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Abstract

This paper addresses the problem of providing per�connection end�to�end delay guarantees in a high�

speed network� We assume that the network is connection oriented and enforces some admission control

which ensures that the source tra�c conforms to speci�ed tra�c characteristics� We concentrate on the

class of Rate�Controlled Service Disciplines� in which tra�c from each connection is reshaped at every

hop� and develop end�to�end delay bounds for the general case where di�erent reshapers are used at

each hop� In addition� we establish that these bounds can also be achieved when the shapers at each

hop have the same �minimal� envelope�

The main disadvantage of this class of service disciplines is that the end�to�end delay guarantees

are obtained as the sum of the worst case delays at each node� but we show that this problem can be

alleviated through �proper� reshaping of the tra�c to an envelope� which is in general di�erent from

the original envelope of the source tra�c� We illustrate the impact of this reshaping by demonstrating

its use in designing Rate�Controlled Service disciplines that outperform GPS�based service disciplines�

Furthermore� we show that we can restrict the space of �good� shapers to a family which is characterized

by only one parameter� We also describe extensions to the service discipline that make it work conserving�

and as a result reduce the average end�to�end delays�

Keywords� QoS Provisioning� Real�time Tra�c� Tra�c Shaping� ATM� Scheduling� End�to�end Delay

Guarantees�

� Introduction

In this paper� we consider the problem of providing per connection end�to�end delay �and throughput�

guarantees in high speed networks� Various scheduling policies have been suggested in the literature for

this purpose� Among them� policies based on Fair Queueing� alternatively known as Generalized Processor

Sharing �GPS� ��� �	� ��� �
�� have attracted special attention since they guarantee throughput to individual

connections and provide smaller end�to�end delay bounds than other policies� for connections that cross

several nodes� A key factor in obtaining these smaller delay bounds is the ability to take into account

�delay� dependencies in the successive nodes that a connection has to cross� which is in general very

di�cult to do with other policies�
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One notable attempt at addressing this general problem is that of �
� which introduced the concept

of service burstiness� and used it to provide a framework to characterize service disciplines and evaluate

their end�to�end delay performance� However� the generality of the framework in �
� did not result in as

tight end�to�end delay bounds as those obtained by focusing on a speci�c policy� For example� the bounds

available based on the techniques of �
� are no better than the looser bounds found in ��
��

In this paper we concentrate on Rate�Controlled Service �RCS� disciplines� which have also been pro�

posed in the literature ��
� to provide performance guarantees to individual connections� In this class of

service disciplines� the tra�c of each connection is reshaped at every node to ensure that the tra�c o�ered

to the scheduler arbitrating local packet transmissions conforms to speci�c characteristics� In particular�

it is typically used to enforce� at a node inside the network� the same tra�c parameter control as the one

performed at the network access point� which is based on the parameters negotiated during connection

establishment� Reshaping makes the tra�c at each node more predictable and� therefore� simpli�es the

task of guaranteeing performance to individual connections� when used with a particular scheduling policy�

it allows the speci�cation of worst case delay bounds at each node ��
�� End�to�end delay bounds can then

be computed as the sum of the worst case delay bounds at each node along the path�

The main advantages of an RCS discipline� especially when compared to GPS� are simplicity of imple�

mentation and �exibility� Also� in the single node case the RCS discipline that uses the Non Preemptive

Earliest Deadline First �NPEDF� scheduling policy� is known to be optimal ���� However� for the more

interesting case of general networks with many nodes� optimality does not hold� In section ��� we show

with simple examples that when a connection has to cross many nodes� GPS outperforms the �naive�

rate�controlled NPEDF discipline� As a result� it has been argued that despite its potentially greater com�

plexity� a GPS�based service discipline should be the solution of choice to provide performance guarantees

to individual connections �see for example �	���

A key result of this paper is to establish that RCS disciplines can be designed so as to outperform GPS�

based ones� even in a network environment� This is achieved by proper selection of the tra�c reshaping

performed at each node� Speci�cally� any end�to�end delay bounds that can be guaranteed by the GPS

discipline� can also be achieved by an RCS discipline by using a simple algorithm to determine how to

reshape the tra�c� and then specify worst case delay bounds at each node� The sum of the worst case delay

bounds of this RCS discipline is then no larger than the delay guarantees provided by the GPS discipline�

We also show that RCS disciplines have the additional �exibility of providing end�to�end delay bounds that

cannot be guaranteed by the GPS discipline� Furthermore� because of tra�c reshaping� the network bu�er

requirements of RCS disciplines are in general signi�cantly smaller than those of the GPS discipline �see

�
� for related discussions�� Based on these advantages and their implementation simplicity� we believe that

RCS disciplines are very e�ective candidates for providing end�to�end performance guarantees to individual

connections in integrated services networks�

The paper is structured as follows� In Section 
 we introduce our tra�c model� and in particular

our assumptions concerning properties of the envelope of the input tra�c� and the general structure of

our shapers� Section 	 is dedicated to the description of RCS disciplines and to the derivation of several

results concerning the delay guarantees they can provide given the tra�c and shaper models of Section 
�

Section � is devoted to a comparison with the GPS service discipline� Section ��� considers �rst the simpler
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version of GPS� i�e�� Rate Proportional Processor Sharing �RPPS�� as it is of greater practical signi�cance�

Section ��
 considers the more complicated case of general GPS for which similar results are established�

Various properties of tra�c shapers are investigated in Section �� and used to establish that the reshaping

needed for RCS disciplines to perform well can be achieved using �simple� shapers� Finally� the important

extension demonstrating that the results of the paper hold when reshaping is performed only in case of

congestion� is the topic of Section 
� A brief conclusion summarizes the main �ndings of the paper� The

Appendices contain proofs of the Lemmas� as well as an extension to the more general case of subadditive

tra�c envelopes�

� System Model and De�nitions

We consider a store�and�forward network comprised of packet switches in which a packet scheduler is

available at each output link� Tra�c from a particular connection entering the switch passes through a

packetizer and a tra�c shaper before being delivered to the scheduler� as indicated in Figure �� The tra�c

shaper regulates tra�c� so that the output of the shaper satis�es certain pre�speci�ed tra�c characteristics�

In this paper� we use a deterministic approach to specify the tra�c characteristics of a connection�

Tra�c arriving on the link is modeled as a �uid� with U �t� t � � � denoting the amount of tra�c arriving

at the network ingress in the interval �t� t� � �� However�the network element typically operates on packets

and so there is a packetizer �see Figure �� that splits the input tra�c into packets� These packets are

then regulated by the tra�c shaper before reaching the link scheduler which arbitrates the transmission of

packets on the link�

We assume that U��� � U ��� � � is right�continuous and that there is a nonnegative function U��� called

envelope of U �t� t� � �� such that

U �t� t� � � � U���� t � �� � � ��

The envelope function is not unique� without loss of generality �see �
�� we can assume that U��� is

	



right�continuous� nondecreasing� and subadditive�

The packetizer splits the input tra�c into packets of maximum length L� that are instantaneously

delivered to the shaper when the last bit of the packet is received� We denote the tra�c at the output of

the packetizer in the interval �t� t� � � as I �t� t� � �� It is easy to see that� for any non�negative t and � �

I �t� t� � � � U �t� t� � � � L � U��� � L �� I��� ���

The tra�c shaper reshapes the incoming tra�c by delaying the packets according to the rules described

next� and then delivers them to the scheduler� The tra�c shaper is characterized by a tra�c envelope�

A���� which upper bounds the amount of tra�c that is output by the shaper in any interval of length � � If

A�t� t�� � denotes the tra�c that is output from the shaper in the interval �t� t�� �� then A�t� t�� � � A����

More precisely� the tra�c shaper outputs packets in order with each packet being released at the

smallest time t such that

A�t� �� t� � A���� � � � � t� �
�

The tra�c shapers that we use in this paper can be constructed from simple ��� �� tra�c shapers that

can alternatively be described in terms of the backlog tra�c in a hypothetical queue with a server of rate

� ���� Assume that tra�c I ��� t� is queued for transmission at a link of speed � � � and de�ne W��I��t� as

the amount of tra�c queued at time t at this link� including the packet that may have arrived at time t�

It is known ��� that W��I��t� is given by

W��I��t� �� max
��s�t

fI �s� t�� ��t� s�g � �	�

The ��� �� tra�c shaper� operates on the ith packet arriving at time si� according to the following rule�

The packet is released to the scheduler at the earliest time ti � si� such that the shaper output tra�c�

A�t� t� � �� satis�es the condition

W��A��ti� � � � L� �� � � ��

where W��A��ti� is de�ned as in �	�� Note that the condition � � � is necessary in order to allow packets

of size L to pass through the shaper� This shaper corresponds to the operation of a leaky bucket in a

store�and�forward network ���� which di�ers from the one de�ned in ��� in two minor respects� i� packets

are entering and exiting the shaper instantaneously and not at a constant rate C� and ii� the length of the

packet that exits the tra�c shaper at time ti is taken into account in the calculation of W��A��ti�� Note

that si and ti are de�ned as the times when the last �not the �rst as in ���� bit of the ith packet enters and

exits the shaper respectively� However� with di �� ti�si denoting the delay that the ith packet experiences

in a shaper� the analysis in ��� can be repeated with minor modi�cations to show that

di �
�

�
�W��I��si�� ��

�
� and

A�t� t� � � � � � ���

The ��� �� shaper has also been described in the literature in terms of a token bucket �leaky bucket�� with

� being the rate of token accumulation� and � being the bucket depth� In general� we will be using shapers

�



whose output is a concave� increasing �i�e�� f�t�� � f�t�� whenever t� � t��� piecewise linear function with

�nite number of slopes� K� We are interested in these types of shapers because they are a generalization

of the shapers adopted by the the Internet ���� and ATM standards ���� These shapers can also be easily

implemented by passing the tra�c through a series of K ��m� �m��shapers ���� Let A be such a shaper and

for the input tra�c model described earlier� the delay of packet i through the shaper is ��� Theorem ����

di � max
m���������K

�
�

�m
�W�m�I��si�� �m�

�
�

and ���

A�t� t� � � � A��� �� min
m���������K

f�m � �m�g � ���

where �x�� � max��� x�� From ��� we can develop a worst case delay bound that depends on the envelope

of the input process to the shaper� Taking into account �	� we have that

di � max
m���������K

�
�

�m

�
max
��s�si

n
I�si � s�� �m�si � s�� �m

o���

� max
m���������K

��	


max
���

�
I���� �m � �m�

�m

���
�
� �
�

� max
���

��	



max
m���������K

�
I���� �m

�m

�
� �

��
�
� � ���

We will denote the bound on the delay of tra�c with envelope I��� through shaper A as�

D
�
I�A

�
�� max

���

��	



max
m���������K

�
I���� �m

�m

�
� �

��
�
� � ���

We can write ��� in another form that will be useful in the sequel� The range of A��� is �minm �m� ��

and the inverse of A��� is given by

A
����

�y� � max
m�������K

�
y � �m
�m

�
� min

m
�m � y ��� ���

Extending the de�nition of A
����

�y� by setting A
����

�y� � � whenever � � y � minm �m� it can be seen

from ��� and ��� that

D�I�A� � max
���

��
A
����

�
I���

�
� �

���
� ����

When the tra�c entering shaper A is the output of a shaper A� with envelope A����� we will also use

the notation D �A��A� �� D
�
A��A

�
� Notice that if I��� � A���� � � �� then from �
� we have that

D
�
I�A

�
� � which implies that no packet is delayed in shaper A� In particular� D �A�A� � ��
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Figure 
� The Systems S� and S�

Consider next two shapers A�� A� in series� Equations ��� and ��� imply that this arrangement is

equivalent to a tra�c shaper A� with envelope

A���� � min
n
A����� A����

o
� ����

Equivalence here means that for any input tra�c pattern� the delay of every packet from the time it enters

A� to the time it exits A� is identical to the delay of the packet in A��

Next� we state a useful lemma� that relates the packet delays in the two systems S� and S� of Figure 
�

System S� consists of a tra�c shaper� A� System S� consists of a �delay� subsystem and an identical

shaper A connected in series� The delay subsystem delays the ith arriving packet by 	i � �� and then

delivers it to A�

Lemma �� Assume that packets arrive to systems S�� S� according to the same arrival process I �t� t� � ��

If d���i and d
���
i are the delays of packet i in the tra�c shaper in systems S� and S� respectively� then for

all i � �� 
� � � ��

d
���
i � d

���
i � 	i�

that is� the delays of all packets in system S� are smaller than their corresponding delay in system S� �

The proof of the above lemma is given in Appendix A� Lemma � identi�es the monotonicity property

of the shaper with respect to the arrival process� This is an important property of the tra�c shapers

considered in this paper and is key to establishing the general end�to�end delay bounds for RCS disciplines�






� Rate�Controlled Service Disciplines

We are interested in a generalized form of the class of Rate�Controlled Service disciplines introduced in ��
��

In that work� it is assumed that connections whose tra�c satis�es certain burstiness constraints enter the

network at various nodes� A node can have several output links� each of which contains a scheduler that

decides the order in which packets are transmitted� At each node along the path of a connection� tra�c

is reshaped to conform to its original envelope before it enters the appropriate scheduler� Based on the

tra�c envelope of the connection� upper bounds on the scheduling delays at each node can be guaranteed�

It is also shown in ��
�� that for the tra�c shapers considered there� reshaping the tra�c to its original

envelope does not introduce extra delays� Therefore� an upper bound on the end�to�end packet delay is

simply the sum of the scheduling and propagation delays�

In this paper� we study the following general class of service disciplines� The tra�c of connection n

entering the network has an envelope function Un���� At node m� the tra�c of connection n is shaped by

a tra�c shaper Am
n � Tra�c shapers Am

n are of the general type considered in Section 
� and di�erent tra�c

shapers can be used for the same connection at di�erent nodes� The connection tra�c exiting Am
n enters a

scheduler at the appropriate output link at node m� and it is scheduled for transmission to the next node

or to its destination� We develop end�to�end delay bounds based on the scheduling policies at each node

as well as the form of the tra�c shapers Am
n � These bounds will then be used to provide delay guarantees

to each connection� In the rest of this paper� we use the term service discipline to denote the operation of

the system consisting of the tra�c shaper as well as the scheduler� We are interested in designing service

disciplines of the type described above� so that end�to�end delay guarantees can be provided as e�ciently

as possible�

We assume that the nodes are output queueing switches� and without loss of generality� that there is no

delay inside the switch� In other words� the only delay that a packet incurs at a switch is due to queueing

at the output link� Let Cm�l be the set of connections passing through output link l of node m� Given Am
n �

n � Cm�l� and the scheduling policy employed at link l at node m� we assume that a delay bound on the

scheduling delay Dm
n is known for each connection n � Cm�l � The scheduling delay includes both queueing

and transmission time of a packet� For example� bounds of this form can be developed for the general

tra�c shapers of this paper� when the Earliest Deadline First �EDF� scheduling policy is employed� by a

straightforward extension of the method in ���� �� �see also Theorem � in Section � in this paper�� We also

assume that an upper bound on the propagation delay of link l is T l� Knowledge of the bounds Dm
n and

T l alone are not enough to provide bounds on the end�to�end packet delays� We still have to account for

any additional delays incurred in the tra�c shapers and this is done based on the following proposition�

Proposition �� Assume that the output of tra�c shaper A� enters a system S where it is known that the

delay experienced by these packets is upper bounded by DS� The output of system S enters shaper A�� The

total delay� bdi� that packet i experiences from the time it exits A� to the time it exits A� is upper bounded

by bdi � DS �D�A��A���

�
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Figure 	� Original and Modi�ed System

Proof� Let di be the delay of packet i in system S� and let d
���
i be its delay in A�� By de�nition�bdi � di � d

���
i � Consider next a modi�ed system where a delay system that delays the ith packet by

	i � DS � di� is inserted between S and A� �see Figure 	�� Now let d���i denote the delay of packet i in A�

under this new arrangement� Note that 	i � � by the de�nition of DS � Applying Lemma � we conclude

that

d
���
i � DS � di � d

���
i

and therefore� bdi � DS � d
���
i �

Observe now that since the delay of every packet between its entrance time to S and its exit

from the delay system is di � 	i � DS � the tra�c entering shaper A� when the delay system is

inserted� is a time�shifted version of the tra�c exiting A�� and therefore it has envelope A����� Hence�

d
���
i � D�A��A���

Note� As explained in Section 
� when the shapers A��A� are identical� D�A��A�� � �� i�e�� in this case

reshaping does not introduce extra delays� Also� from the proof we see that any shaper that has the

property described in Lemma � satis�es Proposition � as well� In particular� the shaper of ��
� can easily

be seen to satisfy Lemma ��

Assume now� that connection n passes through M network nodes� numbered from � to M � and let

M � � denote the destination� We then� apply Proposition � with the system S consisting of both the

�



scheduler at node m and the link l � �m�m� ��� and the shapers A� � Am
n � and A� � Am��

n � We can

conclude that the delay that a packet from connection n experiences between the time it exits shaper Am
n

and the time it exits Am��
n is upper bounded by�

Dn�m�m� �� � Dm
n � T �m�m��� �D

�
Am
n �A

m��
n

�
� ��
�

Taking ��
� into account we then have the following guaranteed upper bound on the end�to�end delay

Dn � D�In�A
�
n� �

M��X
m��

Dn�m�m� �� �DM
n � T �M�M���

� D�In�A
�
n� �

M��X
m��

D
�
Am
n �A

m��
n

�
�

MX
m��

Dm
n �

MX
m��

T �m�m���� ��	�

It is important to note that the delay bounds Dm
n depend on the choice of the tra�c shapers Am

n � Therefore�

one should not conclude from ��	� that the end�to�end delay guarantees are minimized by choosing In���

as the envelope for all the tra�c shapers so that D�In�A
�
n� � D �Am

n �A
m��
n � � �� In fact� as we will see in

the next section� this choice may be quite inappropriate�

As in the policies proposed in ��
�� the delay bounds in ��	� are basically a sum of the worst case delays

at each node along the path of a connection� However� an individual packet may not encounter the worst

case delays at each node� Therefore� one may suspect that these bounds are overly pessimistic and lead to

ine�cient allocations compared to bounds for other disciplines� that take into account delay dependencies

between nodes along the path� As mentioned earlier� the impact of delay dependencies is in general di�cult

to evaluate but can be accounted for in some instances� In particular� it can be done for the GPS discipline

��� ��� �
�� which is one of the reasons that tight bounds can be obtained for this discipline� This argument

about the ine�ciency of worst�case delay assignment relative to GPS was also mentioned in ��
��

In the next section we address this issue� by demonstrating that with a suitable choice of shaper

envelopes the RCS discipline can provide the same end�to�end delay guarantees that the best delay bounds

of GPS can provide� More speci�cally� we show that for a given set of connections� and their associated

paths� the RCS discipline can provide the same end�to�end delay bounds as the GPS discipline� In addition�

we show that the RCS discipline can accept a set of connections with associated delay requirements� that

cannot be accepted by GPS� This demonstrates the advantage of RCS over GPS in providing e�cient

end�to�end delay guarantees�

� Comparison with GPS

In this section� we compare the performance of the GPS service discipline to the performance of the RCS

disciplines introduced in the previous section� In order to compare two service disciplines� we need to

de�ne the performance measure which is of interest to us� The ability of a discipline to provide e�cient

end�to�end delay guarantees to a given set of connections� is best quanti�ed by the notion of schedulable

region� Assume that we have NT connections in a communication network� with the same scheduling

discipline� 
� operating at all the links in the network� The input tra�c of connection n has envelope

�



function In���� and traverses path Pn of the network� � � n � NT � Under these assumptions� we require

that the packets of connection n have an upper bound on their end�to�end delay �delay guarantee�� Dn�

� � n � NT � The vector D �
�
D�� � � � � DNT

�
is schedulable under discipline 
 if the delay bound Dn can

be guaranteed under 
 for all packets of connection n� � � n � NT � The schedulable region of discipline


 is the set of all vectors D that are schedulable under 
� Note that the schedulable region of a service

discipline depends on the envelope functions In��� and the paths Pn� We say that service discipline 
� is

at least as good as the discipline 
�� if the schedulable region of 
� is a superset of 
�� for any given set

of connections and paths� If� in addition� there is a set of connections� paths and associated delay bounds

that can be guaranteed by 
�� but not by 
�� we say that 
� is better than 
��

Note that the schedulable region is de�ned in terms of delay bounds that can be guaranteed a priori�

These bounds are an integral part of the service discipline and may in fact be signi�cantly worse than the

delays actually experienced by packets� Their choice may be due either to their simplicity or to the fact

that these are the only bounds that can be guaranteed and no method is known to derive lower bounds�

From the point of view of admission control� it is irrelevant if in the actual operation of a policy smaller

delays are observed� since what is required at the time of connection establishment� is to know whether

the delay bounds can be guaranteed or not�

Before we proceed with the comparison of RCS and GPS disciplines� we need to recall some preliminary

results regarding the NPEDF scheduling policy� This policy has the largest schedulable region among the

class of non�preemptive policies in the single�node case ���� and is therefore the most e�cient to use when

considering RCS disciplines� The schedulable region is de�ned here with respect to scheduler delays only�

The schedulable region for N connections that are entering the scheduler through tra�c shapers with

envelopes An��� � L � �n � �n� � � � n � N� and contending for an output link of speed r� is given by

Theorem � in ���� which we repeat here for convenience� slightly rephrased to conform to our de�nitions

and notation�

Theorem �� The NPEDF policy is optimal among the class of non�preemptive scheduling policies when

the connection n tra�c entering the scheduler has envelope An��� � L� �n � �n� � � � n � N � Under the

stability condition
PN

n�� �n � r� the schedulable region of NPEDF consists of the set of vectors �D�� � � � � DN�

that satisfy the constraints

min fk � �� NgL�
kX

n��

�in � Dik



r �

k��X
n��

�in

�
�

k��X
n��

�inDin � � � k � N�

whenever Di� � � � � � DiN �

We note that while the optimality of NPEDF was established in ��� for envelopes of the form In��� �

L � �n � �n� � it is straightforward to see that all the arguments used to derive Theorem � in ���� go

through by simply replacing L� �n � �n� with a general envelope An��� of the type considered here� For

these general envelopes� the appropriate analogue of Theorem � can be easily derived by simply rephrasing

Lemmas � and 
 in ����

��



��� Achieving RPPS Delay Guarantees

In this and the next section� we assume for comparison purposes that the tra�c of connection n� entering

the �rst node packetizer has envelope Un��� � �n � �n� � Therefore� the envelope of the tra�c that enters

the �rst tra�c shaper is In��� � L � �n � �n� � We also assume that propagation delays are zero� For

de�nitions and notations relating to GPS the reader is referred to ����� ��
�� Recall from Section 	� that

Cm�l is the set of connections that pass through the output link l of node m� Denoting the speed of this

link as rm�l� we will assume throughout the rest of this section the stability conditionX
n�Cm�l

�n � rm�l�

The GPS policy operates by allocating weight �mn for connection n whose tra�c crosses node m� These

weights are used to determine the rate at which tra�c from connection n is served when a set Bm of

connections is backlogged at the output link l of node m through which connection n passes� Speci�cally�

the service rate of connection n is given by

gmn �
�mnP

k�Bm �mk
rm�

where for simplicity in notation we denote rm�l as rm when there is no possibility of confusion� PGPS is a

non�preemptive policy that tracks GPS� In general the procedure developed in ���� to obtain delay bounds

given the weights� �mn � is complicated and imposes certain restrictions on the �mn � Moreover� it becomes even

more cumbersome in the practically more important inverse procedure of specifying appropriate weights� in

order to satisfy predetermined delay bounds� However� a simple bound can be obtained in the special case

of non�preemptive RPPS� where �mn � �n for all nodes through which the connection passes� Speci�cally�

the end�to�end delay bound� D
�

n� obtained under non�preemptive RPPS for connection n with envelope

In��� � L� �n � �n� � that crosses nodes �� � � � �M � is given by�

D
�

n �
�n �ML

�n
�

MX
m��

L

rm
� ����

where we have replaced �n with �n � L to conform to our input model �see ��
� ����

From formula ���� we can already see the weakness of the RCS disciplines relative to RPPS� if the

tra�c shapers for connection n at every node have envelopes identical to the input envelope In���� In this

case the delays D�I�A�
n� � D �Am

n �A
m��
n � � �� � � m � M � �� Since propagation delays are assumed

zero� we therefore have that

Dn �
MX
m��

Dm
n �

It is easy to see that since the connection n shaper at node m has envelope In���� the delay bound Dm
n is

at least ��n � L��rm� Therefore� the end�to�end delay bound guaranteed by the RCS discipline veri�es�

Dn �
MX
m��

�n
rm

�
MX
m��

L

rm
�

��



Since �n can be much larger than L� the bounds provided by the RCS discipline under the scenario

considered here can be much worse than those obtained under RPPS� For example� if �n � ��L and

rm � ��
��n� � � m �M � we have

Dn

D
�

n

�
�����M

�� � ����M
�

Therefore� when M � 
 we already have Dn�D
�

n � ���
� and for large M � Dn�D
�

n � 

�
�� As was

mentioned in Section 	� this discrepancy is due to the fact that the bounds for RPPS take into account delay

dependencies at the various nodes� while the bounds for the RCS disciplines are based on independently

summing the worst case bounds at each node�

The previous example notwithstanding� we show next that we can design RCS disciplines that provide

the same delay guarantees as RPPS� by employing tra�c shapers with envelopes that are� in general�

di�erent from that of the input tra�c�

We design the RCS discipline 
 as follows� We choose NPEDF as the scheduling policy at the output

link of each node� The tra�c shaper for connection n at each node along its path has envelope

A
m

n ��� � L� �n�� � � m �M�

Assume that connection n is routed through output link l at node m and let rm denote the speed of this

link� For connection n� we specify the delay bounds for the NPEDF scheduling policy� at node m as

Dm
n � L��n � L�rm� ����

Let us �rst show that these bounds can be guaranteed by the NPEDF policy at every node� Consider

output link l at node m� Denote by N the total number of connections multiplexed on this link� and index

the connections by i�� i�� � � � � iN such that Dm
i�
� Dm

i�
� � � � � Dm

iN
� Using Theorem �� and noting that

�mn � � for all tra�c shapers by design� it su�ces to show that

min fk � �� NgL � Dm
ik



rm �

k��X
n��

�in

�
�

k��X
n��

�inD
m
in
� � � k � N� ��
�

Using ���� we have

Dm
ik



rm �

k��X
n��

�in

�
�

k��X
n��

�inD
m
in

� L
rm �

Pk��
n�� �in

�ik
� L

rm �
Pk��

n�� �in
rm

��k � ��L� L

Pk��
n�� �in
rm

� L
rm �

Pk��
n�� �in

�ik
� kL

� �k � ��L�

where the last inequality follows from the stability condition� rm �
PN

n�� �i� This shows ��
��

�




We now proceed to derive the end�to�end delay bounds for the connections� Since the tra�c shapers

are identical� we have that D �Am
n �A

m��
n � � �� � � m �M � �� Therefore� from ��	� we have

Dn � D
�
In�A

�
n

�
�

MX
m��

Dm
n �

For the delay D
�
In�A

�
n

�
� using �
�� we have

D
�
In�A

�
n

�
� max

���

�
In���� L� �n�

�n

�
�

�n
�n
�

Therefore� taking into account ���� obtain�

Dn �
�n
�n

�
MX

m��

L

�n
�

MX
m��

L

rm

�
�n �ML

�n
�

MX
m��

L

rm
� ����

Since ���� is identical to ���� we see that the proposed RCS discipline 
 can guarantee the same delays as

RPPS�

From the above argument we see that if the delay bounds in ���� are required by the connections in

the network� then the RCS discipline 
� proposed above can be used� Its implementation is simpler than

that of RPPS� In addition� it provides the �exibility of easily specifying other delay bounds� whereas the

bounds in RPPS are tied to the rate �n of a connection�

If the end�to�end delay requirements of a connection are smaller than ����� a slightly more general

version of RPPS can be used� Rather than providing a rate of �n to connection n� better delay performance

can be obtained by giving it a rate of gn � �n� at each node� The end�to�end delay bound is then given by�

D
�

n �
�n �ML

gn
�

MX
m��

L

rm
� ����

The previous analysis still applies with very little modi�cation and can be used to specify an RCS discipline

that guarantees the bounds in ����� In this case� all tra�c shapers have envelopes A
m

n ��� � L� gn� and

the delay guarantees at the scheduler of node m are�

Dm
n � L�gn � L�rm�

Observe that� the schedulability check for RPPS is now
P

l�Cm
n
gl � rm� m � �� � � � �M � where Cm

n denotes

the set of connections that are multiplexed on the same link as connection n at node m� This implies

that some amount of bandwidth viz� rm �
P

l�Cm
n
gl� cannot be utilized by RPPS� This bandwidth can be

used by an RCS discipline to accept additional connections that require relatively larger end�to�end delay

guarantees� At the end of this section we provide a speci�c example of this bene�t of RCS disciplines over

the more general GPS disciplines�

�	



��� Achieving GPS Delay Guarantees

In ��
� Section VIII�� tight bounds on per connection packet delays are developed for GPS under a fairly

general assignment of weights� �mi � called Consistent Relative Session Treatment �CRST�� These bounds

are achieved in certain node con�gurations� and even in the special case of RPPS they can be much tighter

than those provided by ����� However� the calculation of the bounds is much more cumbersome as they

take into account the e�ect of all the other connections along a connection�s path� We will show that even

with these tight bounds� an RCS discipline can be designed that guarantees the same delay bounds�

To simplify the discussion and to avoid obscuring the main idea of the argument� we assume a continuous

�ow model� i�e�� packetization is not taken into account� Therefore� we consider the GPS policy �instead

of PGPS�� and assume that the RCS discipline uses the EDF scheduling policy �instead of NPEDF�� As

far as the design of tra�c shapers is concerned� this assumption basically amounts to setting L � ��

Before proceeding with the design of the RCS discipline� we need some preliminary results� Consider

a single link on which N connections are multiplexed� and assume that all of them are �greedy�� i�e�� the

amount of connection v tra�c� � � v � N � arriving in the interval ��� t� is e�v � �vt� Then� the service

function of connection n� Sn�t�� is the amount of connection n tra�c that is served in the interval ��� t��

In ���� page 	��� Sn�t� is used to derive delay bounds of connection n tra�c whose envelope is e�n � �n� �

The next lemma improves these delay bounds for connection n� when it has a smaller envelope In��� such

that In��� � e�n � �n� � � � �� Let Sn�t�� t�� be the connection n tra�c served under GPS in the interval

�t�� t��� Assuming that the system starts empty� the backlog of connection n tra�c at time t is de�ned as

the di�erence In��� t�� Sn��� t��

Lemma �� Assume that the connection n tra�c satis�es In�t� t � � � � In��� � e�n � �n� � t� � � �� for

every connection n that is multiplexed on a given link� If the system starts empty� then an upper bound on

connection n delay under GPS is

D�
n � max

���

�
min
t��

n
t � Sn�t� � In���

o
� �

�
�

The proof can be found in Appendix A� For our purposes� the case where In��� � minfcn�� �n �

�n�g� cn � �n� �n � e�n will be of interest� For convenience� we summarize in the next corollary two speci�c

cases of Lemma 
 that will be useful in the rest of this section� recall from ���� that Sn�t� is a piece�wise

linear function� convex in the range ��� tB� where tB is the end of the �rst busy period of connection n�

when all the N connections are greedy� In this range� Sn�t� is characterized by the pairs �sk� bk�
kn
k�� where

sk is the slope of the kth segment and bk is its duration� Because of the convexity of Sn�t� we have that

s� � s� � � � �� skn �

Corollary �� Assume that the conditions of Lemma � hold� so that Il��� � e�l � �l� � � � �� � � l � N �

and furthermore let In��� � minfcn�� �n � �n�g � e�n � �n� � cn � �n� � � ��

�� If s� � cn� then D�
n � ��

��
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Figure �� Delays Under GPS

�� If sk � cn� k � �� � � � � j � �� sj � cn� and Sn
�Pj��

k�� bk
�
� en �� �cn�n���cn � �n�� then D�

n �Pj��
k�� bk � 
� where 
 � Sn

�Pj��
k�� bk

��
cn�

The �rst part of the corollary follows by observing that s� � cn implies that In��� � Sn��� and therefore

min
t��

n
t � Sn��� t� � In���

o
� ��

A geometric interpretation of the second part is given in Figure ��

The development of GPS bounds for connection n is based on the Universal Service Curve �USC� for

that connection ��
� Section VIII�� Just as Sn�t� characterizes the service that connection n receives at a

single node� the USC of a connection characterizes the end to end service that it receives� We summarize

here the method by which the USC is obtained when all the nodes use a GPS discipline� ��
��

�� Under a CRST weight assignment� an algorithm is developed by which an envelope function� �mn ��n��

is guaranteed for every connection n tra�c entering node m ��
� page ��
�� For our purposes� it is

important to note that�

��n � �n� �mn � �n� 
 � m �M� ����


� Given the envelope functions �ml � �l� � for all connections that are multiplexed with connection n

on the same output link at node m� the service function for connection n� Sm
n ���� is calculated� Let

�smk � b
m
k �� k � �� � � � � kmn be the set of slopes that characterize Sm

n ����

��



	� The USC� bSn���� for connection n is given by the formula

bSn��� � min
n
GM
n ���� I���

o
�

where GM
n ��� is de�ned as in�nity for � �

PM

m��

Pkmn
k�� b

m
k � and for � �

PM

m��

Pkmn
k�� b

m
k it is composed

of the segments �smk � b
m
k �� m � �� � � � �M � k � �� � � � � kmn of Sm

n ���� arranged in a nondecreasing order

of slopes ��
� page ����� We denote by �bsk�bbk�� k � �� � � � �
PM

m�� k
m
n this nondecreasing order�

Let kq be such that bsk � �n� k � �� � � � � kq � �� bskq � �n� �
��

We are now ready to design an RCS discipline that is at least as good as GPS� Consider �rst the design

of tra�c shapers� Recall from the beginning of Section ���� that for the purpose of comparison with

GPS we assume that the envelope of connection n tra�c entering the �rst tra�c shaper is of the form

In��� � �n � �n� �Recall� that we have assumed L � ��� For connection n� at each node m on the path�

we choose tra�c shapers that have the same envelope i�e� A
m

n ��� � min fcn�� �n � �n�g� To specify how

the parameter cn is picked� we need to distinguish between two classes of connections�

�� Class �a�� Connection n belongs to this class when�

bSn
��kq��X

k��

bbk
�A � �n� �
��

where the USC� bSn is de�ned as above� In this case� the delay bound for connection n tra�c under

GPS is given by the solution of the equation ��	� p� �	
� �see Figure ��i��

D
�

n � bS�D�

n� � �n�

Let k� � kq� be the index of the slope of the USC at time D
�

n� If at time D
�

n there is a change in

slope� then de�ne k� as the index of the smaller of the two slopes �in fact either slope would work��

We set cn � bsk� �

� Class �b�� Connection n belongs to this class when �

bSn
��kq��X

k��

bbk
�A � �n�

In this case� the delay bound for connection n tra�c under GPS is ��	� p� �	
� �see Figure 
�i��

D
�

n �

kq��X
k��

bbk � bSn �Pkq��
k��

bbk�� �n

�n
�

We then set cn � �n�

�




For connection n� we assign the scheduler delay at node m� Dm
n � to be equal to the maximum delay

that would be experienced by the connection under the GPS scheduling policy at that node� when the

conditions of Corollary � are satis�ed� This amounts to the following assignment�

� If at node m� sm� � cn� then set Dm
n � ��

� If at node m� smk � cn� k � �� � � � � jm � �� smjm � cn� then assign

Dm
n �

jm��X
k��

bmk � 
� where 
 � Sm
n



jm��X
k��

bmk

��
cn�

We �rst establish that the speci�ed delays can be guaranteed by the EDF policy at each node� Instead

of using the extension of Theorem � to general shaper envelopes� it will be simpler to argue indirectly as

follows� we will show that the speci�ed delays are guaranteed when the RCS discipline uses GPS as the

scheduling policy at each node� Since EDF is better than GPS in the single node case� it will follow that

the same delay guarantees can at a minimum be provided when the EDF scheduling policy is employed�

Observe that according to ����� we have that Av��� � �mv ��v� for any connection v that is multiplexed

with connection n on the same output link of nodem � It is also true that cn � �n� This follows by de�nition

for a connection in class �b�� For a connection in class �a�� observe that because of �
�� and the fact thatbsk� k � �� 
� � � �� is nondecreasing we have cn � bsk� � bskq � �n� Applying Corollary � �where we replacee�n 	 �mn �� we conclude that the delay Dm
n � � can be guaranteed under the GPS policy for any node m

for which sm� � cn� For a node m� where smk � cn� k � �� � � � � jm� �� smjm � cn� we apply part 
 of Corollary

� and� therefore� we �rst need to show that

Sm
n



jm��X
k��

bmk

�
�

cn�n
cn � �n

�

This is trivially true for a connection in class �b� since cn�n��cn � �n� � �� If connection n belongs to

class �a�� observe that from the de�nition of bsk� � jm and bSn���� we have �see Figure ���

Sm
n



jm��X
k��

bmk

�
� bSn



k
���X
k��

bbk
�

� �n

�
bsk��nbsk� � �n

�

Thus� we have established that in both cases �a� and �b�� the speci�ed delay bound can be guaranteed

at node m� Next� we need to establish that the end�to�end delay guarantee of the RCS discipline as given

by ��	�� does not exceed D
�

n� The delays D�Am�Am��� are all zero since the tra�c shapers are identical�

Recall that the input tra�c envelope for connection n� In��� � �n� �n� � and so from ���� the delay in the

�rst tra�c shaper is

D
�
In� A�

�
�

�n
cn
�

��
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Figure �� Delay Decomposition of a Class �a� Connection

Therefore� it su�ces to show that

�n
cn

�
MX
m��

Dm
n � D

�

n� �

�

Let M� be the set of nodes for which Dm
n � �� Obviously then�

PM

m��D
m
n �

P
m�M�

Dm
n � Assume �rst that

connection n belongs to class �a�� Observe that the set of slopes bsk� k � �� � � � � k� � �� can be partitioned

into subsets Fm� m �M�� where

Fm � fbsl � bsl � smk � for some k � �� � � � � jm � �g �

We denote by mk the index l for which bsl � smk � i�e�� bsmk
� smk � For the rest of the discussion� it is best

to use geometric arguments� Referring to Figure ��i� draw lines with slope bsk� from all the points in bSn���
where the slope changes and remains less than bsk� � These lines intersect segment AB �corresponding to

the delay D
�

n� and divide it into segments of length hk� � � k � k� � �� where segment hk corresponds

to slope bsk� � � k � k� � �� Denote by hmk
the segment that corresponds to bsmk

� Since by construction

h� � �n�cn� we then have

D
�

n �
�n
cn

�
X

m�M�

jm��X
k��

hmk
� �
	�

Similarly� in Figure ��ii� draw lines with slope bsk� from all the points in Sm
n ��� where the slope changes

and remains less than bsk� � These lines intersect segment EF �corresponding to the delay Dm
n � and divide

��
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Figure 
� Delay Decomposition of a Class �b� Connection

it into segments hmk � � � k � jm � � �in the �gure we have jm � � � 	�� We can then write�

Dm
n �

jm��X
k��

hmk � �
��

Using the facts that bsmk
� smk and that bbmk

� bmk � it can be easily seen that hmk
� hmk � Taking into account

�
	� and �
��� we conclude the correctness of �

��

Similar arguments can be made for a connection that belongs to class �b�� The main di�erence is that

we now draw lines with slope �n� Figure 
 illustrates the construction in this case�

Note� In the course of the previous argument we showed that the delay guarantees provided by a pure

GPS policy can also be achieved by an RCS discipline working with worst case delays at each node� where

the scheduling policy at each node is GPS� If we replace GPS with the �simpler� EDF scheduling policy

at each node� we are not only assured that we can still guarantee the GPS end�to�end delays� but we also

create a service discipline that is better than GPS� This is due to the fact that in the single node case�

EDF is better that GPS� That is� there are delay vectors that can be guaranteed by EDF but cannot be

guaranteed by GPS no matter what weights are chosen� For example� consider a link of capacity r� where

two connections are multiplexed and In��� � �n � �n� � n � �� 
� with �� � �� � r� Using Theorem � with

L � �� we can see that the delays that can be guaranteed by EDF policy are

D� �
��
r
� D� �

��
r � ��

�
��
r
�

��



For GPS on the other hand� it can be seen from the construction in ���� Section VI�C�� that in order to

guarantee D�
� � ���r we need to specify �� � �� and then the minimum guaranteed delay for connection 


is

D�
� �

��
r � ��

�
��

r � ��
�

The di�erence between the GPS and EDF delay guarantees for connection 
 is

D�
� �D� �

����
r�r� ���

�

which can be quite large� Similar examples can be given for the packetized model when comparing PGPS to

NPEDF� In this section� we have shown how �proper� selection of the tra�c shapers allows us to construct

an RCS discipline that outperforms GPS� In general� it is of interest to determine how the choice of shaper

envelopes impacts the performance of rate controlled service disciplines� This is the topic of the next

section�

Note that so far we have always used identical shapers at all nodes� Di�erent shapers could however�

be used at each node albeit at the cost of greater complexity� The question then is whether the use of

di�erent shapers a�ords su�cient bene�ts that compensate for the increase in complexity� We address this

issue in the next section� together with an investigation of how shaper envelopes impact the performance

of RCS disciplines�

� Tra�c Shaper Properties

In this section we discuss some interesting properties of tra�c shapers in the context of RCS disciplines�

Using these properties� the search for �good� tra�c shapers can be signi�cantly simpli�ed�

Consider connection n that traverses nodes �� � � � �M � of a network where an RCS discipline is used� Let

Am
n be the shaper for connection n at node m� We need the following simple but important observation�

Lemma �� If we replace Am
n with a shaper Bmn such that B

m

n ��� � A
m

n ���� � � �� then the scheduler delay

Dm
k is still guaranteed for any connection k �including connection n	�

Proof� Observe that since B
m

n ��� � A
m

n ���� � � �� A
m

n ��� is also an envelope for the tra�c exiting Bmn �

By de�nition� Dm
k remains an upper bound on the delay of any connection k tra�c as long as connection

n still has envelope A
m

n ����

We will show next �Proposition 
�� that it su�ces to restrict attention to RCS disciplines that for the

same connection� use identical shapers at all nodes� We �rst need some notation� We write A� 
 A� �or

A� � A�� whenever A���� � A����� � � �� We denote by A� �A� the arrangement of A� and A� in series�

Since the output of shaper A� has envelope A����� it follows that

D �A�A� � A�� � D �A�A�� �D �A��A�� � �
��


�



Also� observe that by �����

Ai 
 A� � A�� i � �� 
� �

�

Proposition �� Consider connection n that traverses nodes �� 
� � � �M and let In��� be its envelope at the

input to the �rst shaper�Given any RCS discipline 
 that uses shapers Am
n � and guarantees scheduler delays

Dm
n � � � m �M � the RCS discipline 
� that uses the same scheduling policy at all nodes as 
� and shapers

Bmn � B � �Mm��A
m
n �

can guarantee the same end�to�end delays as 
� to all connections�

Proof� By �

� we have that Am
n 
 Bmn and� therefore� by Lemma 	� 
� can guarantee the same

scheduling delays to all connections� Since for any connection k 
� n� the shapers remain the same� this

implies that policy 
� guarantees the same end�to�end delays� Consider next connection n� Taking into

account that D �Bmn �B
m��
n � � D �B�B� � �� ��	� implies that 
� can provide the following end�to�end delay

guarantees�

D
��

n � D
�
In�B

�
�

MX
m��

Dm
n �

MX
m��

T �m�m���
n �

Finally observe that by �
��

D
�
In�B

�
� D

�
In�A

�
n

�
�

M��X
m��

D
�
Am
n �A

m��
n

�
�

Using ��	� again we conclude that D
��

n � D
�

n�

Note� According to Proposition 
 we can restrict our attention to disciplines that use identical shapers

at all nodes� However� formula ��	� can still be useful in a heterogeneous environment� where the various

nodes are not designed to support identical shapers�

In the rest of this section� we consider disciplines that use identical shapers� i�e� Am
n � An� Then� the

end�to�end delay guarantee for connection n becomes

Dn � D
�
In�An

�
�

MX
m��

Dm
n �

MX
m��

T �m�m���
n � �
��

We consider next� the problem of constructing the �smallest� shaper that causes a speci�ed maximum

delay on the input tra�c In���� Speci�cally� given d � �� we want to construct a shaper An�d� such that

D
�
In�An�d�

�
� d and An�d� � A� for any shaper A� with D

�
In�A

�
� d� Recall that Un��� denotes the

input tra�c envelope of connection n before the �rst packetizer in the network �see Figure ��� We further

assume that the input tra�c envelope� Un���� is an increasing� concave� piecewise linear function with a

�nite number of slopes� In Appendix B� we show that these assumptions on the input tra�c envelope do

not entail any essential loss of generality� We can write Un��� in the form �see Figure ��

Un��� � min
k�������K

f�n�k � �n�k�g � �
��
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Figure �� Construction of Smallest Envelope Function

where �n�k � �n�k��� �n�k � �n�k�� and when K � 	�

�n�k � �n�k��
�n�k��� �n�k

�
�n�k�� � �n�k
�n�k � �n�k��

� k � 
� � � � � K � ��

Let �n�� � � and �n�k � ��n�k � �n�k���� ��n�k��� �n�k�� 
 � k � K� At the point Pk � ��n�k� �n�k � �n�k�n�k��

the slope of the envelope� Un���� changes from �n�k�� to �n�k� According to ��� the envelope of the tra�c

entering the �rst shaper is�

In��� � L� min
k�������K

f�n�k � �n�k�g �

Now� let A��� � L � minj�������J f�j � �j�g be the envelope of A� According to ���� D
�
In�A

�
� � when

minj�������J f�jg � �n�K� while D
�
In�A

�
� �n�K��n�K whenever minj�������J f�jg � �n�K� Therefore� it is

su�cient to restrict our attention to the range � � d � �n�K��n�K� For the next proposition� it will be

helpful to refer to Figure ��

Proposition �� Let � � d � �n�K��n�K� Let k� be the smallest index k such that the line with slope �n�k

passing through the point Qk �
�
�n�k � d� Un��n�k�

�
intersects the y�axis at nonnegative values� i�e��

k� � min
k�������K

n
k � Un��n�k� � �n�k��n�k � d� � �

o
�







Then� the envelope of the smallest shaper An�d�� such that D
�
In�An�d�

�
� d is

A
n
�d���� � L� ad����

where� denoting c�n�d� �� Un��n�k�����n�k� � d��

ad��� �

�
c�n�d�� if � � � � �n�k� � d�
Un�� � d� if � � �n�k� � d�

Proof� Observe �rst that the index k� always exists since

Un��n�K�� �n�K��n�K � d� � �n�K � �n�K �n�K � �n�K��n�K � d�

� �n�K � �n�K d � ��

Next� we show that An�d���� corresponds to a shaper envelope function� For this� it is su�cient to show

that An�d���� is a concave function� which will follow by construction� if we show that c�n�d� � �n�k�� but

this is a consequence of the de�nition of k�� To show that D
�
In�An�d�

�
� d� recall that according to ����

we can write

D
�
In�An�d�

�
� max

���

��
A
����

n �d�
�
In���

�
� �

���
�

and that by construction� A
����

n �d�
�
In���

�
�� � d� for all � � �� Finally� we need to show that An�d���� �

A��� for the envelope of any other shaper A such thatD
�
In�A

�
� d� To see this� observe that if An�d���� �

A��� for some � � �n�k� � d� then A
����

�
An�d����

�
� � � Also� by construction� An�d���� � In�� � d��

� � �n�k� � d� From ����� for all � � �n�k� � d we have�

D
�
In�A

�
� A

����
�
In�� � d�

�
� �� � d�

� � � �� � d� � d�

a contradiction� Therefore� An�d���� � A��� for all � � �n�k� � d� Using the inequalities An�d���� �

L � A���� An�d���n�k� � d� � A��n�k� � d� and the concavity of A���� we conclude that we also have

An�d���� � A��� for � � � � �n�k� � d as well�

Using now Lemma 	 and Proposition 	� we easily conclude that given the input envelope function In����

and a maximum shaper delay d� it is su�cient to restrict our attention to RCS disciplines that use shapers

with envelopes of the form An�d�����

Corollary �� Given an RCS discipline that for connection n uses shaper A at all nodes� the RCS discipline

that uses the shaper with envelope An�d����� where d � D
�
In�A

�
� can guarantee the same end�to�end

delays to all connections�


	



From the above discussion we see that given In���� the search for the appropriate shaper envelope� is

reduced to the one�parameter family An�d����� We can further constrain the range of the parameter d by

taking into account the link speeds� rm� along the path of connection n� This is done in the next proposition�

where it is shown that it is su�cient to restrict attention to envelopes An�d���� whose maximum slope

c�n�d� �peak rate� is not larger than the minimum of rm�

Proposition �� Consider connection n with input tra�c envelope Un��� that traverses nodes �� � � �M with

corresponding output link speeds rm� Then� given an RCS discipline that uses shaper envelope An�d�����

there is an RCS discipline using shaper envelope An�d
����� with peak rate c�n�d

�� such that

�n�K � c�n�d
�� � min

�
min

m�������M
frmg � c�n�d�

�
� min

�
min

m�������M
frmg � cn

�
�

where cn is the peak rate of Un���� i�e�� cn � �n�� if �n�� � � and cn � � otherwise� which guarantees the

same end�to�end delays to all connections�

Proof� Observe �rst that by the design of An�d����� for all d� � � d � �n�K��n�K� we have �n�K � c�n�d�

and

c�n�d� � cn�

Denote by Um��
n �t� t� � � the connection n tra�c entering node m� � in the interval �t� t� � �� Then� since

the output link of node m has speed rm�

Um��
n �t� t� � � � rm��

Therefore� for the tra�c exiting the packetizer at node m� �� we have �see ����

Im��
n �t� t� � � � Bm��� � L� rm��

Therefore� we can replace An�d� with Bm �An�d�� without altering the shaper delay or the scheduler delay

at node m� �� m � �� � � �M � �� Also� by introducing a shaper with envelope BM ��� at the exit point of

connection n� we do not a�ect the end�to�end delay guarantees� Using Proposition 
� we conclude that the

delay guarantees are not a�ected if we employ the RCS discipline that uses shapers

Bmn � Bn � An�d� �
M
m�� B

m�

But then� for the peak rate c�n of the envelope of shaper Bn� we have

c�n � min

�
min

m�������M
frmg � c�n�d�

�
� min

�
min

m�������M
frmg � cn

�
�

Let d� � D�In�Bn�� Using Corollary 
� we can replace Bn with shaper An�d
�� without altering the delay

guarantees for any connection� Since by design An�d�� � Bn� we must have c�n�d
�� � c�n and the proposition

follows�


�



In the important special case of shapers used in the ATM standards ��� and those proposed for the

Internet as well ����� we have

Un��� � min fcn�� �n� �n�g � cn � �n�

In this case� �n�� � �n� �cn � �n�� k
� � 
�

ad��� �

�
� �cn�n� ���n � d�cn � �n�� if � � � � �n�� � d�
�n � �n�� � d� if � � �n�� � d�

and the range of d is determined by the inequalities

�n �
cn�n

�n � d�cn � �n�
� min

�
min

m�������M
frmg � cn

�
�

Therefore� to specify an RCS discipline� one has to determine the single parameter d as well as the scheduler

delays� Dm
n for each node m along the path of connection n� The determination of these parameters is an

interesting design problem� which is the subject of ongoing research and is not addressed in this paper�

The use of tra�c shapers at each hop can introduce extra delays for the tra�c of connection n� even

if there is no congestion in the network� While this leads to a reduction of jitter and bu�er requirements

at each node in the network� there may be instances where the resulting increase in the average delay is

undesirable� In the next section we describe some simple modi�cations to the RCS discipline that make it

work conserving� without compromising the end�to�end delay guarantees that can be provided�

	 Work Conserving System

Assume that the link scheduler used in the RCS discipline is by itself work conserving� However� if we

consider the tra�c shaper and the scheduler as a single system� it is evident that this system is not work�

conserving since there may be instants in time when there are packets in the system even though the link

is idle� In what follows we outline a modi�cation to the system which will make it work conserving� while

maintaining the same guaranteed deadlines for the accepted connections� As a result� the output link

will no longer be idle when there are packets in the system thus improving the average delay seen by the

packets� A similar approach and motivation can be found in ���� for a system where reshaping is performed

based on timestamps carried in each packet� and in �
� for the AIRPORT policy proposed in that paper�

To clarify the exposition� we use the model of ���� to represent both the shaper and the scheduler at

an output link of node m� Instead of holding up the packets in the shaper� we maintain two queues in the

system� Qm
e is a queue of packets that are eligible for scheduling� i�e�� have been reshaped� and Qm

� is a

queue of not yet eligible packets� Eligibility is determined by the shaper which stamps an eligibility time

on the packets and enqueues them in Qm
� � The eligibility time is the earliest time the packet could have

left the shaper� for the output of the shaper to be in conformance with the pre�speci�ed tra�c envelope�

The delay of the packet in the scheduler is calculated based on its eligibility time� When a packet in Qm
�

becomes eligible for scheduling� viz� its eligibility time equals the current time� it is promoted to Qm
e � The


�



scheduler in the non�work conserving discipline� 
NW � only selects packets in Qm
e for transmission on the

output link� Once a packet has completed its transmission it is removed from Qm
e and the scheduler repeats

the above process�

Packets from each of the connections at node m enter Qm
e in conformance with their respective tra�c

envelopes� The call admission criteria� ensures that packets in Qm
e can be scheduled without violating

their deadlines� Note that 
NW is non�work conserving since packets can be queued in Qm
� � but are not

considered for transmission by the scheduler� even though the link may be idle�

We now develop a work�conserving discipline 
W � by modifying the scheduler in 
NW as follows� When�

ever Qm
e is empty� ineligible packets from Qm

� are transmitted �in any order�� Next� we specify the operation

of scheduler during periods when Qm
e is non�empty� If Qm

e is non�empty at time t� de�ne a Qm
e �busy period

at t to be the largest closed interval containing t� during which Qm
e is non�empty� Let t� denote the start of

one such busy period� Note that at time t� it is possible that an ineligible packet is being served� in which

case let ts denote the time that the ineligible packet begins transmission� otherwise de�ne ts �� t�� Let

q be the packet that begins transmission at time ts� Consider the sequence of packet arrivals consisting

of packet q� whose arrival time is set to ts� along with the other packets that arrive to Qm
e during the

corresponding Qm
e �busy period� Assume that this sequence is fed to the scheduler in 
NW with packet q

being the �rst packet to ever arrive at that scheduler� The scheduler in 
W then schedules this sequence

of packets in the same manner as the scheduler in 
NW � Note that if the scheduler in 
NW is NPEDF

�FCFS� PGPS� Fixed�Priority scheduler� etc�� the corresponding scheduler in 
W is again NPEDF �FCFS�

PGPS� Fixed�Priority scheduler� etc�� during a Qm
e �busy period� The next proposition shows that the

end�to�end delay guarantees are not a�ected when the service discipline at each node is modi�ed to be

work�conserving� as de�ned above�

Proposition 	� Let connection n traverse nodes �� � � � �M � The above modi�cation to the service discipline

does not increase the guaranteed upper bound on the end�to�end delays� If Dn is the end�to�end delay

guarantee for connection n� we still have�

Dn � D
�
In�A

�
n

�
�

M��X
m��

D
�
Am
n �A

m��
n

�
�

MX
m��

Dm
n �

MX
m��

T �m�m���
n �

Proof� Assume for clarity in the exposition that the propagation delays� T �m�m���
n � � � m � M � are

zero� We �rst establish that with the above modi�cation to the service discipline� the scheduler delays at

node m� � � m �M � are still upper bounded by Dm
n �

Lemma �� Under discipline 
W � packets of any connection n� are not delayed by more than Dm
n at the

scheduler in node m� � � m �M �

The proof of the above lemma can be found in Appendix A� We denote by tl�mi � the timestamp with

which the ith packet is enqueued in Qm
� � t

l�m
i is the time that the ith packet would leave shaper Am

n in

conformance with the tra�c envelope A
m

n ��� � The time at which the packet leaves Qm
� �to be transmitted
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Figure �� Original �work conserving� system and the modi�ed system

on the link or promoted to Qm
e � is denoted by ta�mi � If the link is idle� the packet may be transmitted before

it becomes eligible� i�e�� ta�mi � tl�mi � The departure time of the ith packet from the scheduler is denoted as

td�mi � Similarly� let �i�a be the arrival time of the ith packet of connection n to the �rst tra�c shaper� and

let �i�d be the time it arrives at its destination� Since ta�mn � tl�mn � � � m �M � we can write

�i�d � �i�a � tl�Mn � �i�a � �i�d � ta�Mn

�
M��X
m��

�
tl�m��
n � tl�mn

�
� tl��n � �i�a � �i�d � ta�Mn �

Since �i�d � ta�Mn � DM
n by Lemma �� and tl��n � �i�a � D

�
In�A

�
n

�
by de�nition� it su�ces to show that for

� � m �M � ��

tl�m��
i � tl�mi � Dm

n �D�Am
n �A

m��
n �� �
��

Let Sm be the system consisting of the scheduler at node m� Consider the modi�ed system which is

same as the work conserving system operating under 
W except for a delay system inserted between Sm

and shaper Am��
n as shown in Figure �� The delay system delays packet i by 	i � Dm

n � tl�mi � td�mi �

therefore� packet i departs the delay system at time btd�mi � Dm
n � tl�mi � First we verify that 	i � ��

	i � Dm
n � tl�mi � td�mi


�



� Dm
n � ta�mi � td�mi �	��

� �� �	��

Inequality �	�� follows because packets never depart the shaper later than they are supposed to� i�e��

tl�mi � ta�mi � and �	�� follows from Lemma �� Let btl�m��
i be the timestamp with which packet i is enqueued

in Qm��
� in the modi�ed system� From Lemma �� we conclude that

tl�m��
i � td�mi � btl�m��

i � td�mi � �	
�

Adding td�mi � tl�mi to both sides of �	
� we have

tl�m��
i � tl�mi � btl�m��

i � tl�mi

� btl�m��
i � btd�mi � btd�mi � tl�mi �

Since for all i� btd�mi � tl�mi �Dm
n � the tra�c exiting the delay system has envelope A

m

n ���� Therefore�

btl�m��
i � btd�mi � D�Am

n �A
m��
n ��

It follows that

tl�m��
i � tl�mi � D�Am

n �A
m��
n � �Dm

n

as desired� When T �m�m���
n � �� the same reasoning applies� provided that system Sm consists of the

scheduler at node m� and the link �m�m� ��� i�e�� the bound on the delay at Sm is now Dm
n � T �m�m���

n �


 Conclusions

In this paper� we have established that RCS disciplines o�er a powerful solution to provide end�to�end

delay and throughput guarantees in high speed networks� We showed that the main disadvantage of these

service disciplines� namely that of summing worst case delays at each node to determine end�to�end delay

bounds� can be overcome through �proper� reshaping of the source tra�c� In particular� we have shown

that controlling the peak rate of a connection as a function of its delay requirements is critical to e�cient

network QoS provisioning� How to perform this reshaping was also investigated in the paper� and illustrated

by designing RCS disciplines that outperform GPS� This is signi�cant since the bounds available for these

policies take dependencies between nodes into account�

In addition to their e�ciency� RCS disciplines are also relatively simple to implement� and o�er the

�exibility to accommodate a wide range of implementation constraints� For example� it is possible to

use di�erent schedulers and shapers at di�erent nodes depending on the capabilities available locally�

Furthermore� because we also showed that guarantees are not a�ected when operating in a work conserving

manner� i�e�� reshaping tra�c only in case of congestion� RCS disciplines also enable us to o�er low average

delays when the network is not congested� Finally� note that the greater �exibility of RCS disciplines also

introduces new and interesting problems� e�g�� how to best split a given end�to�end delay budget into local

delay bounds� and addressing them is the topic of ongoing work�
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Appendix

A Lemma Proofs

Proof of Lemma �� Let A��� denote the envelope of the shaper with A��� � L� Also� let s���i � s���i

denote the arrival times� and f
���
i � f ���i denote the departure times of the ith packet at the shapers of

system S� and S� respectively �see Figure 
�� By de�nition� s
���
i � s

���
i � 	i� with 	i � �� and therefore it

su�ces to show that

f
���
i � f

���
i � i � �� 
� � � �

Since A��� � L� the �rst packet leaves the shaper instantaneously in both the systems� i�e� f
���
� � s

���
� and

f
���
� � s

���
� � Therefore� we have f ���� � f

���
� �

Let li denote the length of the ith packet� and assume that

f
���
i � f

���
i � i � �� 
� � � � � m� �		�

From �
� we can compute the departure time for the �m� ��th packet in system S� as�

f ���m�� � minft � s���m�� � A�t� f ���i � �
m��X
k�i

lk� i � �� 
� � � �mg

� minft � s
���
m�� � A�t� f

���
i � �

m��X
k�i

lk� i � �� 
� � � �mg �	��

� minft � s
���
m�� � A�t� f

���
i � �

m��X
k�i

lk� i � �� 
� � � �mg �	��

� f
���
m���

where �	�� is because s���m�� � s���m��� and �	�� follows from the non�decreasing nature of the the shaper

envelope� A���� and the induction hypothesis� �		��


�



Proof of Lemma �� The busy period containing t is de�ned as the largest closed interval containing

t� during which the backlog of connection n is positive� Note that only tra�c arriving during a busy

period can have positive delays and� therefore� we only need to consider the delays of such tra�c �since by

de�nition D�
n � ���

Assume that connection n tra�c arrives at time tb which is within a busy period of connection n that

starts at time t�� Then� since the order of service within a connection is FCFS� the delay of the connection

n tra�c arriving at time tb is given by�

d�tb� � min
t��tb

ft� � Sn��� t
�� � In��� tb�g � tb

� min
t��tb

ft� � Sn��� t�� � Sn�t�� t
�� � In��� t�� � In�t�� tb�g � tb

� min
t��tb

ft� � Sn�t�� t
�� � In�t�� tb�g � t� � �tb � t���

The last equality follows from the fact that since t� is the start of a connection n busy period� Sn��� t�� �

In��� t��� Setting t � t� � t� and � � tb � t�� and observing that

min
t��tb

ft� � Sn�t�� t
�� � In�t�� tb�g � min

t��
ft � Sn�t�� t� t�� � In�t�� tb�g� t��

we then get

d�tb� � min
t��

ft � Sn�t�� t� t�� � In�t�� tb�g � ��

Now� since the connection n tra�c satis�es I �t� t� � � � �n � �n� � t� � � �� from Lemma �� in ����� we

conclude that

Sn�t�� t� t�� � Sn�t��

Since by de�nition we also have

In�t�� tb� � In�tb � t���

it follows that

ft � Sn�t�� t� t�� � In�t�� tb�g �
n
t � Sn�t� � In�tb � t��

o
�

and therefore�

min
t��

ft � Sn�t�� t� t�� � In�t�� tb�g � min
t��

n
t � Sn�t� � In�tb � t��

o
�

Recalling that � � tb � t�� we �nally get

d�tb� � min
t��

n
t � Sn�t� � In���

o
� ��
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Proof of Lemma �� We concentrate on the system operating according to 
W as de�ned in Section 
 and

repeat some notation for the sake of clarity� We denote by tl�mi � the timestamp with which the ith packet

is enqueued in Qm
� � recall that t

l�m
i is the time that the ith packet would leave shaper Am

n in conformance

with the tra�c envelope A
m

n ��� � The time at which the packet leaves Qm
� �to be transmitted on the link

or promoted to Qm
e � is denoted as ta�mi and we say that the packet arrives at the scheduler at time ta�mi � If

the link is idle� the packet may be transmitted before it becomes eligible� i�e�� ta�mi � tl�mi � The departure

time of the ith packet from the scheduler is denoted as td�mi � We need to show that for any packet i�

td�mi � ta�mi � Dm
n

Dm
n has to be larger than the time it takes to transmit a complete packet� and so packets that are

scheduled before they become eligible can never miss their deadline� All the eligible packets are scheduled

in Qm
e �busy periods� and so it su�ces to show that packets that enter Qm

e are never delayed by more than

Dm
n �

Let �t�� tf � be a Qm
e �busy period� At time t� a packet either starts transmission or is in the process of

being transmitted and recall that ts � t� is the time that this packet starts transmission� If ts � t� �in

this case a packet from Qm
e starts transmission at t��� then the tra�c of all connections arriving to the

scheduler in �ts� tf � are conformant to their respective tra�c shapers� In addition� in the interval �ts� tf � the

operation of the scheduler in 
W is identical to the one in 
NW if ts were the start of the �rst busy period�

Thus� for ts � t� the result is true by the de�nition of Dm
n �

Now assume that ts � t�� i�e�� an ineligible packet from connection j starts transmission at ts� Observe

that in a busy period �t�� tf �� the scheduler in 
W only schedules packets that are in Qm
e � except for the

packet that is being transmitted at the start of the busy period� We will show next that the packets of all

connection that have been transmitted in the interval �ts� tf � have arrived to the scheduler in conformance

with their respective tra�c envelopes� The truth of the lemma will then follow as before�

Recall that Am
n �t�� t�� denotes the tra�c from connection n that is promoted to Qm

e in the interval

�t�� t��� Let bAm
n �t�� t�� denote the connection n tra�c that arrives at the scheduler in the interval �t�� t���

We need to show that bAm
n �t�� t�� � A

m

n �t� � t��� ts � t� � t� � tf �

Since we are only concerned with node m here� we drop the superscript m for the sake of clarity� By the

de�nition of t�� we have that for any connection n�

An�t�� t�� � An�t� � t��� t� � t� � t� � tf �

For a connection n 
� j� we have in addition� An�ts� t�� � � and therefore�

An�t�� t�� � An�t� � t��� ts � t� � t� � tf � n 
� j� �	
�

Note also that by de�nition bAn�t�� t�� � An�t�� t��� ts � t� � t� � tf � holds for n 
� j since connection j is

the only connection which transmits an ineligible packet in �ts� tf ��

	�



Consider next connection j� and let pj be the packet that starts transmission at ts� Let �e denote the

eligibility time of packet pj� If �e � tf � then clearly �Aj�t�� t�� � L � Aj���� ts � t� � t� � tf � since no

more packets from connection j will be transmitted in �ts� tf �� Now suppose ts � �e � tf � Then� all other

packets of connection j will arrive after �e� For the case when ts � t� � �e and �e � t� � tf � we have

�Aj�t�� t�� � Aj�t� � �e� � Aj�t� � t���

The other cases can be similarly checked�

B Subadditive Tra�c Envelopes

In Proposition 	� we presented a method to obtain the tra�c shaper which given an input envelope and a

shaper delay has minimal envelope� There� we made the assumption that the input tra�c envelope In��� is

a concave� increasing� piecewise linear function with �nite number of slopes� Using such functions� we can

approximate arbitrarily closely any concave increasing envelope� This means that by using the construction

in Proposition 
 we can construct shapers that� for given concave increasing input envelope and shaper

delay� are arbitrarily close to optimal� However� a general input envelope satis�es a weaker property than

concavity� namely subadditivity �
�� In this appendix we outline how the method of Proposition 
 can be

applied to subadditive input envelopes as well�

Let us consider a nondecreasing� piecewise linear function� In���� with �nite number of slopes and such

that lim��	 In����� � �� Such functions can approximate arbitrarily closely any nondecreasing function

in an appropriate sense �using the Skorohod metric ���� Chapter VI��� Let bIn��� be the minimal concave

function such that In��� � bIn���� � � �� It can be seen that bIn��� is increasing� piecewise linear with �nite

number of slopes and� therefore� can be written in the form of �
��� bIn��� � mink�������K
nb�n�k � b�n�k�o�

Given d such that � � d � b�n�K�b�n�K� we construct the minimal envelope bAn�d���� corresponding to bIn���
using Proposition 	� We claim that bAn�d���� is also the envelope of the minimal shaper An�d� which

provides delay bound d to input tra�c with envelope In���� To see this� consider a shaper A with envelope

A��� such that D�In�A� � d� In��� � L� and assume for the moment that A���� � bAn�d������ for some

�� � �� Since A��� is concave and bIn��� is the minimal concave function such that In��� � bIn���� � � �� it

can be seen that D�bIn�A� � d� Since by design we also have D�bIn�An�d�� � d� we conclude from ��� that

D
�bIn�An�d� � A

�
� max

n
D
�bIn�An�d�

�
� D�bIn�A�o

� d�

But the shaper An��� � A has envelope B��� � min
n bAn�d����� A���

o
� Since A���� � bAn�d������ the

envelope B��� is strictly smaller than bAn�d����� which contradicts the optimality of An�d��
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