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Optimal Overload Response in Sensor Networks
Leonidas Georgiadis, Senior Member, IEEE, and Leandros Tassiulas, Senior Member, IEEE

Abstract�A single commodity network that models the in-
formation �ow in an arbitrary topology sensor �eld that col-
lects and forwards information to a backbone through certain
designated gateway nodes is considered. Resilient operation in
overload stress situations caused by unpredictable traf�c or
topology variations is considered. A �uid model is adopted where
super�owsmodel traf�c forwarding and backlog formations at the
network level. Quantitative performance metrics of the overload
including throughput, lexicographic minimization, most balanced
allocation and amount of lost traf�c due to buffer over�ow are
considered to capture the information loss process due to over�ow
in the network. Optimal super�ows with respect to these metrics
are characterized and a distributed asynchronous algorithm
that computes such super�ows is given. The characterization
of the optimal super�ow amounts to obtaining a structural
decomposition of the network in a sequence of disjoint subregions
with decreasing overload such that traf�c �ows only from regions
of higher overload to regions of lower overload.

Index Terms�Network Control, Overload Response, Sensor
Networks, Distributed Algorithms, Lexicographic Optimization,
Most Balanced Allocation, Lost Traf�c Minimization, Through-
put Maximization.

I. INTRODUCTION

Unpredictability in traf�c load variations, link capacity �uc-
tuations, topology modi�cations, node failures or various types
of intentional misbehavior may lead a network to overload
conditions. A smooth and balanced system response in those
stressful situations is essential for effective crisis management
in the network. This is more of an issue in wireless ad-hoc
and sensor networks where due to the nature of the system
and the likely scenarios of operation, anomalous behavior of
that type is more likely to occur.
We consider a network consisting of an arbitrary spatial

arrangement of nodes. Information may be generated at any
node in the network and needs to be forwarded to a collection
of hub (sink) nodes, see Figure 1. The spatial distribution of
traf�c generation intensity is speci�ed by the vector of traf�c
generation rates at each node. In overload condition this vector
may lie outside the feasibility region of the system, that is
there may be no feasible �ow to transfer the information to
the sinks, given the capacity of the system. This may occur for
instance in a sensor network where traf�c generation is event
driven and activity scenarios may light up different portions of
the system creating spatially localized, temporary overloads.
In that case inevitably traf�c backlogs will occur in the nodes.
The distribution of the backlog build-up is an indication of the
behavior of the system.
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Fig. 1. The information collection network is depicted. Information might be
generated at any node and is destined to any of the gateway nodes (squares)
through which it is forwarded to the backbone. Multihop transmission might
be required through intermediate nodes in which case routing and �ow control
will take place.

In this work we study the operation of the system in
overload. A �uid model is considered where the information
�ow induced by the routing policy is represented by super-
�ows. A super�ow is a generalized notion of �ow, where the
aggregate incoming �ow in a node may exceed the outgoing,
i.e. �ow conservation at the nodes need not necessarily hold.
Super�ows permit us to model more accurately overload situ-
ations. Speci�cally, a super�ow is a vector with a nonnegative
element for each network link representing the information
forwarding rate at that link. The difference of incoming minus
the outgoing �ow from a node is the backlog buildup rate
at the node. We call this difference �node overload�. The
vector of node overloads under a certain routing policy is the
quantitative performance objective that represents the overload
response of the network to the routing policy.
We show that in the space of node overload vectors there

is one that is lexicographically minimal and we characterize
it. The overload corresponding to this vector also maximizes
the information rate that reaches the sinks. Furthermore we
show that this vector is the unique solution for a wide class
of optimization problems where the optimization objective
function is the sum of any nondecreasing convex function of
node overloads. We call that vector �most balanced� overload
vector and any super�ow that induces the most balanced
overload vector, �most balanced� super�ow. Finally we present
a distributed adaptive super�ow reallocation policy converging
to a most balanced super�ow.
The paper is organized as follows. In Section II we present

some related work. In Section III we present the system mode.
The performance objectives under consideration are discussed
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in Section IV. Properties and characterization of the optimal
solution are provided in Section V. In Section VI we propose
a distributed adaptive super�ow reallocation policy converging
to a most balanced super�ow. The case where optimization of
a weighted overload vector is desirable is discussed in Section
VII. We conclude with discussions and directions for further
work in Section VIII.

II. PRELIMINARIES AND SOME RELATED WORK

There are two viewpoints in studying information �ow in
networks like the one we described above, the microscopic and
the macroscopic. At the microscopic level we keep track of the
dynamic evolution of the system at the packet level modeling
the instantaneous information backlog dynamics through ap-
propriate stochastic queueing networks; the associated routing
and �ow control algorithms are viewed operating at the packet
level. At the macroscopic level, under the assumption that the
stochastic dynamic �ows at the links and nodes of the network
have long term averages, we focus on average �ows; hence we
have a �uid model of the system and we study different routing
policies through the properties of their induced �uid �ows.
At the microscopic modeling regime let ai(t) be the total

amount of information generated at node i 2 K (K is the set
of nodes where traf�c is generated) in the time interval [0; t]
and aij(t) the total amount of information transferred to node
j from node i through link (i; j) in the same time interval. If
qi(t) is the information backlog at node i at time t then,

qi(t) = qi(0)+ai(t)+
X

j2Nin(i)

aji(t)�
X

j2Nout(i)

aij(t); i 2 K;

(1)
where Nin(i) and Nout(i) are respectively the set of incoming
and outgoing neighbors of node i:
Stability of the network means bounded backlogs over time,

i.e.,
supE[qi(t)] <1; i 2 K:

Assuming that the long term averages of the stochastic �ows
ai(t); aij(t) exist,

lim
t!1

ai(t)=t = �i; a.s.,

lim
t!1

aij(t)=t = fij ; a.s:;

the stability of the network implies from (1) that,

�i =
X

j2Nout(i)

fij �
X

j2Nin(i)

fji; i 2 K: (2)

while the link capacity constraint implies that

0 � fij � cij ; i 2 K; j 2 Nout(i): (3)

Equations (2) and (3) are called �ow conservation and link
capacity constraints respectively and are necessary conditions
for stability. While the arrival rate vector � = (�1; ::; �K) is
the average spatial statistical pro�le of the exogenous traf�c
and is not affected by the network control policy, the vector
of �ows f = (fij : i 2 K; j 2 Nout(i)) is the result of
the routing policy and we may say that it characterizes the
routing policy as far as its long term behavior is concerned. A
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Fig. 2. A graphical depiction of the operation of the Adaptive Back Pressure
policy at a certain node is given. A node transmits packet with full capacity
to a downstream neighbor that has lower backlog than its own while it idles
a link directed to a node with backlog higher than its own.

necessary condition for the feasibility of an arrival rate vector
� is that there is a �ow vector f satisfying (2) and (3). Let
F� be the collection of �ow vectors satisfying (2) and (3) for
arrival rate vector �. Then each possible routing policy that
guarantees stable operation of the network corresponds to a
�ow vector in F�:
The behavior of the system in the stability regime has

been studied extensively in the past. A dynamic routing and
�ow control policy, the Adaptive Back Pressure (ABP) policy
has been proposed and analyzed, showing that it achieves
maximum throughput in the network. ABP is a distributed
control policy where node i controls the transmissions of its
outgoing links based only on its own backlog as well as its
outgoing neighbors, without any knowledge of the network
topology or its statistics. In the context of the network under
consideration ABP operates as follows at each node i; see
Figure 2.
� At time t node i compares its backlog qi(t) with the
backlog of its one hop downstream neighbor j 2 Nout(i):

� If qj(t) � qi(t) then link (i; j) idles and no packet is
transmitted (�ow control is performed).

� If qj(t) < qi(t) then link (i; j) transmits full speed a
packet from i to j.

The above policy was proposed initially in [19], [22], in the
context of a multihop radio network and in combination with
a max weight radio access control policy. It was shown that
the combined routing-scheduling scheme achieves maximum
throughput and stabilizes the network if it is possible to do
so. More speci�cally it was shown that under the statisti-
cal assumption of i.i.d. arrivals and given that the arrival
rate vector is such that F� is nonempty, the ABP policy
achieves stability of the network. In other words its �uid
�ow pro�le behaves as one of the feasible �ows of F�. A
similar policy has been considered later in [20] in the context
of a multiclass service network and its dynamic behavior
was analyzed extending the results in [22] for deterministic
(�; �) traf�c pro�les, i.e. pro�les that comply to the output
streams of a (�; �) regulator (see [4] for more details on
(�; �) regulated traf�c). In [21] the policy was studied under
general Markov modulated statistics and batch processing to
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account for synchronization de�ciencies of different servers
due to unequal service times. A generalization of the policy,
incorporating power control for time-varying channels was
presented in [14]. A policy similar to ABP was proposed
and studied in [1], [2], in the context of adversarial queueing
theory. That is, its performance was analyzed under arrival
traf�c patterns that might be the worst possible within a
certain family of arrival patterns, for instance all possible
arrival patterns at the output of a (�; �) regulator. It was
shown that the policy achieves maximum throughput in that
context as well. Finally the ABP policy has been considered
in the context of general service systems in manufacturing
and transportation problems in [5], [6], and its maximum
throughput properties were veri�ed.
In all the works discussed above the system was studied in

its stability region, i.e. when the load did not exceed capacity.
In the following we study the system in the overload region
resorting directly to the �uid model. The behavior of the
system in overload has been considered recently by several
researchers [23], [13], [7], [18], proposing �ow control at
the edge in combination with backlog balancing inside the
network, to achieve desirable throughput. In the current paper
we study the network overload build-up and we characterize
the behavior of the policies from that perspective. Results of
this paper were presented in partial form in [9].
Finally, we note that the model and the problem considered

in this paper can address, in a limiting sense, the continuous
assignment problem of Hajek in [11].

III. DEFINITIONS, MODEL AND ASSUMPTIONS

The topology of the network is represented by a directed
graph G = (N;L). The set N consists of network nodes that
may generate and forward traf�c, and a node d that represents
collectively all gateway nodes to the infrastructure network.
The set of links L includes a link between any two nodes
that may communicate directly. It also includes a link to node
d for any network node that may communicate directly with
a gateway node. Link l 2 L has capacity cl. Given a set of
nodes S � N , let Lin(S) be the set of links that start at
some node out of S; i.e. in Sc = N � S; and end at some
node in S: With Nin(S) we denote the set of nodes in Sc
that are starting points of the links in Lin(S). For simplicity
of exposition de�ne Lout(S) = Lin(Sc) and Nout(S) the set
of nodes in Sc that are ending points of the links in Lout(S).
Without loss of generality we assume that Lout (fdg) = ?:
The set Lin(S) will also be referred to as the set of �incoming
links� of the cut (S; Sc). Similarly, the set Lout(S) will be
referred to as the set of �outgoing links� of the cut (S; Sc).
For simplicity, if S consists of a single node i; S = fig, we
write simply Lin(i) and similarly for the other notations. As
usual, summation over indices of an empty set is de�ned as
zero, i.e.,

P
i2X ai = 0 if X = ?:

Denote by K = N �fdg. Information is generated at node
i 2 K at rate �i � 0 and is destined to sink node d. A
�super�ow� f= fflgl2L ; is any nonnegative vector with one

element for each link that satis�es the following constraints.

�i +
X

l2Lin(i)

fl �
X

l2Lout(i)

fl � 0; i 2 K (4a)

0 � fl � cl; l 2 L: (4b)

The inequality in (4a) may be strict since we allow for the
possibility of overload at a node. In case equality holds for
every node in K, the super�ow reduces to the standard ��ow�
de�nition. The quantity

qi = �i +
X

l2Lin(i)

fl �
X

l2Lout(i)

fl;

is the rate at which traf�c is accumulated at node i 2 K for the
speci�c super�ow vector. We refer to qi as the �overload� at
node i under super�ow f . We extend the de�nition of overload
to sink node d by de�ning qd = 0. We denote by F� the set
of super�ows satisfying (4), and by Q� the set of overload
vectors induced by super�ows in F�.
The throughput Tf of a super�ow is de�ned as the sum of

�ow intensities at the links terminating at the sink node, i.e.,

Tf =
X

l2Lin(d)

fl: (5)

The traf�c load � of the network is the sum of exogenous
arrivals intensities,

� =
X
i2K

�i:

It can be derived from the de�nition of qi that for any subset
S � K it holds,X

i2S
qi =

X
i2S

�i +
X

l2Lin(S)

fl �
X

l2Lout(S)

fl � 0: (6)

From the above equation for S = K and the assumption that
Lin (S) = Lout (d) = ?, we get,

Tf = ��
X
i2K

qi: (7)

If the super�ow is a �ow, then qi = 0 for all i 2 K and
� = Tf ; i.e., the throughput equals the traf�c load.

IV. PERFORMANCE OBJECTIVES
The performance of the policy in overload mode is quan-

ti�ed through the overload vector q of the corresponding
super�ow. Several physically important properties of a policy
correspond to certain mathematical properties of the overload
vector. From (7) we see that in order to maximize the network
throughput it is enough to minimize the aggregate overload

min
q2Q�

X
i2K

qi: (8)

Also observe that if all the buffers at the nodes are equal,
the time to buffer over�ow of node i is (qi)�1; and the time
to �rst buffer over�ow in the network is, mini2Kfqi�1g =
(maxi2K qi)

�1. Hence overload vectors that are solutions to
the following problem,

min
q2Q�

max
i2K

qi; (9)
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maximize the time to �rst buffer over�ow in the network.
A stronger criterion than (9) is lexicographic minimization.
This optimization, also known as min-max optimization [3], is
based on the following order relation between vectors. Given a
vector v=(v1; :::; vn) ; let vi, i = 1; :::; n be the ith maximal
coordinate of v. We say that vector v is lexicographically
smaller than vector u, denoted by v�u, if either v1 < u1;
or for some i; 1 � i < n, vj = uj for 1 � j � i and
vi+1 < ui+1. If in addition we allow for the possibility that
vi = ui; for all i = 1; 2; ::n, we denote v4u. Note that
if for two vector v; u we have v 4 u then by de�nition
maxi vi � maxi ui.
According to the previous discussion, attempting to both

maximize throughput and minimize the time to �rst buffer
over�ow amounts to solving simultaneously problems (8) and
(9). In general solving each of these problems separately,
does not guarantee a solution to the other one. However, as
will be shown in the sequel, lexicographic minimization of
node overloads does provide optimal solution to both of these
problems.
In fact, it turns out the an even stronger property than

lexicographic minimization holds for the network under con-
sideration. To this end, we introduce the following partial
ordering. We say that vector v is more balanced than vector
u, denoted by v`u, if the following inequalities hold

iX
l=1

vl �
iX
l=1

ul; i = 1; :::; n: (10)

Note that if for the overload vectors q1, q2 we have that q1
` q2 then it follows that q14 q2 and furthermore, because of
(7), the throughput under q1 is larger than under q2:Moreover,
in case the node buffers are �nite and of equal size and the
buffers of all nodes are empty at time t = 0, a most balanced
overload vector minimizes at any time t; the amount of lost
traf�c due to buffer over�ow. To see this, assume that the node
buffers are of size A � 0: Then, under overload vector q, node
i will start loosing traf�c after time tqi = A=qi. Therefore,
de�ning

it , max
1�i�n

�
qi �

A

t

�
; (11)

the amount of traf�c lost due to buffer over�ow is (de�ne
qi (t�A=qi) = 0 if qi = 0),

F lostq (t) ,
itX
i=1

qi

�
t� A

qi

�
= t

itX
i=1

qi � itA: (12)

Let now q� be a most balanced overload vector and again
i�t , max1�i�n fq�i � A=tg. We will show that F lostq (t) �
F lostq� (t) for any t � 0. Indeed, consider two cases
a) it � i�t . Then, since for i � it it holds qi � A=t, we

have,

t

itX
i=i�t+1

qi � (it � i�t )A: (13)

Therefore,

F lostq (t) = t

i�tX
i=1

qi � i�tA+ t
itX

i=i�t+1

qi � (it � i�t )A

� t
i�tX
i=1

q�i � i�tA by (10) and (13)

= F lostq� (t) :

b) it < i�t . Then, since for i > it it holds qi < A=t, we
have,

t

i�tX
i=it+1

qi < (i
�
t � it)A: (14)

Therefore,

F lostq (t) = t

i�tX
i=1

qi � i�tA� t
i�tX

i=it+1

qi + (i
�
t � it)A

> t

i�tX
i=1

q�i � i�tA by (10) and (14)

= F lostq� (t) :

Hence a �most balanced� overload vector according to
relation ` is a very desirable property. A potential compli-
cation is that relation ` is a partial ordering and not any
two overload vectors are comparable with respect to that
ordering, unlike the throughput or the lexicographic criterion
that are total orderings. While it is certain than an optimal
throughput overload vector exist and the same holds for the
lexicographically optimal solution ([8]), this is not always
the case for a most balanced overload vector. It is shown
in the following that for the network under consideration a
lexicographically minimal vector is also most balanced.

V. PROPERTIES AND CHARACTERIZATION OF MOST
BALANCED SUPERFLOWS

Consider a super�ow, SABP, characterized by the following
inequalities that hold for any link l = (i; j) 2 L (for simplicity
of the notation we de�ne fij = f(i;j)).
SABP super�ow.

If qi < qj ; then fij = 0; (15a)
if qi > qj ; then fij = cij : (15b)

A super�ow satisfying inequalities (15) is called �Super�ow
of Adaptive Back Pressure policy�. The reason for this termi-
nology is that, as will be seen in Section VI, a SABP super�ow
can be obtained as limit of super�ows induced by a distributed
adaptive �ow update policy that is similar to the ABP policy
described in the introduction. The SABP super�ow can also be
thought of as the equilibrium point of �sel�sh routing� in cases
where the only information available to users is the backlog
change rate at the node where they are located, as well as
at the outgoing neighbors of that node. Hence the node (or
agents located at the node) directs its traf�c only to nodes
with smaller overloads in the hope that this way the traf�c
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will encounter smaller congestion. Problems related to sel�sh
routing have been the subject of several studies, see [15] and
the references therein.
The main result of the paper is summarized in the following

theorem.
Theorem 1: A super�ow induces a most balanced overload

vector if and only if it is SABP. The most balanced overload
vector is unique - however there may be more than one
super�ows inducing the most balanced overload vector.
The proof of the theorem is outlined in the following. For

more details the reader is referred to the Appendix.
We start with the following lemma which shows that a

super�ow inducing a lexicographically minimal node overload
vector is SABP.
Lemma 2: Let f� be a super�ow inducing a lexicographi-

cally minimal vector. Then f� is SABP.
To proceed we need some further properties that are satis�ed

by the overload vector induced by a super�ow. Because of (6)
and (4b) we have for any subset of nodes S � K,X

i2S
qi =

X
i2S

�i +
X

l2Lin(S)

fl �
X

l2Lout(S)

fl

�

0@X
i2S

�i �
X

l2Lout(S)

cl

1A+

: (16)

Let us de�ne for any S � K; S 6= ?;

B(S) ,

0@X
i2S

�i �
X

l2Lout(S)

cl

1A+

: (17)

For S = ? we use the convention B(S) = 0. The following
lemma provides a lower bound on the maximum overload
values on subsets ofK. For a setX , jXj denotes the number of
its elements. If S = ?; we use the convention B(S)= jSj = 0.
Lemma 3: Under any super�ow f inducing overload vector

q, for any S � K,

max
i2S

qi � B(S)= jSj ; (18)

and
max
i2K

qi � max
S�K

B(S)= jSj : (19)
Let bR1 = max

S�K

B(S)

jSj ;

S1 =
�
S :

B(S)

jSj = bR1; S � K; S 6= ?� ;bS1 = [S2S1S:
The next lemma shows the basic property of SABP super-

�ows related to min-max optimization.
Lemma 4: Let f be a SABP super�ow inducing overload

vector q. Then (19) is achieved with equality by q and bS1 is
the set of nodes with maximal overloads under f , i.e.,

qi = max
j2K

fqjg = bR1; i 2 bS1:
Hence, bS1 is the set of nodes with maximal overload under a
lexicographically minimal super�ow.

4S

3S

1S

2S

Fig. 3. A partitioning of the network to regions of nodes with the same
level of traf�c load intensity is depicted. Region bS1 includes all nodes with
maximum backlog build-up rate under the SABP policy. It corresponds to a
�hot spot� of the network. Region bS2 includes all nodes with second maximum
backlog build-up rate and so on. Region bS4 includes all nodes that are not
overloaded and the backlog build-up rate there is zero.

Consider now a SABP super�ow. If bS1 = K then according
to the previous discussion any SABP super�ow has overload
vector q� such that,

q�i =
B(K)

jKj ; i 2 K:

Assume next that bS1 � K. Since maxi2bSc1 qi < q; we
conclude from the de�nition of SABP super�ow that,

fij = 0; for all (i; j) 2 Lin
�bS1� ; (20)

fij = cij ; for all (i; j) 2 Lout
�bS1� : (21)

Consider the reduced network where the subgraph that
consists of the nodes in bS1 is removed and for each link in
Lout

�bS1� we put an exogenous arrival source to the node inbSc1 where the link terminates with intensity equal to the link ca-
pacity. We can apply the same argument to the reduced graph
in order to determine the set bS2 of nodes on which the second
largest overload for any SABP super�ow is achieved. In this
manner we end-up getting node sets bS1; bS2; :::; bSL; where on
set bSl the lth maximal overload for any SABP super�ow is
achieved, see Figure 3 for a graphical representation. Hence
any SABP super�ow determines uniquely the node overloads.
Since by Lemma 2 any most balanced super�ow is also a
SABP super�ow, we conclude.
Lemma 5: A super�ow induces a lexicographically minimal

overload vector if and only if it is SABP. The lexicographically
minimal overload vector is unique.
While the lexicographically minimal overload vector is

unique, there may be multiple super�ows that achieve this
overload vector. An example is shown in Figure 4.
The next lemma shows that a lexicographically minimal

overload vector is also most balanced.
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Fig. 4. For the network in the �gure, the lexicographically optimal overload
vector is q1 = q2 = q3 = 3. Two super�ows that achieve this vector are:
1) f12 = f13 = 4; f23 = 0; f2d = f3d = 1, and 2) f12 = 8; f23 =
4; f13 = 0; f2d = f3d = 1:

Lemma 6: Let q� be the overload vector induced by a
SABP super�ow. Then

q� ` q for all q 2 Q�: (22)
Combining Lemmas 5 and 6 we obtain Theorem 1.
The next Theorem shows that (22) is equivalent to mini-

mizing the sum of any convex nondecreasing function of node
overloads.
Theorem 7: For a vector of real numbers q = (qi)

n
i=1 ; it

holds
iX
l=1

q�l �
iX
l=1

ql; for all i = 1; :::; n;

if and only if
nX
i=1

g (q�i ) �
nX
i=1

g (qi) ; (23)

for any convex nondecreasing function g(q).
We note that property (23) is the de�ning property of �most

balanced� assignment in [11].

VI. DISTRIBUTED ASYNCHRONOUS SABP COMPUTATION
POLICIES

In this section we present an asynchronous distributed
method for computing SABP super�ows that relies on the
following local adjustment of a �ow, done on a per link basis.
Link Flow Update Rule
For link (i; j) do the following �ow update:
� If qi > qj and fij < cij then increase fij until either
fij = cij or qi = qj

� If qi < qj and fij > 0 then decrease fij until either
fij = 0 or qi = qj

If the above iteration is performed in�nitely often by each
link, without any need for coordination of successive iterations
among links we have convergence to an SABP super�ow.
More speci�cally, let tn; n = 0; 1; ::: be a sequence of
�ow adjustment times, tn > tn�1; n = 1; 2; ::: and ln =
(in; jn); n = 0; 1; ::: be a sequence of links such that the
origin node of link ln performs the �ow adjustment operation
described above at time tn on link ln. Assume that the update
operation on each link is performed in�nitely often, i.e. for
any time T and for any link l = (i; j) there is an update

instant tk > T at which node i performs the update on link
l. We have the following theorem
Theorem 8: Let fn be the super�ow vector at time tn and

qn the associated overload vector. If q� is the unique overload
vector associated with all SABP super�ows, then

lim
n!1

qn = q�;

lim
n!1

fn = f�:

where f� is some SABP super�ow.
As discussed in Section V, while q� is unique, f�is not. The

particular SABP super�ow to which convergence is obtained
in Theorem 8 depends on the sequence ln; n = 0; :: according
to which link �ows are adjusted.

VII. BALANCING A WEIGHTED OVERLOAD VECTOR

Several of the results of the previous sections can be
extended to the case where it is of interest to determine a most
balanced weighted overload vector in the sense of achieving
lexicographic minimization of the vector p = (qi=ai)i2N for
given constants ai > 0, i 2 N . This is of interest in situations
where the buffer sizes of network nodes may differ.
In this section we assume that for a given weight vector

a = (ai)i2N ; the performance vector of interest is p =
(qi=ai)i2N : For this performance vector, Theorem 1 still
holds, with "most balanced" replaced by "lexicographically
minimal". The only change necessary for the proofs to work is
to replace for any set S of nodes, jSj with M (S) =

P
i2S ai.

More speci�cally, we de�ne an SABPa super�ow as follows
SABPa super�ow.

If
qi
ai
<
qj
aj
; then fij = 0;

if
qi
ai
>
qj
aj
; then fij = cij :

We then have the following theorem.
Theorem 9: For a given weight vector a = (ai)i2N , a

super�ow induces a lexicographically minimal vector p =
(qi=ai)i2N if and only if it is SABPa. The lexicographically
minimal weighted overload vector is unique - however there
may be more than one super�ows inducing this vector.
Also, it holds true the partitioning of the network nodes

into sets bSa1 ; bSa2 ; :::; bSaL; where on set bSam the mth maximal
of p� = (q�i =ai)i2N for any SABP

a super�ow f� is achieved,
and for any M; 1 �M � L;

f�ij = 0; for all (i; j) 2 Lin
�
[Mm=1 bSam� ; (25)

f�ij = cij ; for all (i; j) 2 Lout
�
[Mm=1 bSam� : (26)

For general a; a lexicographically minimal overload vector
p� = (q�i =ai)i2N is not most balanced in the sense of (10).
However, two main properties discussed in Section IV, namely
throughput maximization and lost traf�c minimization still
hold.
Regarding throughput minimization, observe �rst that if

p� = 0 then the throughput is
P

i2K �i and therefore
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maximal. If on the other hand p� 6= 0, then L > 1 andbSaL = fi 2 N : q�i = 0g : From (25), (26), (6) we have,X
i2N

q�i =
X

i2[L�1m=1
bSam
q�i

=
X

i2[L�1m=1
bSam
�i �

X
l2Lout([L�1m=1

bSam)
cij :

Consider now any other overload vector q. We have,X
i2N

qi �
X

i2[L�1m=1
bSam
qi

�
X

i2[L�1m=1
bSam
�i �

X
l2Lout([L�1m=1

bSam)
cij by (6)

=
X
i2N

q�i ;

which by (7) implies throughput maximization.
To address the issue of lost traf�c minimization, let Ai > 0

be the buffer size of node i. Consider an SABPA super�ow and
let p� = (q�i =Ai)i2N be the induced performance vector. Let

m by themth maximal of p� = (q�i =Ai)i2N : For an overload
vector q; let F lostM;q (t) be the amount of lost traf�c due to
buffer over�ow up to time t; by nodes in the set [Mm=1 bSAm:
We then have the following theorem.
Theorem 10: Under an SABPA super�ow, if all buffers are

empty at time 0; then for any M = 1; 2; ::; L� 1; for any t in
the interval [1=
M ; 1=
M+1) ; it holds,

F lostM;q (t) � F lostq� (t) :
Since by de�nition F lostM;q (t) � F lostq (t) for all t � 0,

F lostq� (t) = 0 for 0 � t < 1=
1; and 
L = 0, we conclude,
Corollary 11: Under an SABPA super�ow, if all buffers are

empty at time 0; then for any t � 0;

F lostq (t) � F lostq� (t) :

VIII. DISCUSSION AND CONCLUSIONS
A problem related to the one discussed in this paper has

been studied by Sasaki and Hajek in [16], following earlier
related studies [17], [12]. They consider a single commodity
�ow network with a feasible arrival traf�c load vector and
some initial backlog distribution at the nodes. They provide
various algorithm for computing a �uid dynamic routing
policy that evacuates the network in an optimal manner. More
speci�cally under the optimal policy the amount of remaining
traf�c in the network (aggregate backlog) is minimized sample
path-wise, i.e. at every time instance. A direct consequence
is that both the network evacuation time is minimized as
well as the total delay; the latter being the time integral of
the remaining backlog till evacuation. The optimal routing
policy is obtained by �ow relaxation resulting in a quasi-
static routing policy that is expressed as a sequence of feasible
�ows that remain �xed for certain time intervals. That study
was for traf�c load within the feasible region. The same
question may be phrased in the more general case of traf�c
load not being necessarily within the feasibility region. A
more general problem that combines our approach in this

paper with delay consideration will be to minimize losses and
under the condition of minimum losses to minimize delay. A
combination of an SABP �ow routing, with �ow relaxation in
the resulting feasible component of the network will achieve
that conditional multiobjective optimization.
Polynomial time algorithms for determining a SABP super-

�ow exist, but they do not lead to distributed adaptive policies
which are of main concern when ad-hoc and sensor networks
are considered.
There is an apparent similarity between SABP �ows in

the �uid model studied in this paper and the adaptive back
pressure policy that performs packet level forwarding in a
stochastic dynamic model of the system. We conjecture that
the �uid �ow limit of the stochastic dynamic model of the
network operated under the adaptive back pressure policy is an
SABP �ow when the arrival rate vector is outside the stability
region. When the arrival rate vector is in the feasible region
the conjecture is true. From the global stability property of
ABP it follows that the �uid �ow limit of the network in the
feasible load case will be a feasible �ow for the particular
traf�c load vector. By de�nition of SABP every feasible �ow
is SABP.
In this work we concentrated on the routing and forward-

ing aspects of information transmission. A topic of further
investigation is to consider cross-layer issues where wireless
node interactions, rate adaptations and power control are also
taken into account. In this case, it turns out that lexicographic
minimization of node overloads does not guarantee throughput
maximization and a different formulation is required. A step
towards this direction has been taken in our recent work [10].
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APPENDIX
A. Proofs of Lemmas and Theorems
1) Lemma 2 : Let f� be a super�ow inducing a lexico-

graphically minimal vector. Then f� is SABP.
Proof: Let q� be the overload vector under super�ow

f�: Let for some link (i; j), q�i < q�j , but f�ij > 0. Reduce
f�ij by min

�
f�ij ;

�
q�j � q�i

�
=2
	
; i.e., create a new super�ow

f such that fl = f�l for all links different than (i; j);and for
link (i; j),

fij = max
�
0; f�ij �

�
q�j � q�i

�
=2
	
:

This either makes fij = 0 or equalizes qi and qj ; where q is
the overload under f . In either case, q�q�; a contradiction.
Similarly, if for j 6= d it holds q�i > q�j ; but f�ij < cij , create a
new super�ow f such that fl = f�l for all links different than
(i; j);and for link (i; j),

fij = min
�
cij ; f

�
ij +

�
q�i � q�j

�
=2
	
:

This either makes fij = cij or equalizes qi and qj . In either
case, q�q�, a contradiction. If j = d ; the same argument can
be applied by de�ning

fij = min
�
cij ; f

�
ij + q

�
i

	
:

2) Lemma 3. : Under any super�ow f inducing overload
vector q, for any S � K,

max
i2S

qi � B(S)= jSj ; (27)

and
max
i2K

qi � max
S�K

B(S)= jSj : (28)

Proof: If maxi2S qi < B(S)= jSj then
P

i2S qi < B(S),
which contradicts (16). Hence

max
i2S

qi <
B(S)

jSj :

Inequality (28) follows by observing that maxi2K qi =
maxS�K maxi2S qi.
3) Lemma 4: Let f be a SABP super�ow inducing overload

vector q. Then (19) is achieved with equality and bS1 is the
set of nodes with maximal overloads under f , i.e.,

qi = max
j2K

fqjg = bR1; i 2 bS1:
Hence, bS1 is the set of nodes with maximal overload under a
lexicographically minimal super�ow.
We �rst need the following lemmas.
Lemma 12: If for two subsets of K; S1 and S2; it holds,X

i2S1

�i �
X

l2Lout(S1)

cl; (29)

X
i2S2

�i �
X

l2Lout(S2)

cl; (30)

then

B(S1) +B(S2) � B(S1 [ S2) +B(S1 \ S2): (31)
Proof: Notice that in general it holds,X

l2Lout(S1)

cl +
X

l2Lout(S2)

cl �
X

l2Lout(S1[S2)

cl

+
X

l2Lout(S1\S2)

cl:

This, (17), (29) and (30) imply that

B(S1) +B(S2) =
X
i2S1

�i +
X
i2S2

�i�X
l2Lout(S1)

cl �
X

l2Lout(S2)

cl

�
X

i2S1[S2

�i +
X

i2S1\S2

�i�X
l2Lout(S1[S2)

cl �
X

l2Lout(S1\S2)

cl

� B(S1 [ S2) +B(S1 \ S2):

Lemma 13: If for two subsets of K; S1 and S2; it holds,
B(S1)

jS1j
=
B(S1)

jS2j
= bR1; (32)

then
B(S1 [ S2)
jS1 [ S2j

= bR1: (33)

Moreover, if S1 \ S2 6= ? then also,
B(S1 \ S2)
jS1 \ S2j

= bR1: (34)

Proof: By the de�nition of bR1 we have for any nonempty
subsets A1 and A2 of K;

B(A1)

jA1j
� bR1; B(A2)jA2j

� bR1;
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which implies that

B(A1) +B(A2)

jA1j+ jA2j
� bR1; (35)

with equality if and only if

B(A1)

jA1j
=
B(A2)

jA2j
= bR1: (36)

If bR1 = 0 then the de�nition of bR1 implies that B(S) = 0
for any subset of K and the lemma follows. Assume next thatbR1 > 0, hence B(S1) > 0 and B(S2) > 0. By Lemma 12 we
have

B(S1) +B(S2) � B(S1 [ S2) +B(S1 \ S2):

Taking also into account (32) and the fact that jS1j+ jS2j =
jS1 [ S2j+ jS1 \ S2j, we have,

bR1 = B(S1) +B(S2)

jS1j+ jS2j

� B(S1 [ S2) +B(S1 \ S2)
jS1 [ S2j+ jS1 \ S2j

: (37)

If S1 \ S2 = ? then B(S1 \ S2) = 0, hence the de�nition ofbR1 and (37) imply (33). If S1 \ S2 6= ?, (37) and (35) imply
that,

B(S1 [ S2) +B(S1 \ S2)
jS1 [ S2j+ jS1 \ S2j

= bR1;
and by (36), equations (33) and (34) hold.

Proof: (of Lemma 4). Let S1 be the set of all indices i
such that qi = maxj2K fqjg , q. If q = 0 then the assertion
follows directly from Lemma 3. Assume next that q > 0.
Because of (4) and (15) we have,

q jS1j =
X
i2S1

qi

=
X
i2S1

�i �
X

l2Lout(S1)

cl

= B(S1):

Hence q = B(S1)= jS1j � bR1. Also, Lemma 13 implies thatbR1 = B(bS1)= ��� bS1���. Taking also into account (28) we conclude,
q =

B(S1)

jS1j
=
B(bS1)��� bS1��� = bR1: (38)

By the de�nition of bS1 we have,
S1 � bS1:

Now, from the de�nition of q we haveX
i2bS1

qi �
��� bS1��� q

= B(bS1); by (38).
This and (16) imply thatX

i2bS1
qi = B(bS1);

which in turn implies that qi = q; i 2 bS1. Hence
bS1 � S1;

and the lemma follows. Since according to Lemma 2 any lex-
icographically minimal super�ow is SABP, we conclude that
the same holds for any lexicographically minimal super�ow.

4) Lemma 6: Let q� be the overload vector induced by a
SABP super�ow. Then

q� ` q for all q 2 Q�: (39)

We �rst need the following lemma.
Lemma 14: a) If bRn > 0 for n = 1; ::;m � L; then the

following equalities hold,

lX
n=1

bRn ��� bSn��� = B �[ln=1 bSn� > 0; l = 1; 2; :::m:
b) The following inequalities hold for any overload vector q.

X
i2[ln=1 bSn

qi �
lX

n=1

bRn ��� bSn��� ; l = 1; 2; :::; L:
Proof: a) We use induction. For l = 1 the equality holds

by the de�nition of bR1. Assume now that m > 1 and that
equality holds for l < m. Since by de�nition we then havebRn > 0; n = 1; ::; l; we conclude,

lX
n=1

bRn ��� bSn��� = B �[ln=1 bSn�
=

X
i2[ln=1 bSn

�i �
X

l2Lout([ln=1 bSn)
cl > 0: (40)

By the de�nition of bRl+1 we have
bRl+1 ��� bSl+1��� = X

i2bSl+1
�i +

X
l2Lout([ln=1 bSn)\Lin(bSl+1)

cl (41)

�
X

l2Lout(bSl+1)�Lin([ln=1 bSn)
cl:

From (40) and (41) we get

l+1X
n=1

bRn ��� bSn��� = X
i2[l+1n=1

bSn
�i �

X
l2Lout([l+1n=1

bSn)
cl

= B
�
[l+1n=1

bSn� > 0:

b) If bRl > 0 for some l = 1; 2; :::; L; we haveX
i2[ln=1 bSn

qi � B
�
[ln=1 bSn� by (16)

=
lX

n=1

bRn ��� bSn��� by part a).
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If bRL = 0 and L = 1 the inequality is trivial. If bRL = 0 and
L > 1 then by de�nition bRl > 0; 1 � l � L� 1; andX

i2[Ln=1 bSn
qi �

X
i2[L�1n=1

bSn
qi

�
L�1X
n=1

bRn ��� bSn��� by part a)
=

LX
n=1

bRn ��� bSn��� since bRL = 0:
Proof: (of Lemma 6) By de�nition we have

X
i2[ln=1 bSn

q�i =
lX

n=1

bRn ��� bSn��� ; l = 1; :::; L: (42)

This and part b) of Lemma 14 imply thatX
i2[ln=1 bSn

qi �
X

i2[ln=1 bSn
q�i ; l = 1; :::; L: (43)

Let

�bSn(i) :
" 

n�1X
k=1

��� bSk���+ 1! ; nX
k=1

��� bSk���#! bSn;
represent an ordering of the indices in bSn such that,

q� bSn (i)�q� bSn (i+1).
Consider the permutation �(i) of indices in K consisting of
the concatenation of �bSn(i); n = 1; ::; L. That is, if

n�1X
k=1

��� bSk��� < i � nX
k=1

��� bSk��� ;
then,

�(i) = �bSn(i):
We will show that

iX
l=1

q�(l) �
iX
l=1

q�l ; i = 1; :::; jKj : (44)

The lemma will then follow since qd = q�d = 0 and by the
de�nition of q we have for any permutation �(i) of the indices
in K,

iX
l=1

ql �
iX
l=1

q�(l); i = 1; :::; jKj : (45)

We show (44) using induction. For i = 1; (44) holds since by
de�nition

q�(1) = max
i2jbS1j qi

� max
i2jbS1j

B
�bS1���� bS1��� by (27)

= q�1:

Assume now that (44) holds for 1; 2; :::; i; but fails to holds
hold for i+ 1. That is,

kX
l=1

q�(l) �
kX
l=1

q�l ; k = 1; :::; i; (46)

but
i+1X
l=1

q�(l) <
i+1X
l=1

q�l : (47)

We will then have

q�(i+1) < q
�
i+1: (48)

Because of (43), it must hold for some m; 1 � m � L,
m�1X
k=1

��� bSk��� � i < i+ 1 < mX
k=1

��� bSk��� :
But since q�i = bRm for i 2 bSm, (48) and the de�nition of �(i)
implies that

q�(k) < bRm; k = i+ 1; :::; mX
k=1

��� bSk��� ;
which together with (47) implies thatX

i2[mn=1 bSn
qi <

mX
n=1

bRn ��� bSn��� ;
which contradicts (43).
5) Theorem 7: For a vector of real numbers q = (qi)ni=1 ;

it holds
iX
l=1

q�l �
iX
l=1

ql; for all i = 1; :::; n; (49)

if and only if
nX
i=1

g (q�i ) �
nX
i=1

g (qi) ; (50)

for any convex nondecreasing function g(q).
Proof: For the only if part, assume that (49) holds and

let
qi = q

�
i + "i; i = 1; ::; n:

Because of (49) we have,
iX
l=1

"l � 0; i = 1; :::; n: (51)

Since g(x) is convex, it holds for any x and x + " in the
domain of de�nition of g(x);

g(x+ ") � g(x) + "g0(x); (52)

where g0(x) is the left derivative of g(x) at x. Since g(x) is
convex, g0(x) is nondecreasing and hence,

g0 (q�i ) � g0
�
q�i+1

�
; i = 2; :::; n: (53)

Moreover, since g(x) is nondecreasing,

g0(x) � 0: (54)
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Based on the above and de�ning for convenience g0
�
q�n+1

�
=

0, we can write,

nX
i=1

g (qi) =
nX
i=1

g (qi)

=
nX
i=1

g (q�i + "i)

�
nX
i=1

g (q�i ) +
nX
i=1

"ig
0 (q�i ) by (52)

=
nX
i=1

g (q�i ) +
nX
i=1

 
iX
l=1

"l

!�
g0 (q�i )� g0

�
q�i+1

��
�

nX
i=1

g (q�i ) by (51), (53) and (54).

=
nX
i=1

g (q�i ) :

For the if part, de�ne for an i; 1 � i � n; the nondecreasing
convex function,

gi(x) = max fx; qig : (55)

Applying (50) to gi(x) we have

nX
l=1

gi (q
�
l ) �

nX
l=1

gi (ql) : (56)

By the de�nition of gi(x),

gi (ql) =

�
ql l � i
qi l � i+ 1 : (57)

Combining the above, we arrive at

iX
l=1

q�l + (n� i) qi =
iX
l=1

q�l +

nX
l=i+1

qi

�
iX
l=1

gi(q
�
l ) +

nX
l=i+1

gi(q
�
l ) by (55)

�
nX
l=1

gi (ql) by (56)

=

iX
l=1

gi(ql) +

nX
l=i+1

gi(ql)

=
iX
l=1

ql + (n� i) qi by (57),

from which we conclude that for any i; 1 � i � n;

iX
l=1

q�l �
iX
l=1

ql:

6) Theorem 8: Let fn be the super�ow vector at time tn
and qn the associated overload vector. If q� is the unique
overload vector associated with all SABP super�ows, then

lim
n!1

qn = q�;

lim
n!1

fn = f�:

where f� is some SABP super�ow.
We �rst need the following lemmas.
Lemma 15: Let ln = (in; jn). It holds,�

qnin
�2
+
�
qnjn
�2 � �qn+1in

�2
+
�
qn+1jn

�2
: (58)

The inequality is strict if and only if one of the following
two conditions holds: either a) qnin > q

n
jn
and fnln < cln or b)

qnin < q
n
jn
and fnln > 0.

Proof: If jn = d, then according to the Link Flow Update
Rule described in Section VI it holds,

qn+1in
= qnin � �; q

n+1
jn

= qd = 0; (59)

where
0 � � � qnin ; (60)

with � > 0 if and only if qnin > 0 and f
n
ln
< cln :

If j 6= d then,

qn+1in
= qnin � �; q

n+1
jn

= qnjn + �; (61)

where �
qnin � q

n
jn

�
=2 � � � 0 if qnin � q

n
jn ; (62a)�

qnin � q
n
jn

�
=2 � � � 0 if qnin < q

n
jn ; (62b)

with � 6= 0 if and only if the conditions stated in the lemma
hold.
From (59), (60) we conclude that, if jn = d;�
qn+1in

�2
+
�
qn+1jn

�2
=
�
qnin � �

�2 � �qnin�2 + �qnjn�2 :
with strict inequality holding iff � > 0; that is, only if and
only if qn;in > 0 and fnln < cln :
From (61), (62a) we conclude that if jn 6= d; then,�
qn+1in

�2
+
�
qn+1jn

�2
=
�
qnin � �

�2
+
�
qnjn + �

�2
: (63)

It is easy to see by simple calculations that under (62), it holds,�
qnin � �

�2
+
�
qnjn + �

�2 � �qnin�2 + �qnjn�2 ; (64)

with strict inequality holding iff � 6= 0; that is, if and only if
the conditions stated in the lemma hold.
Observing that at each link �ow adjustment time tn only the

overloads of nodes in and jn may be updated, we conclude
from Lemma 15,
Corollary 16: Let ln = (in; jn). It holds,X

i2N
(qni )

2 �
X
i2N

�
qn+1i

�2
: (65)

The inequality is strict if and only if one of the following
two conditions holds: either a) qnin > q

n
jn
and fnln < cln or b)

qnin < q
n
jn
and fnln > 0.

Lemma 17: It holds for any update time tn; and any link
l = (i; j); ��fn+1ij � fnij

�� � ��qn+1i � qni
�� :
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Proof: If at time tn the �ow of link l is not updated, then
fn+1ij = fnij and the inequality holds trivially. If on the other
hand the link is updated, then since this is the only update that
is taking place, it holds

qn+1i = qni �
�
fn+1ij � fnij

�
;

that is, ��fn+1ij � fnij
�� = ��qn+1i � qni

�� :
Proof: (of Theorem 8) Corollary 16 implies thatP

i2N (q
n
i )
2 converges at n ! 1: Since the super�ows fn

and the overload vectors qn, n = 1; 2; ::; take values in
a compact set, for any subsequence of (fn; qn) there is a
convergent subsequence (fnk ; qnk) so that

lim
k!1

qnk = eq; (66)

lim
k!1

fnk = ef : (67)

Moreover, by (65),X
i2N

(qnki )
2 �

X
i2N

eq2i for all k: (68)

Clearly, ef is a super�ow with overload vector eq. Moreover,ef is SABP and hence eq = q�. To see this note that if ef
is not a SABP then we can employ the Link Flow Update
Rule in Section VI, with ef as the initial super�ow, and for a
link l = (i; j) for which either a) eqi > eqj and efij < cij or
b) qnin < qnjnand efij > 0. According to Corollary 16 for the
resulting new overload q0 we haveX

i2K
eq2i >X

i2N
(q0i)

2
: (69)

Since the �ow on link l is updated in�nitely often, we can pick
k large enough and an update instant for link l, larger than tnk
so that for the resulting overload q0 after the link update, (69)
holds. Since

P
i2N (q

nk
i )

2 is monotonically decreasing, this
means that we can �nd k large enough so that

P
i2N (q

nk
i )

2

is reduced below
P

i2K eq2i ; a contradiction to (68).
Resorting to the general result that a sequence con-

verges to � iff any subsequence contains a further subse-
quence converging to �, we conclude that (66) holds. Since
limn!1

��qn+1i � qni
�� = 0 for any node i by (66), we conclude

from Lemma 17 that limn!1
��fn+1l � fnl

�� = 0 for any link
l and hence (67) holds.
7) Theorem 10: Under an SABPA super�ow, if all buffers

are empty at time 0; then for any M = 1; 2; ::; L� 1; for any
t in the interval [1=
M ; 1=
M+1) ; it holds,

F lostM;q (t) � F lostq� (t) :

Proof: For the lost traf�c for t 2 [1=
M ; 1=
M+1) we
have,

F lostq� (t) =
X

i2[Mm=1
bSAm
q�i

�
t� Ai

q�i

�
= t

X
i2[Mm=1

bSAm
q�i �

X
i2[Mm=1

bSAm
Ai:

Due to (25), (26), (6), it holds,X
i2[Mm=1

bSAm
q�i �

X
i2[Mm=1

bSAm
qi

and hence

F lostq� (t) � t
X

i2[Mm=1
bSAm
qi �

X
i2[Mm=1

bSAm
Ai:

Let qM =
�
qMi
�
i2[Mm=1

bSAm = (qi)i2[Mm=1
bSAm and let Ai be the

buffer size of the node with the ith maximal element of qM .
De�ne also,

iMt , max
i2[Mm=1

bSAm
�
qMi � Ai

t

�
:

Then,

F lostM;q (t) = t

iMtX
i=1

qMi �
iMtX
i=1

Ai

=

0@t X
i2[Mm=1

bSAm
qi �

X
i2[Mm=1

bSAm
Ai

1A
�

0B@t j[
M
m=1

bSAmjX
i=it+1

qMi �
j[Mm=1

bSAmjX
i=it+1

Ai

1CA
� F lostq� (t)�

0B@t j[
M
m=1

bSAmjX
i=it+1

qMi �
j[Mm=1

bSAmjX
i=it+1

Ai

1CA :
(70)

By de�nition of iMt , for i > iMt we have t < Ai

qMi
and hence,

t �
Pj[Mm=1

bSAmj
i=it+1

AiPj[Mm=1
bSAmj

i=it+1
qMi

: (71)

Form (70) and (71) the theorem follows.
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