,

and once again the argument of splitting the sets in Nk in those that contain k and those
that do not. Since x∗ is feasible, equality must hold.

Theorem 9 follows now easily.
Proof of Theorem 9 . Write

NX
i=1

wix
∗
i =

N−1X
i=1

Ã
(wi − wi+1)

iX
k=1

x∗i

!
+wN

NX
k=1

x∗i .

Using the fact that ci ≥ ci+1, and Lemma 12 we have for any feasible point y

NX
i=1

wix
∗
i ≥

N−1X
i=1

Ã
(wi − wi+1)

iX
k=1

yi

!
+ wN

NX
k=1

yi =
NX
i=1

wiyi.
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Figure 5: Evolution with time of the queue sizes in the set D.
Time bt is the largest time for which the maximum queue size in D is less than
H + Φ. During the time interval [tl, t] the index set corresponding to the l largest queues
among the queues in D remains the same and above H. At time tl − 1 either this set
changes or it drops bellow H.

A.2 Proof of Lemma 2

In this appendix we give the proof of Lemma 2.

Proof. We first need some notation. For D ⊆ N , denote by q
(l)
D (t) the l

th maximum

of {qi(t)}i∈D . Hence q
(1)
D (t) = maxi∈D {qi(t)} and q

(|D|)
D (t) = mini∈D {qi(t)}. Let πDl (t),

l ∈ {1, ..., |D|} be a permutation of the indices in D such that qπDl (t)
(t) = q

(l)
D (t). Also, let

S(l)D (t) = ∪lj=1πDj (t) (i.e., the set containing the l largest queues among the queues in D)
and S(l)D (t) = D − S

(l)
D (t).

In the following H and Φ stand for H (T ) and Φ (T ) respectively. Let D = |D| . Define
also,

yl(t) =
X
S(l)D (t)

(qi(t)−H)+ .

We observe that for 2 ≤ l ≤ D − 1, it holds

yl−1(t) + yl+1(t) = 2yl(t) +
³
q
(l+1)
D (t)−H

´+
−
³
q
(l)
D (t)−H

´+
, (40)
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and

y2(t) = 2y1(t) +
³
q
(2)
D (t)−H

´+
−
³
q
(1)
D (t)−H

´+
, (41)

yD−1(t) = yD (t)−
³
q
(D)
D (t)−H

´+
. (42)

Figure 5 will be useful in the following. Let bt ≤ ∞ be the largest time for which

Φ +H ≥ q
(1)
D (t) for all t ≤ bt . Consider a time t ≤ bt such that q(l)D (t) > H and let tl − 1

be the largest time before t, such that either S(l)D (t) 6= S
(l)
D (tl − 1) or q

(l)
D (tl − 1) ≤ H (for

l = D only the second situation makes sense). Time tl is well defined since by assumption

maxi∈D {qi(0)} ≤ H. In the time interval [tl, t] , the set S(l)D (t) remains the same, i.e.,
S(l)D (τ) = S(l)D (tl), tl ≤ τ ≤ t, and all the queues in this set are bigger than H, i.e.,

nonempty. Because of assumptions a) and b) and because q
(1)
D (t) ≤ Φ + H, this set of

queues has priority over the queues in N − L and since its queues are nonempty, they
use all the available slots in [tl, t] . Since these slots are at least CL∪S(l)D (tl)

(tl, t)− CL(tl, t),

we have BS(l)D (tl)
(tl, t) ≥ CL∪S(l)D (tl)

(tl, t) − CL(tl, t). Setting F (S) = F (L ∪ S) − F (L), we
conclude X

S(l)D (tl)

qi(t) =
X
S(l)D (tl)

qi(tl) +AS(l)D (tl)
(tl, t)−BS(l)D (tl)

(tl, t)

≤
X
S(l)D (tl)

qi(tl) +

 X
S(l)D (tl)

αi − F
³
S(l)D (tl)

´ (t− tl) +O

≤
X
S(l)D (tl)

qi(tl) +O. (43)

In the first inequality above we used the burstiness constraints on the arrival and channel
availability processes. In the second inequality we used (13). Because of the way tl is defined,

we have that for i ∈ S(l)D (tl) it holds qi(t) > H and qi(tl) > H. Therefore by subtracting lH
from both sides of inequality (43) we obtainX

S(l)D (tl)

(qi(t)−H)+ ≤
X
S(l)D (tl)

(qi(tl)−H)+ +O. (44)

Hence,
yl(t) ≤ yl(tl) +O. (45)

Let 2 ≤ l ≤ D − 1. We will show now that

yl(tl) ≤
1

2
yl−1(tl) +

1

2
yl+1(tl) +O. (46)

Note that by definition q
(l)
D (tl) > H and therefore from equation (40) it holds

yl(tl) =
1

2
yl−1(tl) +

1

2
yl+1(tl) +

1

2

³
q
(l)
D (tl)−H

´
− 1
2

³
q
(l+1)
D (tl)−H

´+
. (47)
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We consider two cases.
Case 1. q

(l)
D (tl−1) ≤ H. Then, there must be an index i0 ∈ S(l)D (tl) such that qi0(tl−1) ≤

H and q
(l)
D (tl) ≤ qi0(tl). Using Lemma 1 with S1 = {i0} , S2 = ∅, we conclude that

qi0(tl) ≤ qi0(tl − 1) +O ≤ H +O.

Hence,

q
(l)
D (tl)−H ≤ O. (48)

From (48) and (47) (taking also into account that
³
q
(l+1)
D (tl)−H

´+
≥ 0) follows (46).

Case 2. S(l)D (tl) 6= S(l)D (tl − 1) and q
(l)
D (tl − 1) > H. Then, there must be indices i0 ∈

S(l)D (tl), j0 ∈ S
(l)
D (tl), such that qi0 (tl − 1) ≤ qj0 (tl − 1) and q

(l)
D (tl)− q

(l+1)
D (tl) ≤ qi0 (tl)−

qj0 (tl) . By using Lemma 1 with S1 = {i0} , S2 = {j0} , we conclude that

qi0 (tl)− qj0 (tl) ≤ qi0 (tl − 1)− qj0 (tl − 1) +O ≤ O.

Hence,

q
(l)
D (tl)− q

(l+1)
D (tl) ≤ O. (49)

Since
³
q
(l+1)
D (tl)−H

´+
≥ q

(l+1)
D (tl)−H, from (47) we have

yl(tl) ≤
1

2
yl−1(tl) +

1

2
yl+1(tl) +

1

2

³
q
(l)
D (tl)− q

(l+1)
D (tl)

´
.

which in conjunction with (49) shows (46).
Combining now (46) and (45) we get

yl(t) ≤
1

2
yl−1(tl) +

1

2
yl+1(tl) +O. (50)

Similarly, we have with an analogous definition of t1 and tD

y1(t) ≤
1

2
y2 (t1) +O, (51)

yD (t) ≤ yD−1(tD) +O. (52)

If q
(l)
D (t) ≤ H, then we have from (40), (41) and (42) that (50) - (52) still hold with

tl = t.
Fix now a time t ≤ bt and define

yl
¡
t
¢
= max

t≤t
yl (t) <∞. (53)

From (50), it follows for 2 ≤ l ≤ D − 1, that for any t, 0 ≤ t ≤ t,

yl(t) ≤
1

2
yl−1

¡
t
¢
+
1

2
yl+1

¡
t
¢
+O. (54)

Similarly, from (51) and (52) it follows that for any t, 0 ≤ t ≤ t,

y1(t) ≤
1

2
y2
¡
t
¢
+O, (55)

yD (t) ≤ yD−1
¡
t
¢
+O. (56)
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Therefore we have for 2 ≤ l ≤ D − 1,

yl
¡
t
¢
≤ 1
2
yl−1

¡
t
¢
+
1

2
yl+1

¡
t
¢
+O, (57)

and

y1
¡
t
¢
≤ 1
2
y2
¡
t
¢
+O, (58)

yD
¡
t
¢
≤ yD−1

¡
t
¢
+O. (59)

The above inequalities can be written in matrix form as:

(I−B)Y ≤ O, (60)

where Y =
£
y1(t)...yD

¡
t
¢¤T
, and I is the unity matrix, O is a matrix whose elements are

of type O and

B =



0 1/2 0 0 0
1/2 0 1/2 0 0
0 1/2 0 1/2 0
... ... ... ... ...
0 0 1/2 0 1/2
0 0 0 1 0

 . (61)

Since the row sums of B are all less than or equal to 1 and the sum of the first raw is 1/2,
i.e., less than 1, it follows from the Perron-Frobenius Theorem [11], that the eigenvalues of
B are all smaller than 1 in absolute value. Therefore, the matrix (I−B)−1 has nonnegative
elements. Hence, we can multiply (60) with (I−B)−1 to get Y ≤ (I−B)−1O, or

yl(t) ≤ O, l = 1, ...,D. (62)

Therefore, for 0 ≤ t ≤ t ≤ bt, we have
max
i∈D

{qi (t)}−H = q
(1)
D (t)−H ≤

³
q
(1)
D (t)−H

´+
= y1 (t) ≤ yl(t) ≤ O

or,
max
i∈D

{qi (t)} ≤ H +O, 0 ≤ t ≤ t ≤ bt. (63)

We will show next that we can pick Φ ≥ O so that (63) holds for all t ≥ 0. Indeed ifbt <∞, from (63) and Lemma 1 and for any choice of Φ, we have

max
i∈D

©
qi
¡bt+ 1¢ª ≤ H +O. (64)

Pick Φ ≥ O, where O is as computed in (64). For this choice of Φ, if bt were finite, we would
have by the definition of bt,

max
i∈D

©
qi
¡bt+ 1¢ª > H +Φ,

which contradicts (64).
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A.3 Proof of Lemma 3

In this Appendix the proof of Lemma 3 is given.

Proof. In the following H stands for H(T ). We redefine q
(l)
D (t) and yl(t), first defined

in the proof of Lemma 2, as follows. For D ⊆ N , denote by q
(l)
D (t) the l

th minimum of

{qi(t)}i∈D . Hence q
(1)
D (t) = mini∈D {qi(t)} and q

(|D|)
D (t) = maxi∈D {qi(t)}. The definitions

of πDl (t), S
(l)
D (t), S(l)D (t) remain the same. Also, define

yl(t) =
X
S(l)D (t)

(H − qi(t))
+ . (65)

In the following we will need to define several time instances. For a schematic represen-
tation of these times refer to Figure 6.

Let t > 0. If q
(l)
D (t) ≥ H, then define t

(1)
l = t. Else (i.e., if q

(l)
D (t) < H) let t

(1)
l − 1 be the

largest time before t (if it exists) such that S(l)D (t) 6= S
(l)
D (t

(1)
l − 1), or q

(l)
D (t

(1)
l − 1) ≥ H; if

no such t
(1)
l exists, define t

(1)
l = 0.

If t
(1)
l = 0, then for τ in the interval [0, t] the set S(l)D (τ) remains the same and q

(l)
D (τ) <

H, 0 ≤ τ ≤ t. Moreover, according to assumptions a) and b) of the lemma, the queues in

L∪S(l)D (t) have priority over the queues in S
(l)
D (t). Notice also that by definition, whenever

some of the queues in S(l)D (t) are nonempty, the queues in S
(l)
D (t) are nonempty as well.

Therefore, if one of the channels in L ∪ S(l)D (t) is “on” at time t, this slot cannot be used
for transmission of packets of queues in S(l)D (t) . We conclude that

BS(l)D (t)
(0, t) ≤ CL∪D(0, t)− CL∪S(l)D (t)

(0, t)

≤
³
F (L ∪D)− F (L ∪ S(l)D (t)

´
t+O.

Hence, by setting F (S) = F (L ∪D)− F (L ∪ S), we have,X
S(l)D (t)

qi(t) =
X
S(l)D (t)

qi(0) +AS(l)D (t)
(0, t)−BS(l)D (t)

(0, t)

≥
X
S(l)D (t)

qi(0) +

X
S(l)D (t)

αi − F
³
S(l)D (t)

´ t−O

≥
X
S(l)D (t)

qi(0)−O. (66)

where the last inequality follows from (15). Since q
(l)
D (τ) < H, 0 ≤ τ ≤ t , subtracting lH

from both sides of (66) and taking into account the definition (65) we have for 2 ≤ l ≤ D−1,

yl(t) ≤ yl(0) +O ≤
1

2
yl−1(0) +

1

2
yl+1(0) + yl(0) +O, (67)

and

y1(t) ≤ y1(0) +O ≤
1

2
y2(0) + y1(0) +O, (68)
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Figure 6: Schematic representation of the times t
(j)
l , τ

(j)
l and tj , for D = 2.

yD (t) ≤ yD (0) +O ≤yD−1 (0) + yD (0) +O. (69)

The inclusion of additional terms in the second inequalities in (67)-(69) is made in order
to treat the various cases in a uniform fashion, see inequalities (73)-(75) below. Assume

next that t
(1)
l > 0. Following an analogous reasoning as in the proof of Lemma 2 we have

that for 2 ≤ l ≤ D − 1,

yl(t) ≤
1

2
yl−1(t

(1)
l ) +

1

2
yl+1(t

(1)
l ) +O, (70)

and

y1(t) ≤
1

2
y2

³
t
(1)
1

´
+O, (71)

yD (t) ≤ yD−1(t
(1)
D ) +O. (72)

Combining (67)-(72) ( i.e., the cases t
(1)
l > 0 and t

(1)
l = 0) we have for 2 ≤ l ≤ D − 1

yl(t) ≤
1

2
yl−1(t

(1)
l ) +

1

2
yl+1(t

(1)
l ) + 1 t

(1)
l =0

yl(0) +O, (73)

and

y1(t) ≤
1

2
y2

³
t
(1)
1

´
+ 1

t
(1)
1 =0

y1(0) +O, (74)

yD (t) ≤ yD−1(t
(1)
D ) + 1 t

(1)
D =0

yD(0) +O, (75)

where 1
t
(1)
l =0

= 1 if t
(1)
l = 0 and zero otherwise.

If z(t), t ≥ 0, is a real function defined on the nonnegative integers, define

z[a, b] = max
τ∈[a,b]

z(τ). (76)

Let t1=minl∈{1,...D}
n
t
(1)
l

o
. Using definition (76) and (73)-(75), yield: for 2 ≤ l ≤ D − 1,

yl(t) ≤
1

2
yl−1 [t1, t] +

1

2
yl+1 [t1, t] + 1{t1=0}yl(0) +O,

and

y1(t) ≤
1

2
y2 [t1, t] + 1{t1=0}y1(0) +O.

yD (t) ≤ yD−1 [t1, t] + 1{t1=0}yD(0) +O.
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The above inequalities can be written in matrix form as

Y (t) ≤ BY(1)
+ 1{t1=0}Y (0) +O, (77)

where B is defined by (61) in the proof of lemma 2, Y (t) = [y1 (t) , ..., yD (t)]
T and Y

(1)
=

[y1 [t1, t] y2 [t1, t] ... yD [t1, t]]
T . Let τ

(1)
l ∈ [t1, t], l = 1, ..,D, be the time where yl [t1, t]

is achieved, (i.e., yl(τ
(1)
l ) = yl [t1, t]). For l = 1, ...,D, the time t

(2)
l , is defined for the set

S(l)D (τ
(1)
l ) exactly as the time t

(1)
l were defined for the sets S(l)D (t). Generally, provided that

t
(j)
l are defined, define recursively:

• tj = minl∈{1,...D}
n
t
(j)
l

o
.

• τ
(j)
l ∈ [tj , t], l = 1, ..,D, the time where yl [tj , t] is achieved.

• If q(l)D (τ
(j)
l ) ≥ H, then define t

(j+1)
l = τ

(j)
l . Else, let t

(j+1)
l − 1, be the largest time (if

one exists) before τ
(j)
l such that S(l)D (τ

(j)
l ) 6= S

(l)
D (t

(j+1)
l − 1), or q(l)D (t

(j+1)
l − 1) ≥ H.

If no such time exists, set t
(j+1)
l = 0.

Arguing as above we have,

Y
(j) ≤ BY(j+1)

+ 1{tj+1=0}Y (0) +O, (78)

where Y
(j)
= [y1 [tj , t] y2 [tj , t] ... yD [tj , t]]

T .
Let k (t) + 1 be the smallest integer such that either tk(t)+1 = 0 or 0 < tk(t) ≤ tk(t)+1.
We consider two cases depending on whether tk(t)+1 is larger than zero, or zero.
case 1. 0 < tk(t) ≤ tk(t)+1. In this case we have

£
tk(t)+1, t

¤
⊆
£
tk(t), t

¤
which implies that

Y
(k(t)) ≥ Y(k(t)+1)

. Therefore by using inequality (78) we conclude that

Y
(k(t)+1) ≤ BY(k(t)+1)

+O.

From the last inequality and the Perron-Frobenius theorem we have that

Y
(k(t)+1) ≤ (I−B)−1O = O (79)

Observing that 1{tj+1=0} = 0 for 1 ≤ j ≤ k (t) + 1, we have from (78) that

Y (t) ≤ Bk(t)+1Y
(k(t)+1)

+
³
I+B+ ...+Bk(t)

´
O. (80)

From the Perron-Frobenius theorem we also have that for any k,

Bk ≤
³
I+B+ ...+Bk

´
≤

∞X
i=0

Bi = (I−B)−1 . (81)

Inequalities (79), (80), (81) implies,

Y (t) ≤ (I−B)−1O+ (I−B)−1O = O
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Hence
O ≥y1(t) = (H − q

(1)
D (t))

+ ≥ H − q
(1)
D (t) = H −min

i∈D
{qi(t)}

and the lemma follows.
case 2. tk(t)+1 = 0. Observing that 1{tj=0} = 0 for 1 ≤ j ≤ k (t), we have from (78)

and by using the Perron-Frobenius theorem,

Y (t) ≤ Bk(t)+1Y
(k(t)+1)

+Bk(t)Y (0) + (I−B)−1O.

By the definition of yl(t) it holds for any t,

yl(t) ≤ |D|H. (82)

Therefore, we can write

Y (t) ≤ Bk(t)+1Z+Bk(t)Z+ (I−B)−1O, (83)

where Z is a column matrix such that all it’s entries are equal to |D|H.
We claim that

k (t) ≥ γt− 1, (84)

where

γ =
δ

|D|H +O
,

and

δ = min
S⊆D
S6=∅

(X
S

αi − F (S)
)
> 0.

This can be proved as follows. Define

Ii (t) = ti−1 − ti, 2 ≤ i ≤ k (t) + 1

I1 (t) = t− t1.

By the definition of k (t), we have Ii(t) > 0 for 1 ≤ i ≤ k (t) + 1. Moreover,

k(t)+1X
i=1

Ii (t) = t. (85)

From the definition of times tj , there exists a time t0 ≥ tj−1, and an index l such that

q
(l)
D (τ) < H, tj ≤ τ ≤ t0 and

X
S(l)D (t0)

qi
¡
t0
¢
≥

X
S(l)D (t0)

qi (tj) +

 X
S(l)D (t0)

αi − F
³
S(l)D (t

0)
´ ¡t0 − tj

¢
−O

≥
X
S(l)D (t0)

qi (tj) + δ
¡
t0 − tj

¢
−O ≥

X
S(l)D (t0)

qi (tj) + δIj(t)−O. (86)
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Subtracting lH from both sides of (86) we have

0 ≤ yl(t
0) ≤ yl(tj)− δIj(t) +O,

or, taking also into account (82),

Ij(t) ≤
|D|H +O

δ
.

The last inequality and (85) imply (84).
From the Perron-Frobenius theorem we have that limk→∞Bk = 0 (where 0 is a matrix

whose elements are all zero). Therefore, we can pick τ0 large enough so that for t > τ0 it
holds,

BbγtcZ+Bbγtc−1Z ≤ O.

With this choice of τ0, the lemma follows from (84) and (83).
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