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Abstract

We consider the problem of channel sharing by rate adaptive streams belonging
to various classes. The performance metric per class is the mean scaled bandwidth
allocated to connections in the class possibly scaled by appropriate factors. We �rst
provide a bandwidth adaptation policy that maximizes a linear combination of class
performance metrics; then, we use this result to characterize the region where the
class performance metrics lie under any bandwidth adaptation policy. Based on
the results above we use stochastic approximation techniques to provide a policy
that optimizes a combination of concave rewards associated with class performance
metrics. Finally, we propose a modi�cation of the optimal policy to account for the
case where connection holding times are unknown, and we study its performance
through simulations.

Key words: Bandwidth Sharing, Rate-adaptive Streams, Wireless Channel
Sharing, Performance Region, Stochastic Approximation.

1 Introduction

We consider a communication channel whose bandwidth is shared by randomly
arriving connections belonging to a number of classes. Connection bandwidth
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may be adapted within a given range, hence giving the opportunity for band-
width management in order to achieve good reception quality with low block-
ing probability. Connection bandwidth adaptation can be achieved by various
coding techniques such as layered coding [1], [2] and adaptation of compression
parameters [3], [4], [5]. Depending on the technique, rate adaptation can take
one of a number of discrete values, or it can take any value within a speci�c
range. In particular, wavelet coding [5] is particularly well suited for continu-
ous rate adaptation. Rate adaptation implies some variability in the perceived
quality of the application. There is a relatively large class of applications that
can tolerate this variability, such as entertainment video, low-cost information
distribution such as video or speech news and videoconferencing.

Using rate adaptation applications can adapt their transmission rate to
changing network conditions in order avoid congestion [6], [7], [8]. On the other
hand, there are proposals where Variable Bit Rate (VBR) connections request
Constant Bit Rate (CBR) service from the network depending on their current
needs [9].

The ability of applications to adapt their transmission rate is particularly
useful in shared-channel environments such as Hybrid Fiber Coax (HFC) net-
works and broadband wireless cellular networks. These channels are shared by
a number of users. The advantage of channel sharing is that when the num-
ber of active users is small they can share all the available bandwidth and
hence receive very good QoS. The disadvantage is that as the number of users
that share the same bandwidth increases, if the system is left uncontrolled,
the perceived quality of multimedia applications reduces signi�cantly. How-
ever proper admission control, combined with application rate adaptation has
the potential of guaranteeing acceptable quality of reception while achieving
large system utilization. With this approach, when the number of active users
is small, applications are admitted by the system with their maximum re-
quested rate, while as the system load increases the application transmission
rate is reduced, while still remaining within acceptable levels, so that more
connections can be admitted. This process is facilitated by the existence of
controllers (headend in HFC networks [10] and base stations in wireless cel-
lular networks) that can convey feedback to the already running applications
through the downstream channel (see Figure 1), in order to reduce their rate
accordingly.

In recent years, several works addressed the problem of bandwidth adaptation
management under various assumptions on channel characteristics and the
bandwidth adaptation policies [11], [12], [13], [14], [15], [16], [17], [18]. Our
approach follows [15], [17], where for single class systems, bandwidth man-
agement policies optimizing the average connection scaled bandwidth were
presented. For the single class system we show in Section 3 that the policy
presented in [15], [17], is optimal under quite general conditions. We then
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Fig. 1. CATV System

consider multiclass systems (Section 4). We provide a policy for maximizing a
linear combination of class performance measures in Section 4.1; using this, we
characterize the performance region of the system in Section 4.2. These results
permit us to apply the general framework developed in [19], [20], to provide a
bandwidth adaptation policy that optimizes a combination of concave rewards
associated with class performance measures (Section 5). Based on the insight
obtained by the optimal policy in Section 5 we propose in Section 6 a modi�ed
bandwidth adaptation policy that does not require the knowledge of connec-
tion holding times and study its performance relative to the optimal through
simulations. Finally, in Section 7 we discuss generalizations of our results and
directions for further research.

2 System Model and Notation

Throughout the paper, sets are denoted by calligraphic capital letters. The
number of elements in a set X is denoted by the corresponding normal capital
letter, i.e., X = jX j. Vectors are denoted by boldface letters, e.g., x = fxigNi=1 ;
x 2 RN ( R is the set of real numbers). The Euclidean norm of a vector x is
denoted by kxk.

We consider a communication channel of bandwidth B bps. Extensions to the
case where the bandwidth of the link may vary over time are discussed in
Section 7. Connections arrive for transmission over the link. Let A(t) be the
set of connections that arrived and have been accepted by the system up to
time t. Let also N (t) be the set of connections that are present in the system
at time t.

Connection i arrives at time ai and departs at time di > ai. The connection
holding time hi = di� ai > 0; is assumed known, e.g., connections may corre-
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spond to transmission of prerecorded movies. Through appropriate compres-
sion techniques, transmission of connection imay take place at rates belonging
to a set Bi. We call these rates �bandwidth levels�. We denote by Bi and Bi
the minimum and maximum bandwidth levels in Bi. Transmission rates of
connection i may be adapted over time, but must belong to Bi for acceptable
reception quality. Hence, if bi(t) is the bandwidth allocated to connection i at
time t; ai � t < di, it must hold for any t;X

i2N (t)
bi(t) � B; (1a)

bi(t) 2 Bi; i 2 N (t): (1b)

In this paper we mainly consider multiclass systems where arriving connections
belong to one of the classes in a set C. In this case we de�ne the sets Ac(t) and
Nc(t) in a manner analogous to the de�nition of A(t), N (t) and respectively.
Hence we have, A(t) = [c2CAc(t) and N (t) = [c2CNc(t). We also denote by
C(t) the set of classes for which Nc(t) 6= ?; i.e., for any class in C(t) , say class
c; there is a least one class c connection present in the system at time t.

In order to operate the system, two policies must be de�ned: the �Connection
Admission Policy�and the �Bandwidth Adaptation Policy�. The Connection
Admission policy decides whether to accept or reject a newly arriving con-
nection, while the Bandwidth Adaptation policy adjusts at any time t the
bandwidth of the connections that are currently in the system.

The Connection Admission policy a¤ects the blocking probability of the classes.
Hence and important issue is how to design such a policy in order to satisfy
fairness or preferential treatment criteria related to class blocking probabil-
ity. There is an extensive literature on the design of such a policy when the
connection bandwidth requirements are �xed, e.g., [21], [22], [23] and a large
number of other references in [24] where a nice collection of several Connec-
tion Admission Policies and their analysis can be found in [24]. In our case
connection bandwidths can be adapted. In order to keep the design of Con-
nection Admission and Bandwidth Adaptation policies separate, and to keep
blocking probabilities as low as possible (for given class blocking probability
objectives), we consider connection admission policies which operate based on
the minimum acceptable bandwidth levels (Bi). More speci�cally, we adopt
the following general Connection Admission Policy.

Acceptable Connection Admission Policy. Any policy � designed for
connections with �xed bandwidth requirements may be employed. When-
ever a new connection arrives to the system, the policy � admits or rejects
the connection using as connection bandwidths the minimum acceptable
connection bandwidth levels Bi.
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An example is the �Complete Sharing� policy which operates based on (1)
as follows. Let connection j arrive to the system at time t: The connection is
admitted by the system if and only if the channel capacity is not exceeded by
giving to all connections their minimal bandwidth requirements, i.e.,X

i2N (t)
Bi � B: (2)

This type of Connection Admission policy have been proposed in [12], [15],
[16], [17].

Another example is the �Threshold� policy. With this policy a parameter
Hc � B is associated with each class c. Whenever a class c connection j
arrives in the system, the connection is admitted if and only if a) the channel
capacity is not exceeded by giving to all connections their minimal bandwidth
requirements, i.e., (2) holds, and b) the sum of acceptable minimal class c
connection bandwidths does not exceed, i.e.,X

i2Nc(t)
Bi � Hc:

When
P
c2C Hc � B; the policy is called �Complete Partitioning� since in

e¤ect channel bandwidth is partitioned in a �xed manner to the classes.

A third policy example is proposed in [13], [14] in order to provide preferential
treatment to connections that arrive to a cell from other cells (hand-o¤ oper-
ation) compared to connections that are generated within the cell. A locally
generated class c connection is admitted (possibly by adapting the bandwidths
of already admitted connections) only if the number of class c connections cur-
rently in the system is below a given threshold tc. Connections arriving to the
cell through hand-o¤ are always admitted (if possible by bandwidth adapta-
tion).

Partitioning (not necessarily complete) policies, general Coordinate Convex
policies and Trunk Reservation policies (see [24] for de�nitions) operating
by considering as connection bandwidth the minimal acceptable connection
bandwidth level are also acceptable policies within our study.

The key property of an acceptable Connection Admission policy q that will
be useful in the development that follows, is the following

Key Property of an Acceptable Connection Admission policy q.
Under q; Nc(t), Ac(t) and C(t) are independent of the employed Bandwidth
Adaptation Policy.

While the achievement of proper class blocking probabilities is the objective of
the Connection Admission Policy, the objective of the Bandwidth Adaptation
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policy is to rearrange connection bandwidths so that certain performance op-
timization criteria related to channel bandwidth sharing are satis�ed. In this
paper we concentrate on the design of Bandwidth Adaptation policy.

There are various performance metrics related to bandwidth allocation that
may be de�ned and the issue which of them or combination thereof is appro-
priate, is still an open research problem [25], [26], [27], [28]. Among the most
relevant ones is the average bandwidth allocated to a connection throughout
its holding time, or its scaled version called �scaled mean connection band-
width� [17]. The (scaled) mean bandwidth allocated to connection i when
Bandwidth Adaptation policy� is employed, is de�ned as

bb�i =
R di
ai
b�i (t)dt

hiBi
; (3)

that is, bb�i represents the quality of the average bandwidth received by the
connection relative to the best possible, Bi. For de�niteness, the development
that follows uses the scaled mean connection bandwidth as a metric of connec-
tion performance. However, we note that the scaling by Bi is not essential for
the development. Scaling factors other than Bi may also be used is desired,
including no scaling, i.e., on can set Bi = 1.

For our purposes, it will be convenient to extend the de�nition of bb�i for all
times t � 0, as follows.

bb�i (t) =
8>>>>><>>>>>:

0 t < ai

1
hiBi

R t
ai
b�i (s)ds ai � t < dibb�i t � di

(4)

That is, the scaled mean bandwidth allocated to connection i is zero before
the connection arrives, the actual value bb�i after the connection departs, and
its �instantaneous value�

R t
ai
b�i (s)ds=

�
hiBi

�
while the connection resides in

the system. Let Vi = hiBi and set b�i (t) = 0 if either t < ai, or t � di. We can
then rewrite (4) in the following form which will be useful in the sequel.

bb�i (t) =
R t
0 b

�
i (s)ds

Vi
: (5)

Since Bi � b�i (t) � Bi; it holds for i 2 A(t); bb�i (t) � 1: The performance of
the system at time t is de�ned as the average of the performance metrics of
all connections that have been admitted by the system up to time t; that is,

bB�(t) = P
i2A(t)

bb�i (t)
A(t)

: (6)
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For a single-class system, we are interested in de�ning Bandwidth Adaptation
Policies that maximize (6) either at any time t; or asymptotically as t ! 1
(the precise meaning will be given in Section 4.1). For a multiclass system,
the class performance metric bB�c (t) is de�ned analogously to (6) as

bB�c (t) =
P
i2Ac(t)

bb�i (t)
Ac(t)

:

In this case, we will be interested in optimizing functions of class performance
metrics bB�c (t); c 2 C:
In the rest of the paper we will use the following conventions regarding sum-
mations X

i2X
xi = 0; if X = ?;

bX
i=a

xi = 0; if a > b.

3 Single Class System

In [15], [17], a policy � with maximum bB� , limt!1
bB�(t) has been proposed

for the single class system assuming Poisson arrivals and i.i.d. connection
holding times. We generalize this result in this section by showing that the
same policy optimizes bB�(t) at any time t; under arbitrary arrival patterns and
connection holding times, and under any acceptable Connection Admission
policy.

The following identity, obtained by interchanging summation and integration,
is important for the subsequent development.

X
i2A(t)

bb�i (t) = X
i2A(t)

R t
0 b

�
i (s)ds

Vi
=
Z t

0

X
i2A(t)

b�i (s)

Vi
ds: =

Z t

0

X
i2N (s)

b�i (s)

Vi
ds: (7)

The last equality follows from the fact that by de�nition b�i (s) = 0 if a connec-
tion is not present in the system at time t. Note that since A(t) is independent
of the employed Bandwidth Adaptation Policy, in order to maximize bB�(t) it
su¢ ces to maximize

P
i2A(t)

bbi(t), or according to (7), to maximize,
Z t

0

X
i2N (s)

b�i (s)

Vi
ds:

Observe next that a) by the de�nition of an acceptable Connection Admis-
sion policy the set N (s), is independent of the employed Bandwidth Adapta-
tion policy, and b) The Bandwidth Adaptation policy, may assign bandwidths
to connections in N (s) independently of the bandwidths assigned at other
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times. Hence in order to maximize
R t
0

P
i2N (s)

b�i (s)

Vi
ds; it su¢ ces to maximizeP

i2N (t)
b�i (s)

Vi
at any time s, subject to the constraints imposed by the channel

bandwidth, the Connection Admission policy and the acceptable bandwidth
levels. The constraint for the channel bandwidth is,X

i2N (s)
b�i (s) � B: (8)

Di¤erent Connection Admission Policies impose di¤erent additional constraints
on the choice of connection bandwidths. For example, a Complete Sharing pol-
icy does not impose any further constraints. A Threshold policy imposes the
following additional constraintsX

i2Nc(s)
b�i (s) � Hc; c 2 C:

In general, the Connection Admission policy restricts the vector of possible
bandwidth allocations (b�i (s)))i2N (s) to lie in a region A (s).

We summarize the discussion above in the following theorem.

Theorem 1 Under arbitrary connection arrival pattern, connection holding
times and connection bandwidth levels, the policy �� that at any time s � 0
allocates to connection i 2 N (s) bandwidth b��i (s) = b�i ; where b

�
i is the

solution to the following optimization problem,

max

8<: X
i2N (s)

bi
Vi

9=;X
i2N (s)

b�i (s) � B: (9)

(bi)i2N (s) 2 A (s) ; (10)

bi 2 Bi; i 2 N (s); (11)

maximizes bB�(t) for all t � 0.
Conditions (9), (10) represent respectively the channel bandwidth and Admis-
sion Policy Constraints, while those in (11) represent the constraints on the
connection bandwidth levels.

Note: The solution to the optimization problem of Theorem 1 depends on s
only through the set N (s); A (s). So, as long as N (s) and A (s) remain the
same the bandwidth allocated to connections by �� need not change. Since
a change of N (s) and A (s) occurs only at connection arrival and departure
instances, the Bandwidth Adaptation policy may be invoked only at these
instances.
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4 Multiple Class System

In this section we deal with a multiclass system. We �rst consider the problem
of optimizing a linear combination of class performance measures, under quite
general conditions. Next, with additional statistical assumptions on the arrival
rates and holding times, we derive the performance region of the system, i.e.,
the region in RC where the vector of class performances takes values. Finally,
we consider the case where concave (instead of linear) rewards are associated
with each class and provide an optimal Bandwidth Adaptation Policy.

For de�niteness and simplicity in the presentation, in the discussion that fol-
lows we assume that the Connection Admission policy is Complete Sharing,
the additional conditions (10) will not be explicitly described . Unless oth-
erwise speci�ed, the results hold for any acceptable Connection Admission
policy, by incorporating appropriate constraints of the form (10).

4.1 Linear Rewards

In this section we assume that connections belonging to class c are accepted
by the system at a long-term rate �c. Speci�cally,

lim
t!1

A(t)

t
= �c; 0 < �c <1; c 2 C. (12)

Since connections belong to multiple classes, it may be desirable to provide
discriminatory service depending on the class to which a connection belongs.
The simplest such class discriminatory service is to associate with class c a
reward rc � 0 per unit of received performance (i.e., reward per unit of average
class scaled mean bandwidth) . Let r = frcgc2C. Then, the total system reward
at time t under Bandwidth Adaptation policy � becomes,

bB�r (t) =X
c2C
rc bB�c (t) =X

c2C
rc

R t
0

P
i2Nc(s)

b�i (s)

Vi
ds

Ac(t)
=
1

t

Z t

0

X
c2C(s)

X
i2Nc(s)

trcb
�
i (s)

Ac(t)Vi
ds:

(13)
It may be argued that Vi = hiBi already discriminates connections through
the scaling factors Bi: As mentioned in Section 2, in case it is desirable to
eliminate this extra factor, one can set instead Bi = 1 without a¤ecting the
rest of the results.

The next theorem provides a policy that optimizes the system performance
measure bB�r (t) asymptotically, as t!1: Since we do not make any assump-
tions on the connection holding times, bandwidth levels and on the manner
a Bandwidth Adaptation policy operates, the limit limt!1

bB�r (t) may not ex-
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ist. Therefore, regarding the asymptotic measures of performance, we consider
either lim supt!1 bB�r (t) or lim inft!1 bB�r (t).
Theorem 2 Let the connection acceptance rate be �c; c 2 C; 0 < �c < 1;
and the connection holding times and bandwidth levels arbitrary. Let �� be
the Bandwidth Adaptation policy that at any time t allocates to connection
i 2 N (t) bandwidth b��i (t) = b�i ; where b

�
i is the solution to the following

optimization problem.

max

8<: X
c2C(t)

X
i2Nc(t)

t

Ac(t)

rc
Vi
bi

9=; (14a)

X
c2C(t)

X
i2Nc(t)

bi � B (14b)

bi 2 Bi; i 2 Nc(t); c 2 C(t): (14c)

Then, it holds for any Bandwidth Adaptation policy �.

lim sup
t!1

bB�r (t) � lim sup
t!1

bB��r (t);
lim inf

t!1
bB�r (t) � lim inf

t!1
bB��r (t):

Proof. The proof is given in Appendix A.

Note: Theorem 2 shows asymptotic optimality of the proposed policy, while
Theorem 1 states that the policy is optimal at any time t. The reason for
this discrepancy is that the integrand in the last term of (13) contains the
factor t=Ac(t), which is in e¤ect the estimate of the inverse of connection
acceptance rate �c at time t. In contrast the integrand in (7) is only a function
of the integration variable s. If �c is known apriori, and in (14a) we replace
t=Ac(t) with 1=�c, the proposed policy remains asymptotically optimal (this
observation will be useful in Section 4.2). In this case, it follows from the
discussion in Section 3, that the resulting policy optimizes at any time t; the
quantity

1

t

Z t

0

X
c2C(s)

X
i2Nc(s)

rcb
�
i (s)

�cVi
ds:

As with the single-class system, since C(t) and Nc(t) are changing only at con-
nection arrival and departure instants, the bandwidth allocated to connections
by policy �� may change only at those instants.
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4.2 System Performance Region

In this section we derive the performance region of a multiclass system. For
this, we will need to make further statistical assumptions on the system para-
meters. These assumptions are the following.

Assumptions

(1) The arrival processes Ac(t), c 2 C, are independent and Poisson. The
arrival rate of class c connections is �Ic , 0 < �

I
c <1. We set �I =

P
c2C �

I
c :

Note that �Ic is the rate connections arrive to the system, while �c denotes
the connection acceptance rate by the system.

(2) The connection holding times are i.i.d. per class and independent among
classes.

(3) Each class c has associated bandwidth levels Bc, that are common for all
connections belonging to the class. By Bc and Bc we denote the minimum
and maximum level in Bc, respectively. Without loss of generality we
assume that Bc � B, c 2 C (if Bc > B; connections from class c are
never admitted in the system and can therefore be excluded from further
consideration).

Taking into account that the Connection Admission policy is Complete Shar-
ing, we conclude that under any Bandwidth Adaptation policy, a class e con-
nection arriving at time t is admitted by the system if,

X
c2C(t)

BcNc(t
�) +Be � B; (15)

where Nc(t�) is the number of class c connections in the system before the
decision to accept or reject the newly arriving connection is made. This, and
Assumptions 1 and 2 imply through the Insensitivity Property [24, Theorem
5.3] that the stationary distribution PS(n) of the process N(t) = fNc(t)gc2C
exists and that

lim
t!1

Pr (N(t) = 0) = PS(0) > 0:

We now state some preliminary results that follow from the regenerative struc-
ture of system processes (see [29] for the de�nition and a nice introduction to
regenerative processes). Assume for simplicity that N(0) = 0. Let T0 = 0 and
Tk be the kth time that the system empties, i.e., N(T�k ) > 0 and N(Tk) = 0.
Due to the assumptions stated above, fTkg1k=1 is an i.i.d. process. We call
[Tk; Tk+1) the �kth regeneration period�of the system. Let Uk; k = 1; 2; :::,
be the length of time in [Tk; Tk+1) that the system is empty, i.e., N(t) = 0,
Tk � t < Tk + Uk: Since connection arrivals are Poisson and a connection
arriving in an empty system is always admitted due to the fact that Bc � B,
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c 2 C it holds, E[U1] = 1=�I . Using regenerative arguments, we have,

lim
t!1

Pr (N(t) = 0) =
E [U1]
E [T1]

=
1

�IE [T1]
= PS(0) >0;

hence E[T1] <1. Using again regenerative arguments it can be seen that, the
long-term average rates of connections that are accepted in the system, �c;
c 2 C, exist and

0 < lim
t!1

Ac (t)

t
= �c =

E [Ac(T1)]
E [T1]

� �Ic : (16)

Given a vector r = frcgc2C , rc � 0; consider the policy �r that operates as
follows:

policy �r: At time t allocate to connection i 2 N (t) bandwidth b �ri (t) = b�i ;
where b�i is the solution to the following optimization problem.

max

8<: X
c2C(t)

X
i2Nc(t)

rc
�c

bi
Vi

9=; (17a)

X
c2C(t)

X
i2Nc(t)

bi � B (17b)

bi 2 Bc; i 2 Nc(t); c 2 C(t): (17c)

Note that (17) di¤ers from (14) only in that t=Ac(t) is replaced by 1=�c.

Consider the auxiliary variables

eb�rc (t) = X
i2Nc(t)

b�
r

i (t)

Vi
:

Under the stated assumptions, and since policy �r depends only on the current
state of the network, we conclude that the process

neb�rc (t)oc2C is regenerative
with respect to Tk . Hence the long term average of eb�rc (t) exist,

lim
t!1

1

t

Z t

0

X
i2Nc(s)

b�
r

i (s)

Vi
ds =

E
hR T1
0
eb�rc (s)dsi
E [T1]

= eBr;c :
From (16) and (eql7) we conclude that limit of class performance metric under
�r exists,

lim
t!1

bB�rc (t) = lim
t!1

t

Ac(t)

1

t

Z t

0

X
i2Nc(s)

b�
r

i (s)

Vi
ds =

eBr;c
�c

, bBr;c;
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and hence the limit of system performance metric under �r also exists,

lim
t!1

bB�rr (t) = lim
t!1

1

t

Z t

0

X
c2C

X
i2Nc(s)

t

Ac(t)
rc
b�i (s)

Vi
ds =

X
c2C
rc bBr;c , f(r):

According to the discussion in Section 4.1 (see note at the end of that section)
we have that under any Bandwidth Adaptation policy �,

lim sup
t!1

X
c2C
rc bB�c (t) � f(r): (18)

Let Q be the convex hull of the set of points

B =
(
b : b =

n bBr;co
c2C
; r = frcgc2C ; rc � 0;

X
c2C
rc > 0

)
;

i.e., all linear combinations of the form
PJ
j=1 pjbj, where bj 2 B and

PJ
j=1 pj =

1 1 . Let also P be the set of all points that are coordinate-wise smaller than
some point in Q, that is,

P =
n
b = fbcgc2C : bc � bqc; for some bq = fbqcgc2C 2 Q

o
:

The following lemma states that the system performance lies asymptotically
in the region P : We denote bB�(t) = n bB�c (t)oc2C :
Lemma 3 Under any Bandwidth Adaptation policy �,

lim
t!1

�
inf

n


 bB�(t)� b


 : b 2 Po� = 0:
Proof. Assume the contrary, that is,

lim sup
t!1

�
inf

n


 bB�(t)� b


 : b 2 Po� > 0:
This, and the fact that bB�(t) is bounded imply that there is a subsequence tk
such that

lim
k!1

bB�(tk) = bB�; (19)

and
inf

n


 bB� � b


 : b 2 Po > 0;
i.e., bB� =2 P. Since P is compact, by the Strict Separation Theorem [30], there
is a vector r that separates bB� and P , that is,X

c2C
rc bB�c >X

c2C
rcbc; for all b 2P. (20)

1 As can be seen from (17) policy �r is identical to policy �
r where

 > 0 is any constant. Hence the set B can be restricted to B0 =n
b : b =

n bBr;co
c2C

; r = frcgc2C ; rc � 0;
P
c2C rc = 1

o
:
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We may assume without loss of generality that rc � 0; c 2 C. Indeed, let
re < 0 for some e 2 C: Notice that by the de�nition of P, if b 2P then the
vector b0 where b0c = bc if c 6= e; be = 0; also belongs to P. De�ne also,
r0c = rc if c 6= e; r0e = 0: By (20) we have for any b 2P,X

c2C
r0c
bB�c = X

c2C�feg
rc bB�c

�
X
c2C
rc bB�c since re bB�e � 0

>
X
c2C
rcb

0
c since b

02P

=
X
c2C
r0cbc by de�nition or r

0
c and b

0.

Therefore, for any e such that re < 0 we may set re = 0 and the resulting
vector will still be separating and will have nonnegative coordinates. Assume
therefore that the separating vector in (20) has nonnegative coordinates and
consider the point b =

n bBr;co
c2C

which belongs to P. We then have from (19)
and (20) that

lim
k!1

X
c2C
rc bB�c (tk) >X

c2C
rc bBr;c = f(r):

However, the last inequality contradicts (18).

Notice the di¤erence between (18) and Lemma 3. While (18) states that for
a given r the system performance of any Bandwidth Adaptation policy is
worse than the system performance of the policy �r; Lemma 3 states that the
performance vector (i.e., the vector of class performances) of any Bandwidth
Adaptation policy is componentwise smaller than the performance vector of
some linear combination of performance vectors of a set of policies �rj ; j =
1; ::; J .

The region P is characterized implicitly through the vectors r with nonnega-
tive coordinates. For the purposes of developing optimal policies in Section 5,
this characterization will su¢ ce.

The structure of P is in general very complicated. A signi�cant simpli�cation
is obtained when the Connection Admission policy is Complete Sharing, if
we assume that all connections in a given class have the same holding times
and that class bandwidth levels can take any value between the minimum
and maximum possible. In this case, we have that Vi = Vc for all connections
i 2 c, and it turns out that P is a polymatroid [31], as the following lemma
indicates. Although we do not make use of this structure in our derivations,
it gives insight on the structure of the performance region and may be useful
for other applications.

Lemma 4 . If the Connection Admission policy is Complete Sharing, con-
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nections in class c have the same holding time hc and the bandwidth levels
for class c can take any value between Bc and Bc, then the region P is a
polymatroid, i.e., the space in RC de�ned by the following inequalities,X

c2S
�cxc � F (S); for all S � C,

xc � 0; for all c 2 C;

where �c = �chcBc and the set function F (S) is submodular, i.e., it satis�es,

F (S) = ?;
F (S) � F (T ); if S � T ,

F (S) + F (T ) � F (S [ T ) + F (S \ T ):

Proof. The proof is given in Appendix B.

As can be seen from the proof, the function F (S) represents the average
bandwidth received by connections belonging to classes in the set S; when
the system gives as much bandwidth as possible to these connections before
proceeding to allocate bandwidth to connections belonging to classes in the
set C �S. In Figure 2 we show the region P when there are two classes in the
system. The point A represents the class performance vector when the system
gives as much bandwidth as possible to connections in class 1 before allocating
bandwidth to connections in class 2. Point B represents the class performance
vector when the roles of classes 1 and 2 are interchanged. The line segment
AB represents the set Q; any point in this segment is a linear combination of
the point Aand B:

Class 1 Performance

C
la

ss
 2

 P
er

fo
rm

an
ce

A

B

P

Q

Fig. 2. The region of class performance vector for a two-class system.

While the structure of P is signi�cantly simpli�ed under the assumption of
Lemma 4, it is still di¢ cult to compute the values of F (S) and this calculation
demands knowledge of the statistical parameters of the system. However, this
will not be an obstacle for the policies that will be presented in the next
section.
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5 An Adaptive Policy for Separable Convex Optimization

In this section we assume that with each class c 2 C there is an associated
reward function fc(b) so that, under Bandwidth Adaptation policy �, the
reward of class c for receiving performance bB�c (t) by time t; is fc � bB�c (t)� : The
function fc(b) is assumed to be concave, twice continuously di¤erentiable.
Then, the total system reward by time t is,X

c2C
fc
� bB�c (t)� : (21)

Various choices of fc (x) provide various fairness criteria [32].. We describe
below the most common ones.

� Linear utilities. In this case, fc (x) = rcx:This criterion is relevant when, for
example, rc represents the (monetary) reward received when class c has long-
term performance metric x and the objective of the system is to maximize
its reward.

� Proportional Fairness. In this case, fc (x) = log (x). This allocation has
several important properties discussed in [32]. Intuitively, since the log (x)
function increases very slowly, this type of utilities express the fact that
the satisfaction received by a given increase in bandwidth is higher if the
already allocated bandwidth is small.

� Max-min Fairness. Intuitively here one attempts to maximize the band-
width of the classes with the minimal allocated bandwidth, while splitting
evenly whatever bandwidth remains to the rest of the classes. While this
problem cannot be directly translated in the form (21) it can be well ap-
proximated by choosing

�c (x) = c� g (x)m

where c is a constant and g a di¤erentiable, decreasing, convex and positive
function.

We will de�ne a Bandwidth Adaptation policy �� that maximizes the long-
term system reward, i.e. for any other policy �;

lim sup
t!1

X
c2C
fc
� bB�c (t)� � lim

t!1

X
c2C
fc
� bB��c (t)� :

In Section 4.1 we presented a simple optimal policy for the case of linear
rewards, i.e., fc(b) = rcb and in Section 4.2 we presented the performance
region of the system under any Bandwidth Adaptation policy. We therefore
have all the ingredients to apply the framework proposed in [20] in order to
develop an optimal adaptive policy ��. The framework in [20] is based on a
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methodology used in [19]. We present the policy ��, describe the manner it
which the various parameters used by the policy are updated and provide some
intuition as to why is works. For technical details on the method the reader is
referred to the above mentioned references.

The class c performance metric at time t,

bB�c (t) =
P
i2Ac(t)

bb�i (t)
Ac (t)

;

is the average of scaled bandwidths allocated to class c connections that arrived
to the system up to time t. This metric can be easily measured and updated
on-line (see below). The proposed policy below uses these measurements.

Optimal Policy ��. Let tn be the successive times when a connection
arrival or departure occurs. At time tn; n = 1; 2; :::; set

rc(tn) =
dfc(b)

db

�����
b=bB��c (tn))

:

At time t 2 (tn; tn+1]; allocate to connection i 2 N (t) bandwidth b�
�
i (t) = b

�
i ;

where b�i is the solution to the following optimization problem.

max

8<: X
c2C(t)

X
i2Nc(t)

rc(tn)
tn

Ac(tn)

bi
Vi

9=; (22a)

X
c2C(t)

X
i2Nc(t)

bi � B (22b)

bi 2 Bc; i 2 Nc(t); c 2 C(t): (22c)

It is important to note that no system statistics are required to be known for
the policy to operate. All the required parameters are computed on-line. The
metrics bB��c (t) can be updated at time tn as follows. Then, since in the interval
(tn; tn+1) no connection arrives or departs and no bandwidth updates occur,
we have,

Nc (tn+1) =

8>>>>><>>>>>:
Nc (tn) [ fjg if a class c connection j is accepted at time tn
Nc (tn)� fjg if a class c connection j departs at time tn

Nc (tn) otherwise
(23)

Ac (tn+1) =

8><>:Ac (tn) [ fjg if a class c connection j is accepted at time tnAc (tn) otherwise
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and

bB��c (tn+1) =
P
i2Ac(tn+1)

bb��i (tn+1)
Ac (tn+1)

=

P
i2Ac(tn)

bb��i (tn) +Pi2Nc(tn)
bb��i (tn) (tn+1�tn)Vi

Ac (tn+1)

=
Ac (tn)

Ac (tn + 1)
bB��c (tn) +

P
i2Nc(tn)

bb��i (tn) (tn+1�tn)Vi

Ac (tn + 1)
(24)

Hence at time tn+1; knowing bB��c (tn) and Ac (tn) and the bandwidths bb��i (tn)
allocated to connections that are in the system at time tn, one can obtain
Ac (tn+1) and bB��c (tn+1) by using (23), (24)
Based on the computed parameters, the linear optimization problem in (22)
needs to be solved. The complexity of this problem depends on the addi-
tional constraints imposed by the Connection Admission policy and of whether
the bandwidth level sets Bc, c 2 C allow continuous or discrete variations of
connection bandwidths. When the Connection Admission policy is Complete
Sharing, the constraints are exactly those in (22). If moreover the connection
bandwidths of all classes c can take any value in [Bc; Bc] then the linear prob-
lem has a very simple and e¢ cient solution, described in the Appendix as part
of the proof of Lemma 4.

Policy �� is essentially a stochastic version of the �conditional gradient algo-
rithm�used in deterministic nonlinear optimization [30]. We outline next this
method and discuss its relation to policy ��.

Consider the optimization problem

max f (x) (25a)
x2X ; (25b)

where x =(x1; :::; xN) is anN�dimensional vector, f (x) a real function and X
a compact N�dimensional set. The conditional gradient algorithm generates
a sequence of points xn, n = 1; 2; ::: that under certain conditions converge to
the optimal solution of (25). Point xn+1 is obtained from xn as follows.

(1) The solution xn to the following linear optimization problem is obtained.

max
NX
i=1

@f (xn)

@xn;i
xi (26a)

x 2X . (26b)
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(2) The new point xn+1 is obtained by the update

xn+1 = anxn + (1� an)xn (27)

where �n are appropriately chosen parameters.

In the stochastic environment we are considering, the analogue of xn is the
vector bB��(tn) = � bB��c (tn)�c2C. Since our optimization objective function is
f
� bB��(tn)� = P

c2C fc
� bB�c (tn)� ; we have
@f

� bB��(tn)�
@ bB��c (tn) =

dfc(b)

db

�����
b=bB��c (tn))

According to Section 4.1, employing (22) provides a long-term solution to
the optimization problem with linear rewards @f

� bB��(tn)� =@ bB��c (tn); c 2 C;
which is the analogue of (26). Finally, the analogue of (27) is (24). Of course
a number of technical issues need to be addressed in order to ensure that the
deterministic algorithm can be adapted in a stochastic environment. These
issues are addressed in [19], [20].

6 Unknown Holding Times

The development above assumed that the connection holding times are known.
This assumption is valid when the connections represent prestored multime-
dia content, however there are other cases, e.g. videoconferencing, where con-
nection holding times are not known apriori. However, based on the insight
obtained, heuristics can be developed so that the policy operates also with
unknown times, although we cannot claim optimality in this case. Below we
present such a heuristic.

In a multiclass system it is reasonable to assume that the holding times of
connections in a given class c are random variables concentrated around their
mean value Hc. The basic idea of the heuristic is to employ a policy � that op-
erates as �� but by replacing the connection holding times with their expected
value, as long as these connections reside in the system; hence for a connec-
tion i in class c we use Vi = HcBc (as before, Bc may be replaced by other
scaling factors). Upon connection departure, the connection holding times are
known and therefore their exact value can be used to update the calculation
of bB�c (tn). More speci�cally, the update of bB�c (tn) is done as follows.
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The system keeps track of the total bandwidth consumed by connection i;

eb�i = Z di

ai
b�i (t)dt:

� If at time tn+1 no connection from class c departs, the update is the same
as in (24).

bB�c (tn+1) = Ac (tn)
Ac (tn + 1)

bB�c (tn) +
P
i2Nc(tn) b

�
i (tn)

(tn+1�tn)
Vi

Ac (tn + 1)
(28)

� If at time tn+1 connection i from class c departs, then the update becomes,

bB�c (tn+1) = Ac (tn)
Ac (tn + 1)

bB�c (tn) +
P
i2Nc(tn) b

�
i (tn)

(tn+1�tn)
Vi

Ac (tn + 1)

+
1

Ac (tn + 1)

 eb�i
hiBc

�
eb�i
HcBc

!
(29)

The last term in (29) accounts for the correction done upon obtaining the
knowledge of connection service time: while connection i resides in the sys-
tem, its contribution to class performance is ebi= �HcBc� ; which is replaced
by the real contribution ebi= �hcBc� upon connection departure.

Various modi�cations to the policy can be proposed. For example, assume that
connection i resides in the system for time �i. If the statistics of the average
connectional holding time E[hi j�i ] is known, then this value may be used in
the evaluation of Vi. However, this requires more statistical information and
increases the complexity of the algorithm.

We next evaluate policy � by simulations.

[describe the simulation environment and what you plan to study]

7 Discussion and Suggestions for Further Work

We considered the problem of channel sharing by rate-adaptive multi-class
streams. We presented policies maximizing a linear combination of average
scaled connection bandwidths, under quite general conditions. Under addi-
tional but reasonable statistical assumptions, we described the performance
region of the system and applied a general methodology to provide a Band-
width Adaptation policy for maximizing a combination of convex class per-
formance rewards.
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In Section 2 we assumed that the channel bandwidth is �xed. If the channel
bandwidth is a function of time as may be the case in wireless systems, then
the results in Sections 3 and 4.1 still hold. Regarding the results in Sections
4.2 and 5, extensions are still possible by adding statistical assumptions on the
channel bandwidth �uctuation. While these assumptions may not be severe,
several technical questions need to be answered in order to completely justify
the optimality of the proposed policy.

In this work, we concentrated on connection bandwidth as the basic perfor-
mance measure. The results can be easily applied if as measure for the per-
ceptual quality of reception is considered a function r(b(t)) of the bandwidth
received by a connection at time t [12], [14]. The main di¤erence is that now
one has to solve nonlinear optimization problems at the decision instants.

Our �nal comment regards the adaptation capabilities of the proposed pol-
icy. Since the policy is based on the observation of past history (through the
quantities bB��c (t)), in order to adapt faster to changes in statistical parame-
ters, it is important to introduce techniques that weigh recent history more. A
standard way of doing this, is to work with the weighted means of the quan-
tities involved. It can be shown that this way the adaptivity of the policy can
be improved at the expense of small deviation from optimality, see e.g., the
techniques used in [33].

There are several directions for further research on this subject. In this work
we concentrated on average scaled connection bandwidth as the main perfor-
mance metric. However, as commented in Section 2 there are other metrics
that a¤ect the end-user perception quality of the received stream. While the
issue of which combination of these metrics is appropriate has not been re-
solved yet, it is generally accepted that the frequency of bandwidth updates
and/or the size of the incremental updates does play a role. An interesting fea-
ture of the proposed policies is that bandwidth updates may take place only
at connection arrival and departure times, hence update frequency is limited.
However, depending on the application, even this may not be acceptable. Re-
search towards the direction of taking into account multiple metrics has been
presented in [12], [11], [14]. We believe that it is possible to extend the frame-
work presented in this work to incorporate multiple metrics from system and
end-user perspectives. Work is under way to address this problem. Another
direction of research is extension of the policies presented here to a network
environment. Work towards this direction has been done in [17], where a single
class system was considered. The multiclass optimization, however is still an
open issue.

21



References

[1] A. Eleftheriadis, D. Anastasiou, Optimal data partitioning of MPEG-2 coded
video, in: First IEEE International Conference on Image Processing, 1994, pp.
273�277.

[2] P. Pancha, M. Zarki, Prioritized transmission of variable bit rate MPEG video,
in: IEEE GLOBECOM, 1992, pp. 1135�1139.

[3] N. G. Du¢ eld, K. K. Ramakrishnan, A. R. Reibman, SAVE: an algorithm for
smoothed adaptive video over explicit rate networks, IEEE/ACM Transactions
on Networking 6 (6) (1998) 717�728.

[4] J. Bolot, T. Turletti, A rate control mechanism for packet video in the internet,
in: IEEE INFOCOM, 1994, pp. 1216�1223.

[5] D. Taubman, A. Zakhor, A common framework for rate and distortion based
scaling of highly scalable compressed video, IEEE Transactions on Circuits and
Systems for Video Technology 6 (4) (1996) 329�354.

[6] H. Kankia, P. P. Mishra, A. Reibmand, An adaptive congestion control scheme
for real-time video transport, IEEE/ACM Transactions on Networking 3 (6)
(1995) 671�682.

[7] T. V. Lakshman, P. Mishra, K. K. Ramakrishnan, Transporting compressed
video over ATM networks with explicit rate feedback control, in: IEEE
INFOCOM, Kobe, Japan, 1997.

[8] P. P. Mishra, Fair bandwidth sharing for video sources using distributed
feedback control, in: IEEE GLOBECOM, Singapore, 1995.

[9] M. Grossglauser, S. Keshav, D. Tse, RCBR: A simple and e¢ cient service for
multiple time-scale tra¢ c, in: ACM SIGCOMM�95, 1995.

[10] C. Adjih, N. Argiriou, M. Chaudier, E. Deberdt, F. Dumontet, L. Georgiadis,
P. Jacquet, An architecture for IP quality of service provisioning over CATV
networks, in: EMMSEC, Sweden, 1999.

[11] A. K. Talukdar, B. R. Badrinath, A. Acharya, Rate adaptation schemes in
networks with mobile hosts, in: Proceedings of ACM/IEEE MobiCom �98, 1998,
pp. 169�180.

[12] V. Bharghavan, K. Lee, S. Lu, S. Ha, D. Dwyer, The TIMELY adaptive
resource management architecture, IEEE Personal Communications Magazine
5 (4) (1998) 20�31.

[13] T. Kwon, S. Kim, Y. Choi, N. Naghshineh, Threshold-type call admission
control in Wireless/Mobile multimedia networks using prioritized adaptive
framework, Electronics Letters 36 (9) (2000) 852�854.

[14] T. Kwon, Y. Choi, S. K. Das, Bandwidth adaptation algorithms for
adaptive multimedia services in mobile cellular networks, Wireless Personal
Communications 22 (2002) 337�357.

22



[15] S. Weber, G. de Veciana, Telecommunications Network Design, Academic
Publisher, 2002, Ch. Asymptotic Analysis of Rate Adaptive Multimedia
Streams.

[16] T. Kwon, Y. Choi, C. Bisdikian, M. Naghshineh, QoS provisioning in
Wireless/Mobile multimedia networks using and adaptive framework, Wireless
Networks 9 (2003) 51�59.

[17] S. Weber, G. Veciana, Rate adaptive multimedia streams: Optimization,
admission control, and distributed algorithms, IEEE Transactions on
Networking 1 (1) (2003) 1�16.

[18] N. Argiriou, L. Georgiadis, Channel sharing by rate-adaptive streaming
applications, Performance Evaluation 55 (3-4) (2004) 211�229.

[19] P. P. Bhattacharya, L. Georgiadis, P. Tsoucas, Problems of adaptive
optimization in multiclass M/GI/1 queues with bernoulli feedback,
Mathematics of Operations Research 20 (1995) 356�380.

[20] V. Tsibonis, L. Georgiadis, An adaptive framework for addressing fairness issues
in wireless networks, Computer Communications Journal 28 (10) (2005) 1167�
1178.

[21] G. J. Foschini, B. Gopinath, Sharing memory optimally, IEEE Transactions on
Communications 31 (3) (1983) 352�360.

[22] K. W. Ross, D. Tsang, The stochastic knapsack problem, IEEE Transactions
on Communications 37 (1989) 934�939.

[23] A. Gavious, Z. Rosberg, A restricted complete sharing policy for a stochastic
knapsack problem in a b-ISDN, IEEE Transactions on Communications 42
(1994) 2375�2379.

[24] K. W. Ross, Multiservice Loss Models for Broadband Telecommunication
Networks, Springer, 1995.

[25] ITU, ITU-T recommendation P.861: Objective quality measurements of
telephone band and (300-3400 hz) speech codecs, Tech. rep. (1998).

[26] ITU, ITU-500-R recommendation BT.500-8: Methodology for the subjective
assessment of the quality of television pictures, Tech. rep. (1998).

[27] S. Winkler, A perceptual distortion metric for digital color video, in:
Proceedings SPIE Human Vision and Electronic Imaging, Vol. 3644, 1999, pp.
175�184.

[28] A. R. Prasad, R. Esmailzadeh, S. Winkler, T. Ihara, B. Rohani, B. Pinguet,
M. Capel, Perceptual quality measurement and control: De�nition, application
and performance, in: Proceedings 4th International Symposium on Wireless
Personal Multimedia Communications, Aarborg, Denmark, 2001, pp. 547�552.

[29] R. W. Wol¤, Stochastic Modeling and the Theory of Queues, Prentice Hall,
1989.

23



[30] D. R. Bertsekas, Nonlinear Programming, Athena Scienti�c, 1995.

[31] J. Edmonds, Submodular functions, matroids and certain polyhedra, in: Calgary
International Conference of Combinatorial Structures and Applications,
Calgary, Alta, 1969, pp. 69�87.

[32] J.-Y. Boudec, Rate adaptation, congestion control and fairness: A tutorial, Tech.
rep.
URL citeseer.ifi.unizh.ch/boudec00rate.html

[33] P. P. Bhattacharya, L. Georgiadis, P. Tsoucas, I. Viniotis, Adaptive
lexicographic optimization in multi-class M/GI/1 queues, Mathematics of
Operations Research 18 (1993) 705�740.

APPENDIX

A Proof of Theorem 2

Proof. Since limt!1
Ac(t)
t
= �c for all c 2 C, and �c > 0, c 2 C, it follows that

for any " > 0 there is a time t" such that

��1c � " � t

Ac(t)
� ��1c + "; for all t � t"; c 2 C: (A.1)

Let
�max = max

c2C
f�cg ; �min = min

c2C
f�cg

In the following, without loss of generality we take 0 < " < ��1max: De�ne also,

rmax = max
c2C

frcg ; V "min = min
i2A(t")

fVig :

Clearly, we have 0 < ��1max � ��1min < 1, rmax < 1. Also notice that since
�c < 1; it holds Ac(t") < 1, c 2 C, and hence V "min > 0. Considering a time
t � t" and taking into account (13), (A.1), we have,

bB�r (t) = 1

t

X
c2C

t

Ac(t)

Z t"

0

X
i2Nc(s)

rc
b�i (s)

Vi
ds+

1

t

X
c2C

t

Ac(t)

Z t

t"

X
i2Nc(s)

rc
b�i (s)

Vi
ds

� ��1min + "

t

Z t"

0

X
c2C

X
i2Nc(s)

rc
b�i (s)

Vi
ds+

1

t
"
Z t

t"

X
c2C

X
i2Nc(s)

rc
b�i (s)

Vi
ds:

+
1

t

Z t

t"

X
c2C

X
i2Nc(s)

rc
�c

b�i (s)

Vi
ds:

(A.2)

24



To proceed we need to provide estimates on certain of the quantities appearing
in (A.2). First note that,

Z t"

0

X
c2C

X
i2Nc(s)

rc
b�i (s)

Vi
ds � rmax

V "min

Z t"

0

X
c2C

X
i2Nc(s)

b�i (s)ds =
rmax
V "min

Z t"

0

X
i2N (s)

b�i (s)ds

� rmax
V "min

Bt" �M"; (A.3)

where the last inequality follows from the fact that under any policy �, in-
equality (1a) must be satis�ed. Next, note that since bb�i (t) � 1; it follows thatbB�c (t) � 1; c 2 C. Taking also into account (13) and the left hand side of (A.1)
we have for t � t",

�
��1max � "

� 1
t

Z t

te

X
c2C

X
i2Nc(s)

rc
b�i (s)

Vi
ds � 1

t

Z t

0

X
c2C

X
i2Nc(s)

t

Ac(t)
rc
b�i (s)

Vi
ds

=
X
c2C
rc bB�c (t) �X

c2C
rc: (A.4)

From (13), (A.1), (A.3) and (A.4) we have,

bB�r (t) � ��1min + "

t
M" +

"

��1max � "
X
c2C
rc +

1

t

Z t

t"

X
c2C

X
i2Nc(s)

rc
�c

b�i (s)

Vi
ds: (A.5)

By the de�nition of policy �� we have that for any time s > 0;

X
c2C

X
i2Nc(t)

rc
b�i (s)

Vi

s

Ac(s)
�
X
c2C

X
i2Nc(t)

rc
b�

�
i (s)

Vi

s

Ac(s)
:

Taking into account (A.1) we conclude that for any s > t" it holds,

X
c2C

X
i2Nc(s)

rc
b�i (s)

Vi

�
��1c � "

�
�
X
c2C

X
i2Nc(s)

rc
b�

�
i (s)

Vi

�
��1c + "

�
;

or

X
c2C

X
i2Nc(s)

rc
�c

b�i (s)

Vi
�"

X
c2C

X
i2Nc(s)

rc
b�i (s)

Vi
�
X
c2C

X
i2Nc(s)

rc
�c

b�
�
i (s)

Vi
+"

X
c2C

X
i2Nc(s)

rc
b�

�
i (s)

Vi
:

(A.6)
Integrating (A.6) and using (A.4) we have,

1

t

Z t

t"

X
c2C

X
i2Nc(s)

rc
�c

b�i (s)

Vi
ds � 1

t

Z t

t"

X
c2C

X
i2Nc(s)

rc
�c

b�
�
i (s)

Vi
ds+

2"
P
c2C rc

��1max � "
(A.7)
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From (A.5) and (A.7) we conclude,

bB�r (t) � ��1min + "

t
+
3"
P
c2C rc

��1max � "
+
1

t

Z t

t"

X
c2C

X
i2Nc(s)

rc
�c

b�
�
i (s)

Vi
ds

� ��1min + "

t
+
3"
P
c2C rc

��1max � "
+
1

t

Z t

te

X
c2C

X
i2Nc(s)

 
t

Ac(t)
+ "

!
rc
b�

�
i (s)

Vi
ds

� ��1min + "

t
+
4"
P
c2C rc

��1max � "
+
1

t

Z t

0

X
c2C

X
i2Nc(s)

t

Ac(t)
rc
b�

�
i (s)

Vi
ds

=
��1min + "

t
+
4"
P
c2C rc

��1max � "
+ bB��r (t) (A.8)

Finally, (A.8) implies,

lim sup
t!1

bB�r (t) � 4"
P
c2C rc

��1max � "
+ lim sup

t!1
bB��r (t):

Since " is arbitrary, we conclude that lim supt!1 bB�r (t) � lim supt!1 bB��r (t).
The inequality for lim inf follows by similar reasoning.

B Proof of Lemma 4

The region described in Lemma is known as a polymatroid. Polymatroids were
introduced by Edmonds [31], where the following lemma - adapted to conform
to our notation - was proved.

Edmonds Lemma. Consider in RC the polyhedron R de�ned byX
i2S
acxc � f(S); for all S � C

xc � 0; for all c 2 C.

where ac � 0, c 2 C. If for any permutation �(i), i = 1; :::; C of the class
indices in C the vector obtained as a solution to

kX
i=1

a�(i)x�(i) = f(f�(1); :::; �(i)g ; k = 1; :::C;

belongs to R; then the function f is submodular.

We can now proceed with the proof of the lemma.

Proof. Under the assumptions of the lemma, the optimization problem on
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which policy �r is based becomes,

max

8<: X
c2C(t)

rc
�c

X
i2Nc(t)

bi

9=; (B.1a)

X
c2C(t)

X
i2Nc(t)

bi � B; (B.1b)

Bc � bi � Bc; i 2 Nc(t); c 2 C(t): (B.1c)

Set
Bc =

X
i2Nc(t)

bi; (B.2)

and consider the problem,

max

8<: X
c2C(t)

rc
�c
Bc

9=; (B.3a)

X
c2C(t)

Bc � B (B.3b)

bcNc(t) � Bc � bcNc(t); c 2 C(t): (B.3c)

Any optimal solution to problem (B.1) provides through (B.2) a solution to
problem (B.3) with the same value. Alternatively, any optimal solution to
(B.3) provides a solution to (B.1) with the same value, by setting,

bi =
Bc
Nc(t)

; i 2 Nc(t): (B.4)

Hence we may assume without loss of generality that policy �r allocates band-
width according to (B.3) and (B.4). The general solution to the optimization
(17) has been discussed in [17]. For the speci�c form of (B.1), the solution
consists of the following steps.

(1) Sort the coe¢ cients rc
�c
of all classes in C(t), in nonincreasing order. Let

�(i) denote the class in C(t) whose order is i in this sorting, i.e.,
r�(i)
��(i)

� r�(i+1)
��(i+1)

; i = 1; :::; C(t)� 1:

(2) Select n as, n = max
n
n :

Pm
k=1B�(i)N�(i)(t) +

PC(t)
k=m+1B�(i)N�(i)(t) � B

o
(3) If n = C(t); then set Bc = BcNc(t) for all c 2 C(t). Else,
(4) Set

B�(i) = B�(i)N�(i)(t); 1 � i � n;
B�(i) = B�(i)N�(i)(t); n+ 2 � i � C(t);

B�(n+1) = B �
0@ nX
k=1

B�(i)N�(i)(t) +
C(t)X
k=n+2

B�(i)N�(i)(t)

1A :
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We observe from the above that the performance of policy �r depends only
on the order induced by vector r on the quantities rc=�c; c 2 C. If any other
vector r0 induces the same order, then the resulting policy �r

0
will have the

same performance values bBr. Consider now a set S � C and let �S be the
class of policies �r for which the induced order �r is such that the �rst S
higher order classes is the set S, that is, S = fc : c = �r(i); i = 1; 2; :::Sg :
For any policy in �S , we see from the steps above, that the total bandwidth
allocated to the classes in S at time t; is the same, BS(t). Moreover, under
any policy �r not in �S ; the total bandwidth allocated to the classes in S at
time t; B�

r

S (t); is at most BS(t). Using regenerative arguments it can be seen
that the steady-state average values of BS(t) and B�

r

S (t) exist, i.e.,

lim
t!1

1

t

Z t

0
B�

r

S (s)ds = lim
t!1

1

t

Z t

0

X
c2S

X
i2Nc(t)

b�
r

i dt =
X
c2S
�c bB�rc , F (S) for �r in �S ;

(B.5)
and

lim
t!1

1

t

Z t

0
B�

r

S (s)ds =
X
c2S
�c bB�rc � F (S) for �r not in �S : (B.6)

From (B.5) and (B.6), using similar arguments to those used in the proof of
Lemma 4 we conclude that for any x 2 P it holds,X

c2S
�cxc � F (S); S � C; xc � 0; c 2 C.

Finally, using regenerative arguments it can be seen that given any permuta-
tion order �r induced by a policy �r; it holds

kX
i=1

a�r(i)
bB�r�r(i) = F (f�r(1); :::�r(k)g) ; k = 1; :::; C:

Since bB�r 2 P, the proof is completed by resorting to Edmonds Lemma.
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