
1

Bottleneck Multicast Trees in Linear Time.
Leonidas Georgiadis

Abstract—On a directed graph with arc costs and a given
source node s, we consider the problem of computing multicast
(Steiner) trees spanning any given node subset V , so that the
maximum of the tree arc costs is minimized. We show that this
problem can be solved by simply solving the bottleneck path
problem, i.e., the problem of determining for each node t 6= s
a path from s to t so that the maximum of path arc costs is
minimized. For the latter problem we provide an implementation
of Dijkstra’s algorithm that runs in linear time under mild
assumptions on arc costs.

I. INTRODUCTION

Consider a directed graph G(N,A) with n = |N | nodes and
m = |A| arcs, and let ba be a real number cost associated with
arc a. Given a source node s and a subset V of nodes, s /∈ V ,
the min-max or bottleneck Steiner tree problem is to determine
a directed tree routed at node s that spans all nodes in V (i.e.,
there is a directed path on the tree from s to any node t ∈ V),
such that the maximum of the tree arc costs is minimized.
This problem received early attention and it is still important
as part of the design of multicast trees in communication
networks either wired, with ba representing the negative of
link bandwidth [1], or wireless, with ba representing node
consumed power to reach a neighbor [2].
In fact, in a communication network setup, it may also be

desirable to be able to precompute the multicast tree for any V ,
[1]. If such a precomputation can be made, it will be possible
to quickly provide the required trees in a dynamic environment
where V changes frequently. Of course, the number of sets V
is 2n−1 − 1 and in general precomputing all the trees will
be prohibitive both in terms of running time and in terms of
required storage space. However, it will be seen that for the
problem at hand the situation is greatly simplified since all
required trees can be obtained as subtrees of a single spanning
tree.
For undirected graphs, [3] presents an algorithm that solves

the bottleneck Steiner tree problem and runs in O(m) time.
However, the algorithm is not suitable for precomputation
since it provides a Steiner tree for the specified set V only.
The problem of finding a bottleneck spanning tree in directed
graphs, i.e., the case V = N−{s}, has been addressed in [4].
The proposed algorithm can be extended to the case where V
is any subset of N − {s} and runs in O(m logn) time. This
algorithm cannot be used for precomputing the optimal trees
for any V . In [5] two algorithms are proposed for solving the
bottleneck spanning tree problem, both of them extendable to
any node subset V . The first is based on a modification of
Dijkstra’s algorithm and runs in O(n logn + m) time. The

L. Georgiadis is with Electrical and Computer Engineering Dept.,
Aristotle University of Thessaloniki, Thessaloniki, GREECE. E-mail:
leonid@eng.auth.gr .

second runs in O(m log∗ n) time, where log∗ n is the iterated
logarithm of n. However, the second algorithm cannot be used
for precomputation.
In this paper we address the problem of precomputing

bottleneck Steiner trees. We propose an implementation of
Dijkstra’s algorithm for solving the bottleneck path problem,
which runs in O(T (m)) time where T (m) is the time needed
to sort the costs ba, a ∈ A. Under mild assumptions on the
costs, T (m) = O(m). We then show that the optimal path
tree obtained by this process, contains as subtrees a bottleneck
Steiner tree for any node subset V and therefore it can be used
for precomputation.

II. BOTTLENECK PATHS AND TREES

A. Bottleneck Paths
Let a directed graph G(N,A) be given and let N(i)

be the set of nodes adjacent to node i, i.e., N(i) =
{j ∈ N : (i, j) ∈ N}. With arc a = (i, j), we associate a
real number cost, ba. Given a source node s, we are interested
in finding a simple path p∗t from s to any node t ∈ V such
that the maximum of the path arc costs is minimized. Path p∗t
is called “bottleneck” path. More precisely, if Pt is the sets of
simple paths from s to t, we want to solve the optimization
problem.
Problem I (Bottleneck Paths to All Nodes):

min
p∈Pt

max
a∈p

{ba} for all t. (1)

Without loss of generality assume that ba ≥ 0, a ∈ A. This
problem can be solved by a simple modification of Dijkstra’s
algorithm, which in generic form, [6], is shown in Figure 1(a).
The algorithm maintains for each node i ∈ N a distance label
d[i], which is initialized to infinity (a number larger that the
maximum arc cost) except for node s, for which it is set d(s) =
0; in addition it maintains a set S whose labels are optimal
(i.e., d[i] = minp∈Pi maxa∈p {ba}) and smaller than or equal
to the labels of the nodes in S = N − S. The algorithm
maintains also an array pred[i] denoting upon completion the
node j such that (j, i) is the last arc in the bottleneck path from
s to i (with the convention, pred[s] = null). Array pred[i]
specifies a tree containing bottleneck paths from s to any node
t ∈ N − {s}. A Fibonachi heap implementation of S results
in O(n lnn+m) running time.
For Problem I, we present below an implementation of

Dijkstra’s algorithm whose running time is O(T (m)), where
T (m) is the time needed to sort the weights ba, a ∈ A.
The implementation takes advantage of two simple obser-

vations. Namely
1) Let ra be the ranking order of ba, i.e., ba is the rath
smallest element in the set {ba : a ∈ A}. Then, any

2

1 . a lg o rithm D ijk s tra
2 . b eg in
3 . S   ; S  N ;
4 . d  i    fo r e a c h n o d e i  N ;
5 . d s   0 ; p red s   n u ll ;
6 . wh ile |S |  n d o
7 . le t i  S b e su ch th a t d  i   m in  d  j : j  S  ;
8 . S  S   i  ;
9 . S  S   i  ;
1 0 . fo r e a ch j  N  i 
1 1 . if d  j  m ax d  i  , b  i,j  th en d o
1 2 . d  j  m ax d  i  , b  i,j  an d p red  j  i ;
1 3 . en d ;
1 4 . en d ;
1 5 . en d ;
1 6 . en d ;

1 . a lg o rithm D ijk s tra Im p lem en ta tio n
2 . b eg in
3 . o b ta in r a  , a  N f rom b a  ;
4 . fo r e a c h n o d e i  N
5 . F  i  . la b e l   , F  i  . a d d re s s  n u ll ;
6 . en d ;
7 . F  s  . la b e l  0 ; F s  . a d d re s s  i n s e r tL 0  , s  ;
8 . p re d s   n u ll ; C  1 ;
9 . fo r l  0 to m a n d w h ile C  n d o
1 0 . if ge t(L  l) n u ll d o
1 1 . i  ge t(L  l) ;
1 2 . F  i  . a d d re s s  n u ll ; C  C  1 ;
1 3 . fo r e a c h e lem en t g in K  i 
1 4 . j  g . n o d e ; a  g . a rc ;
1 5 . if F  j . la b e l  m ax l , r a   th en d o
1 6 . i f F  j . v a lu e   th en d o
1 7 . d e le te (L F  j . la b e l , F  j . a d d re s s) ;
1 8 . en d ;
1 9 . F  j . la b e l  m ax l , r a    ;
2 0 . F  j . a d d re s s  in s e r t(L F  j . la b e l  , j) ;
2 1 . p re d  j  i ;
2 2 . en d ;
2 3 . en d ;
2 4 . en d ;
2 5 . en d ;
2 6 . en d ;

(a)

(b)

Fig. 1. (a) Dijkstra Algorithm (b)Proposed Implementation

solution to

min
p∈Pt

max
a∈p

{ra} for all t,

is a solution to (1). Indeed, if p an q are simple paths
from s to t, then

max
a∈p

{ra} ≤ max
a∈q

{ra} iff max
a∈p

{ba} ≤ max
a∈p

{ba} .

Hence we can replace ba with ra in Dijkstra’s algorithm.
2) The non-infinite values taken by the labels d[j] belong
to the set {ba : a ∈ A} .

Because of the first observation, we can replace ba with
ra in Dijkstra’s algorithm, while as will be seen, because of
the second, we can implement line 7 of Dijksta’s algorithm
in Figure 1(a) by a simple one-time linear search of an (m+
1)-element array containing the label values. As a result, an
O(T (m)) time algorithm is obtained.

The proposed implementation maintains the array pred[i]
of the generic Dijkstra algorithm. In addition, we need the
following data structures. We assume that arcs are indexed
from 1 to m.

• An input array of arc costs, b[a], a = 1, ...,m.
• An output array r[a], a ∈ A containing the rank of arc
a.

• An array of node adjacency singly-linked lists, K[i], i ∈
N . An element g of list K[i] contains two fields, g.node
and g.arc. Field g.node denotes a node j in N(i) and
field g.arc denotes the arc number corresponding to
arc (i, j). Hence r[g.arc] denotes the rank of the arc
(i, g.node).

• An array L[l] of doubly-linked lists 0 ≤ l ≤ m.
During each iteration, list L[l] contains the nodes that
have nonpermanent label value l. Each array supports the
following unit cost operations.
– insert(L[l], i): Inserts an element with value i in the
list and returns the address of its location.

– delete(L[l],&i): Deletes the element at location &i.
– get(L[l]): Returns and deletes the first element in the
list.

• An array F [i], i ∈ N − {s}. Element F [i] of the array
contains two fields, F [i].label, F [i].address. Initially
F [i].label = ∞ and F [i].address is null. During the
course of the algorithm, F [i].label contains the (perma-
nent or nonpermanent) label of node i and F [i].address
contains the address of the element in L[F [i].label] that
contains node i, provided that F [i].label 6= ∞ and
the label of node i has not been permanently set. If
F [i].label =∞ at the end of the algorithm, then there is
no directed path from s to node i, while when the label
of node i is permanently set, F [i].address is set to null.

The proposed algorithm is shown in Figure 1(b). The
algorithm examines each of the m+ 1 lists L[l]. l = 0, ..,m.
The nonempty list examined at each iteration of the loop in line
9 contains the nodes with the least nonpermanent labels and
hence line 11 of the algorithm implements line 7 of the generic
algorithm in Figure 1(a). Lines 13 to 23 implement lines 10 to
14 of the generic algorithm. If F [j].label > max {l, r[a]} (line
15), then the label of node j must be reduced. We therefore
remove in line 17 node j from list L[F [j].label] (provided
of course that it has already been placed in the list, which
happens only if F [j].value <∞). Next, we update the label
of node j in line 19. In line 20 we insert node j in the list
L[F [j].label] and save the address of the inserted element in
F [j].address.
Regarding the complexity of the algorithm, the execution

of line 3 takes T (m) time. Observe next that whenever a
“get” operation is performed in line 11, the label of a node is
permanently set. Therefore, this operations are performed at
most n times. The “for” loop in line 9 is executed at mostm+1
times, and the code in the for loop in line 13 is executed at
most m times. Since each of the operations within the latter
“for” loop takes O(1) time, the overall running time of the
algorithms is O(n+m+ T (m)) = O(T (m)).

3

B. Bottleneck Steiner Trees

We now address the bottleneck Steiner tree problem. Let
TV be the set of directed trees routed at s and spanning all
nodes in V ⊆ N − {s}.
Problem II (Bottleneck Steiner Trees to All Subsets V ⊆

N − {s}):

min
T∈TV

max
a∈T

{ba} for all subsets V ⊆ N − {s}.

As part of the solution to Problem I, a tree T ∗ routed at
s and spanning N − {s} is obtained, with the property that
the path p∗t on T ∗ joining s to any node t, is a bottleneck
path. For any set V ⊆ N − {s}, let T ∗V be the subtree of T ∗
consisting of the arcs of the bottleneck paths p∗t , t ∈ V . The
next lemma shows that T ∗V is a bottleneck tree for the set V .
Lemma 1: It holds

max
a∈T∗V

{ba} = min
T∈TV

max
a∈T

{ba} .
Proof: Since T ∗V ∈ TV , it holds

max
a∈T∗V

{ba} ≥ min
T∈TV

max
a∈T

{ba} . (2)

Assuming that

max
a∈T∗V

{ba} > min
T∈TV

max
a∈T

{ba} , (3)

we will arrive a a contradiction, which in lieu of (2) implies
the lemma.
Under assumption (3), there is a tree T ∈ TV , such that

max
a∈T∗V

{ba} > max
a∈T

{ba} . (4)

Let e ∈ T ∗V be an arc such that be = maxa∈T∗V {ba}. There is
a node t ∈ V for which the path p∗t from s to t in T ∗V passes
through e. There is also a path q from s to t in T . For these
paths we have because of (4),

max
a∈p∗t

{ba} = max
a∈T∗V

{ba} > max
a∈T

{ba} ≥ max
a∈q

{ba} . (5)

However, (5) contradicts the fact p∗t is a bottleneck path for
node t.
According to Lemma 1, problem II is solved by simply solv-

ing Problem I and obtaining the tree consisting of bottleneck
paths to nodes in V . Hence the complexity of the solution to
Problem II is again O(T (m)).
Figure 2 shows an example of the construction of

a bottleneck-path tree. The numbers next to the arcs
are the arc costs. All paths on the tree using arcs
{(s, 1), (1, 2), (2, 3), (1, 4)} and having source s, are bottle-
neck paths from s to each of the nodes 1, 2, 3, 4. If we
need a bottleneck Steiner tree with source s and destina-
tion node set V = {2, 4}, then we can simply take the
subtree of the bottleneck-path tree consisting of the arcs
{(s, 1), (1, 2), (1, 4)}. Note that another bottleneck Steiner tree
for the same set V is the path {(s, 2), (2, 3), (3, 4)}. This path
has arcs that do not belong to the bottleneck-path tree.

10

5

8

10

11

7

12

S

1

2

4

3

10

: Bottleneck-Path Tree

: A Bottleneck Multicast Tree for Set V={2,4}

Fig. 2. Example of Bottleneck-Path Tree

III. ARC COSTS AND ALGORITHM COMPLEXITY
The complexity of the proposed implementation is in effect

determined by the complexity of sorting the numbers ba, a ∈
A. In fact, if ba are integers and |ba| = O(m) for a ∈ A, then
we can work directly with the array b[a] instead of r[a], and
therefore we can eliminate altogether the sorting cost in line
3 of the algorithm in Figure 1(b). In this case we obtain an
O(m) worst-case running time algorithm using very simple
data structures. If for some constant d, |ba| = O(md) for
a ∈ A, then again T (m) = O(m) using radix sort [7]. This
case covers many applications.
In general, any complexity result obtained for the well-

studied sorting problem, translates directly to a corresponding
result for Problem II. For example, it was found in [8] that
for unit-cost RAM with world length of w bits, if ba take
values in the range 0, ..., 2w − 1 where w ≥ logm, sorting
can be achieved in O(m log logm) time. Moreover, if w ≥
(logm)2+ε for some ε > 0, then sorting can be accomplished
in linear expected time with a randomized algorithm. Under
the same conditions, the same claims can be made for problem
Problem II.

REFERENCES
[1] R. Guerin, A. Orda, “Computing Shortest Paths for Any Number of

Hops,” IEEE/ACM Transactions on Networking, vol 10, no 5, October
2002, pp 613-620.

[2] I. Papadimitriou, L. Georgiadis, “Energy-aware Broadcasting in Wireless
Networks,”WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, March 3-5, 2003, INRIA Sophia-Antipolis, France.

[3] C. W. Duin, A. Volgenant, “The partial sum criterion for Steiner trees in
graphs and shortest paths,” European Journal of Operational Research,
97 (1997) 172-182.

[4] P.M. Camerini, “The min-max spanning tree problem and some exten-
sions,” Information Processing Letters, Vol 7, Number 1, January 1978,
pp 10-14.

[5] H. N. Gabow, R. E. Tarjan, “Algorithms for Two Bottleneck Optimization
Problems,” Journal of Algorithms, 9, 411-417 (1988).

[6] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, 1993.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms,
Mc-Grow Hill, MIT Press, 1990.

[8] A. Anderson, T. Hagerup, S. Nilsson, R. Raman, “Sorting in Linear
Time?,” 27th Annual ACM Symposium on the Theory of Computing in
Las Vegas, Nevada, May 1995.

