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Abstract

We present a framework for designing optimal policies addressing resource allocation

problems in wireless networks. We consider a general utility function optimization ob-

jective. Specific choices of the utility functions lead to policies that satisfy several well-

known fairness criteria, e.g., max-min and proportional-fair. Traditional approaches for

solving these nonlinear optimization problems in an off-line manner, lead to nonadap-

tive policies that usually rely on system parameters, which may not be known a priory.

Within our framework the development of such policies is based on the adaptive em-

ployment of policies that solve linear optimization problems. In several situations the

development of policies for these linear problems is fairly simple and depends minimally

on system parameters. Subsequently we apply this method to three specific wireless

resource allocation problems. In particular we consider wireless fading channel systems

and provide optimal policies for a) uplink optimal power allocation for constant bit rate

connections, b) uplink optimal average throughput allocation, and c) downlink optimal

scheduling with limited transmission rate capabilities over multiple fading channels.

Keywords: Wireless Networks, Adaptive Policies, Resource Allocation, Fairness,

Stochastic Approximation.

1 Introduction

A main design issue in wireless networks is the development of mechanisms for sharing

limited and possibly time-varying system resources (e.g., bandwidth, base station buffer

space, base station power), by a number of users that may have limited energy resources.

The users may have conflicting performance requirements (throughput, delay, power con-

sumption) and hence the question arises, how to allocate system resources in a manner that

achieves a compromise between overall system performance and individual user satisfac-

tion. In this work we provide a framework for designing adaptive scheduling policies for
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various wireless resource allocation problems. In particular the ability of several policies to

allocate the wireless resources according to prespecified fairness criteria can be examined

within this framework. For the framework to be applicable, the system must satisfy certain

assumptions. These assumptions are natural for a variety of practical systems.

It turns out that in certain systems, optimal policies can be derived when the optimiza-

tion objective is a linear combination of user performance requirements. These policies are

often simple and depend minimally on system parameters. However, the linear optimization

criterion, while very important from the overall system perspective, may lead to overalloca-

tion of resources to certain users and underallocation to some others. Hence, optimization

objectives other than simple linear combinations have been proposed in the literature in

order to address this problem. Well-known among them, is the proportional-fair, [8], [9],

and the max-min allocation, [2]. These objectives are special or limiting cases of utility

function optimization. In the latter optimization, with each user there is an associated

utility function, usually nonlinear, expressing the user satisfaction (or dissatisfaction) for

receiving certain performance and the objective is to optimize the sum of user utilities, [8],

[9], [6]. The design of policies for these criteria requires new approaches. A direct off-line

approach for policy design based on associated nonlinear optimization problems usually

results in policies that depend on system parameters, which may not be known a priori, or

are difficult to compute. In a recent work, [12], a framework for opportunistic scheduling is

developed, which addresses the utility optimization problem. The policies provided in the

latter work are stationary, and depend on parameters that require the a priori knowledge

of system statistics.

In this paper we present a systematic approach for designing policies appropriate for ad-

dressing the fairness issue, based on the knowledge of policies that solve the linear objective

criterion. More specifically, it turns out that under certain assumptions that several systems

of interest satisfy, policies achieving general utility function optimization may be obtained

by employing in an adaptive fashion known policies for linear objective optimization. By

“adaptive” we mean that the coefficients in the linear objective optimization are updated

at regular intervals according to observed system performance and system state; next, until

the next update interval, a policy that solves the linear optimization problem is employed

and so on (see Section 2 for the details). Hence in a sense, for this class of systems, obtain-

ing a policy that solves the linear optimization problem provides immediately a policy for

solving more general fairness-related objectives. Oftentimes, the latter policy is as simple

as its linear counterpart and depends minimally on system parameters.

The approach outlined above, is based on stochastic approximation. Stochastic approx-

imation methods have been used to address problems in wireless communication, e.g. in

[5] where the objective is to maximize the minimum of user throughputs. The method

presented in this paper can address more general utility optimization problems. It has been
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employed successfully to the solution of specific control problems related to scheduling jobs

in multi-class queueing systems, [4], and recently to downlink scheduling in wireless com-

munications [19], for the system considered in [5]. However, the essential features of the

approach are hidden by the technical details of the specific problem addressed. An objec-

tive of this paper is to reveal the essential simplicity of the method and to describe it in a

systematic fashion so that it can be easily identified whether other problems fall within the

same framework. In addition, based on the proposed methodology, we also provide new,

adaptive policies for a number of problems related to wireless communication.

For the system in [5], results similar to ours were obtained independently in [11]. The

method in [11] is different than ours and is based on the study of the associated system

ordinary differential equation, an approach that has also been used in [3].

The rest of the paper is organized as follows. In Section 2 we present the basic framework

based on which adaptive optimal policies for wireless resource allocation problems can be

designed. In Section 3, we apply the framework developed in Section 2 to design optimal

scheduling policies for two resource allocation problems arising in uplink scheduling over

wireless fading channels when successive decoding is available. In Section 4, the same

framework is applied to a resource allocation problem arising in downlink scheduling over

multiple fading channels. In Section 5, we discuss approaches to relax several of the technical

assumptions made in Section 2. Finally, in Section 6 the conclusions of this work are given.

2 Motivation and Basic Approach

In the following we denote the space of N -dimensional real vectors by <N . Vectors are

denoted with boldface letters, e.g., x = (xi)
N
i=1 . The inner product of two vectors x, y ∈<N

is denoted by hx,yi , i.e., hx,yi =PN
i=1 xiyi. For x ∈ <, we define (x)+ = max {0, x} .

Consider N users that need access to a common resource. Assume that the system time

is slotted and that slot t, t ≥ 1, refers to the time interval [t− 1, t) . An allocation policy u
decides how to allocate the resource to the users at the beginning of each slot. There may

be constraints on policy u, e.g., the user transmission rates or user powers may be limited.

We denote by U the set of all admissible policies. Let xui (t) be the performance measure of

interest to user i, at slot t, under a resource allocation policy u ∈ U . We assume that this

measure is the time average of quantities occurring during each time slot, i.e.,

xui (t) =
1

t

tX
τ=1

Xu
i (τ) , (1)

where Xu
i (τ) is the quantity occurred in slot τ . For example, x

u
i (t) may be the average

throughput of user i up to time t (in bps), in which case Xu
i (t) is the number of bits

transmitted at slot t. Alternatively, xui (t) may represent the average power consumed by
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user i up to time t, and Xu
i (t) the power consumed by user i at slot t.

With user i there is an associated utility function fi (x) which can be interpreted as

the user “satisfaction” (or “dissatisfaction”) for having performance measure equal to x.

A general optimization cost related to fairness is then to minimize or maximize an overall

function of the form,

Fu(t) =
NX
i=1

fi (x
u
i (t)) , (2)

as t goes to infinity. For example, if the performance objectives are user throughputs and

fi(x) is interpreted as the user satisfaction for receiving throughput x, then the objective

is to maximize (2). If on the other hand the performance measure is the consumed average

user power and fi(x) is interpreted as the cost for consuming average power x, then the

objective is to minimize (2). For the sake of definiteness we will describe below the steps

and assumptions involved in the maximization problem. At the end of the section we will

describe the modifications needed to address the minimization problem.

The utility optimization involved in the maximization of (2)-for large t-constitutes a

general framework for providing fairness guarantees, special cases of which are well-known

fairness criteria. In particular, if max-min allocation of the system resource is desired [2],

then such an allocation can be approximated by using a family of utility functions of the form

f
(m)
i (x) = c−g (x)m ,where c is constant and g (·) is a differentiable, decreasing, convex and
positive function, e.g., f

(m)
i (x) = 1−1/xm. By adopting these functions as reward functions,

it can be shown that the allocation of performance measures converges to the max-min

allocation as m tends to +∞, [6]. If it is considered appropriate to apply the proportional-

fairness criterion, then the logarithmic functions can be chosen, i.e., fi (x) = ln (x), [8],

[9]. Another useful criterion is harmonic-mean-fairness, where fi(x) = −1/x. The choice
fi (x) = x1−α/ (1− a) leads to max-min fairness when α→∞, proportional-fairness when
α→ 1 and harmonic-fairness when a = 2, [15], [1].

For the maximization problem the total long-term reward obtained by a policy π is

defined as

Fu = lim sup
t→∞

NX
i=1

fi (x
u
i (t)) , (3)

and we are interested in finding an admissible policy with maximal Fu. We assume that

{fi (·)}Ni=1 are concave, nondecreasing, twice continuously differentiable real functions. We
are taking lim sup in (3) since it may not be known a priori whether the limit exists under

an arbitrary admissible scheduling policy. Formally we have the following problem.

Problem (P): Determine a policy u∗ such that Fu∗ ≥ Fu,

for all policies in U (admissible policies).

The constraints imposed on admissible policies, as well as the physical system con-
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straints, imply that the user performance measures lay in a certain region A of the N -

dimensional space called “achievable region”. More specifically, it can often be shown that

for any policy u ∈ U , it holds

Achievable Region:

lim
t→∞ (inf {|x

u(t)− x| : x ∈ A}) = 0. (4)

Assume now that A is compact and consider the following problem.

Problem (D):

maximize
NX
i=1

fi (xi) ,

subject to x ∈ A.

Since A is compact and the objective function continuous, there is an optimal solution

x∗ to the problem. It can also be shown that under the same conditions on A and on the

optimization objective function, (4) implies that for any u ∈ U (see Appendix A.1),

F u = lim sup
t→∞

NX
i=1

fi (x
u
i (t)) ≤

NX
i=1

fi (x
∗
i ) . (5)

Therefore, if we are able to find a policy u∗ such that

lim inf
t→∞

NX
i=1

fi

³
xu
∗

i (t)
´
≥

NX
i=1

fi (x
∗
i ) , (6)

we will have from (5) and (6) that

lim
t→∞

NX
i=1

fi

³
xu
∗

i (t)
´
= Fu∗ =

NX
i=1

fi (x
∗
i ) . (7)

Hence, from (5) and (7) we conclude that u∗ is a policy solving Problem (P).

As we saw above, the crucial point is to find a policy that satisfies (6). We will provide

such a policy whose design in based on stochastic approximation techniques. There are

several theorems related to stochastic approximation, with varying generality and technical

complexities. We describe below a fairly simplified version of a Theorem appearing in [4]

which is sufficient for our discussion and avoids several of the complicating technical issues

that may arise in specific applications. In Section 5 we indicate cases where the more general

version is needed.
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Theorem 1 In <N consider a stochastic sequence {y(t)}∞t=1, which satisfies the recursion,

y(t+ 1) = y(t) +
1

t+ 1
G(t+ 1), t ≥ 1. (8)

Assume that the following conditions hold:

a) There exists a compact set A ⊂ <N such that {y(t)}∞t=1 converges to A a.s., i.e.,

lim
t→∞ (inf {|y(t)− y| : y ∈ A}) = 0.

b) G(t) is bounded, i.e., |G(t)| ≤ B.

c) There exists a twice continuously differentiable function V : <N → < such that

h∇V (y(t)) , E [G(t+ 1) |y(τ), τ ≤ t ]i < −V (y(t)) . (9)

Then,

lim
t→∞ (V (y(t))

+ = 0.

Theorem 1 is related to Problem (P) as follows. We rewrite (1) (we omit the dependence

on u for simplicity).

xi (t+ 1) =
1

t+ 1

t+1X
τ=1

Xi (τ) =
1

t+ 1

tX
τ=1

Xi (τ) +
1

t+ 1
Xi (t+ 1)

= xi (t) +
1

t+ 1
[Xi (t+ 1)− xi (t)] . (10)

We identify x(t) with vector y(t) in Theorem 1, hence G(t+1) = X (t+ 1)−x (t). We also
set

V (x) =
NX
i=1

fi(x
∗
i )−

NX
i=1

fi(xi). (11)

With these identifications, we have

h∇V (y(t)) , E [G(t+ 1) |y(τ), τ ≤ t ]i =
NX
i=1

f 0i(xi(t))xi(t)−
NX
i=1

f 0i(xi(t))E [Xi(t+ 1) |x(τ), τ ≤ t ] . (12)

The (random) vector X(t + 1) depends on the allocation policy. Let us now impose the

following condition on the selected policy u∗.

Condition (C): Policy u∗ is such that the policy-induced vector

(E [Xi(t+ 1) |x(τ), τ ≤ t ])Ni=1 ,
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is a solution to the following linear optimization problem

maximize
NX
i=1

cixi

subject to x ∈ A,

where ci = f 0i(xi(t)), i = 1, 2, ..., N.

Under condition (C), since x∗ (the solution to Problem (D)) belongs to A, we will have,
NX
i=1

f 0i(xi(t))E [Xi(t+ 1) |x(τ), τ ≤ t ] ≥
NX
i=1

f 0i(xi(t))x
∗
i ,

and hence,

NX
i=1

f 0i(xi(t))xi(t)−
NX
i=1

f 0i(xi(t))E [Xi(t+ 1) |x(τ), τ ≤ t ] ≤
NX
i=1

f 0i(xi(t)) (xi(t)− x∗i ) . (13)

Using now the fact that fi(x) is concave, we have

f 0i(xi(t)) (xi(t)− x∗i ) ≤ fi(xi(t))− fi (x
∗
i ) ,

and taking also into account (12), (13) and (11), we conclude that

h∇V (x(t)) , E [G(t+ 1) |y(τ), τ ≤ t ]i ≤ −
Ã

NX
i=1

fi(x
∗
i )−

NX
i=1

fi(xi(t))

!
= −V (x(t)) .

Assuming that |X (t+ 1)− x (t)| ≤ B and using Theorem 1 we have,

lim
t→∞

Ã
NX
i=1

fi(x
∗
i )−

NX
i=1

fi(xi (t))

!+
= 0.

Hence,

NX
i=1

fi(x
∗
i )− lim inf

t→∞

NX
i=1

fi(xi(t)) = lim sup
t→∞

Ã
NX
i=1

fi(x
∗
i )−

NX
i=1

fi(xi(t))

!

≤ lim
t→∞

Ã
NX
i=1

fi(x
∗
i )−

NX
i=1

fi(xi (t))

!+
= 0,

and (6) holds.
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From the discussion above we see that the design of a policy that solves Problem (P)

may follow the steps below.

POLICY DESIGN STEPS

Assumptions on {fi (·)}Ni=1: concave, nondecreasing, twice continuously dif-
ferentiable real functions.

• Step 1. Determine the system achievable region.

• Step 2. Ensure that |X (t+ 1)− x (t)| ≤ B.

• Step 3. Find a policy that satisfies Condition (C), i.e., solves the linear optimization
problem. Employ this policy at time t using as constant coefficients for the linear

optimization problem the derivatives f 0i(xi(t)).

In several applications, the optimization in Step 3 is relatively easy to solve. Also, it often

turns out that the policy that solves the linear optimization problem relies minimally on

system parameters and statistics and thus is fairly simple. We will see examples of these

properties in the next Sections.

If minimization instead of maximization is sought, then the following modifications are

needed in the algorithmic steps above.

1. The functions {fi (·)}Ni=1 need to be convex instead of concave.

2. The policy objective function is defined as F u = lim inft→∞ Fu(t).

3. The linear optimization problem involves minimization instead of maximization.

3 Uplink Scheduling in Wireless Fading Channels with Suc-

cessive Decoding

In this section we develop optimal policies for two resource allocation problems arising in

uplink scheduling over fading channels when successive decoding (or successive interference

cancellation) is employed. In both of these problems the scheduling decisions are based on

the knowledge of the channel fading state in a slot-by-slot fashion and on the “history” of

system evolution. In the first problem we present an optimal scheduling policy when the

performance measure of a user is its average power consumption and in the second problem

an optimal policy is developed when the performance measure is the user throughput.
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3.1 Optimal Power Control

In this section we apply the framework developed above to the design of an optimal adaptive

resource allocation policy for an uplink (user to base station) wireless fading channel with a

single base station, where successive decoding is available. We are interested in policies that

keep track of the channel fading states for the various users in a slot-by-slot fashion. Based

on this channel state information the policies determine the user transmission powers as well

as the decoding order at the base station, in such a way that the Signal to Interference Ratio

(SIR) of each user remains above a prespecified threshold and the average user powers satisfy

certain fairness criteria. A constant user SIR is associated with constant transmission rate.

Hence, in this case scheduling aims at providing to each user a constant bit rate connection

over all slots, while at the same time minimizing an objective function of user average power

consumption. An information theoretic study of this system has been provided in [7].

3.1.1 System Model

We consider N users that need to access a single base station through a wireless fading

channel. The system is time-slotted and slot t refers to the time interval [t− 1, t). We are
interested in the uplink control of user transmissions in such a way that the users consume

power in a fair manner (see Figure 1). Let hi (t) denote the fading of user i at slot t. That

is, if user i transmits with power Pi(t) at slot t, the received power at the base station is

hi(t)Pi(t). It is assumed that the base station has knowledge (through measurements) of

the vector of users fades h(t) = (h1 (t) , ..., hN (t)) at time t− 1 and informs the users about
the powers they should use for transmission at slot t (the fading remains constant in the

interval [t − 1, t)). To avoid technical difficulties we assume that the fading process h(t),
t = 1, 2, ... consists of i.i.d. random variables taking values on discrete set H and denote

Pr (h) = Pr (h(t) = h).

Regarding coding we assume that successive decoding is available at the base station.

Successive decoding is a technique, which successively subtracts off the decoded signal from

the composite signal. Therefore when successive decoding is applied, users that are decoded

later experience reduced interference since the interference from previously decoded users is

subtracted off. For details on successive decoding, see e.g., [16], [20]. The order of decoding

at any given slot, is determined by π (i) , i = 1, ..., N, which is a permutation of {1, 2, ..., N}
such that user π (i) is decoded after users π (i+ 1) , ..., π (N) , i ≤ N − 1. Therefore user
π (N) is decoded first (i.e., receives the lowest priority) while user π (1) is decoded last

(receives the highest priority).

Assume that the decoding order π (i) , i = 1, ...,N, is employed at a given slot t. The
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Figure 1: System Model

SIR of user π (i) at slot t, which is denoted as γπ(i) (t) , is given by

γπ(i) (t) =
hπ(i) (t)Pπ(i) (t)

σ2 +
P

j<i hπ(j) (t)Pπ(j) (t)
, i = 1, ..., N,

where
P

j<1 f (j) = 0 and σ
2 denotes the variance of the background noise which is assumed

to be White Gaussian.

With each user i there is an associated target SIR ai. At every slot the SIR experienced

by user i must be no less than its target SIR, i.e., it is required that

γi (t) ≥ ai, for every i = 1, ..., N and every t ≥ 1. (14)

3.1.2 Problem Formulation

We are interested in controlling the uplink transmissions, i.e., in deciding the decoding

permutation and performing power control in every slot, in such a way that the user SIR

constraints defined in (14) are met while at the same time an objective function of the user

average transmission powers is minimized.

First we proceed with the description of the set of admissible policies U. A policy u

decides the decoding permutation and performs power control in every slot. In order to

make its scheduling decisions in a given slot t, a policy can use the history of the system

up to time t− 1, as well as the current state of the channel, i.e., the vector h (t) .
Let Pu

i (t) denote the power allocated to user i at slot t by a policy u. The average
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power consumption for user i up to slot t, under a policy u, is given by

pui (t) =
1

t

tX
τ=1

Pu
i (τ) . (15)

Following the notation of Section 2 the total cost of scheduling policy u is defined as

Fu = lim inf
t→∞

NX
i=1

fi (p
u
i (t)) , (16)

where {fi (·)}Ni=1 are convex, nondecreasing, twice continuously differentiable functions de-
fined on [0,∞). We seek an admissible policy u∗ such that the total cost associated with
this policy is minimal. In particular we are interested in the problem.

Problem (P1): Determine a policy u∗ such that Fu∗ ≤ Fu, for all u ∈ U.

The design of such a policy that solves Problem (P1) follows the algorithmic steps

presented in Section 2.

Step 1: Determine the Achievable Region.

If a decoding permutation π (i) is given and the channel is at state h, then in order to

satisfy the SIR requirements of the users, the user powers must belong to the region,

F (π,h) =

(
P :

hπ(i)Pπ(i)

σ2 +
P

j<i hπ(j)Pπ(j)
≥ aπ(i), i = 1, ..., N

)
.

It is easily seen that the solution P(π,h) to the system of equations

hπ(i)Pπ(i)

σ2 +
P

j<i hπ(j)Pπ(j)
= aπ(i), i = 1, ..., N,

always exists, belongs to F (π,h) and is minimal among the vectors in F (π,h) , i.e.,

Pi(π,h) ≤ Pi, for i = 1, ...N, P ∈F (π,h) .

Therefore, it is sufficient to restrict attention to policies which choose power vector P(π,h)

when the fading state is h and permutation π is selected. Hence a scheduling policy in U

must choose at any fading state h, the decoding order π, which in turn determines P(π,h).

Let u be such a policy and let t(π,h) be the amount of time up to time t that policy u

employs decoding order π when the fading state is h. Let also,

t(h) =
X
π

t(π,h), (17)
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be the amount of time up to time t that the system is in state h.

Then, the average power of user i under policy u at time t is

pui (t) =

Pt
τ=1 P

u
i (τ)

t
=

P
h

P
π Pi(π,h)t(π,h)

t

=
X
h

t(h)

t

X
π

Pi(π,h)
t(π,h)

t(h)
. (18)

Since the fading states are assumed independent, it holds

lim
t→∞

t(h)

t
= Pr (h) . (19)

Let us denote by C(h) the convex hull of the power vectors P(π,h), where π ranges over all
permutations of the set {1, 2...., N} . We observe from (17) that at any time t, it holds

X
π

P(π,h)
t(π,h)

t(h)
∈ C(h). (20)

From (18), (19) and (20) it can be easily seen (see Appendix A.2) that (4) is satisfied for

the region that is a convex combination of C(h), i.e.,

P =
(
p : p =

X
h

p(h)Pr (h) , p(h) ∈C(h)
)
. (21)

Step 2: Ensure that |X (t+ 1)− x (t)| ≤ B.

For the system under consideration we observe that

|X (t+ 1)| ≤ max
π,h

{|P(π,h)|}

which implies that x (t) is also bounded.

Step 3: Find a policy that satisfies Condition (C).

We need to find a policy u∗ such that at time t the vector³
E
h
Pu∗
i (t+ 1)

¯̄̄
pu

∗
(τ) , τ ≤ t

i´N
i=1

,

is a solution to the following linear optimization problem

minimize
NX
i=1

f 0i
³
pu
∗

i (t)
´
pi

subject to p ∈ P.
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We will show that the minimization above is achieved by the following simple policy.

Policy u∗ : At time t, select the permutation π∗ so that

f 0π∗(1)
¡
pπ∗(1) (t)

¢
hπ∗(1) (t+ 1)

≥ .. ≥
f 0π∗(N)

¡
pπ∗(N) (t)

¢
hπ∗(N) (t+ 1)

. (22)

To show this, we proceed as follows. Observe that conditioned on pu
∗
(t) and h(t + 1),

Pu∗
i (t+ 1) is independent of pu

∗
(τ) , τ < t. Taking also into account that h(t) is an i.i.d.

process and hence h(t+ 1) independent of pu
∗
(t) , we have

E
h
Pu∗
i (t+ 1)

¯̄̄
pu

∗
(τ) , τ ≤ t

i
=

X
h

E
h
Pu∗
i (t+ 1)

¯̄̄
pu

∗
(t) ,h(t+ 1) = h

i
Pr
³
h(t+ 1) = h|pu∗ (t)

´
=

X
h

E
h
Pu∗
i (t+ 1)

¯̄̄
pu

∗
(t) ,h(t+ 1) = h

i
Pr (h)

=
X
h

Pi(π
∗,h)Pr (h) .

Denoting for simplicity f 0i
¡
pu
∗

i (t)
¢
= f 0i , we have

NX
i=1

f 0iE
h
Pu∗
i (t+ 1)

¯̄̄
pu

∗
(τ) , τ ≤ t

i
=
X
h

Ã
NX
i=1

f 0iPi(π
∗,h)

!
Pr (h) .

Consider now any point p ∈ P. From (21) we have

p =
X
h

p(h)Pr(h), p(h) ∈C(h).

Hence
NX
i=1

f 0ipi =
X
h

Ã
NX
i=1

f 0ipi(h)

!
Pr (h) , p(h) ∈C(h).

Using an approach similar to the one used in [10] (or based on a result in [7, Page 2819] ) it

can be shown that the sum
PN

i=1 f
0
ipi(h), for p(h) ∈C(h) is minimized when permutation

π∗ is employed. Therefore,

NX
i=1

f 0ipi ≥
X
h

Ã
NX
i=1

f 0iPi(π
∗,h)

!
Pr (h) ,

i.e., policy u∗ indeed satisfies Condition (C). Therefore policy u∗ solves (P1).
It is worth noting that the proposed optimal policy u∗, does not require any information

about the channel statistics. In particular, u∗ is a fairly simple adaptive policy that in

13



each time slot decides a decoding permutation by using only a) the channel fading state in

that slot, and b) the observed average power consumption up to that slot. Then, once the

decoding permutation has been defined for slot t, the transmission power schedule for that

slot is easily computed (i.e., the vector P (π∗,h (t))).
In [7, Algorithm 4.1] an algorithm for minimizing the maximum average user power is

presented. This latter algorithm is off-line, relies heavily on the knowledge of channel statis-

tics (the complete pdf is required for the fading of each channel) and involves complicated

computations (integration over the channel state space).

3.2 Optimal Throughput Policies

Here we consider the same channel model as in Section 3.1. However, we do not impose

any SIR constraints, i.e., it is not required that the user bit rate be larger than a given

threshold at all times. Instead, the performance of interest is the long-term user throughput.

Hence the policies in Section 3.1 are geared towards supporting Constant Bit Rate (CBR)

connections while the policies in the current section are appropriate for “best effort” traffic.

The study of the capacity region of this system, as well as of some related linear optimization

problems has been done in [18].

3.2.1 System Model

The channel model is the same as in Section 3.1. We also assume that there is an instan-

taneous constraint on the power levels at which users can transmit. Specifically we assume

that there is a peak power constraint for each user transmission in any given slot, i.e.,

Pi (t) ≤ bPi, for all i = 1, ..., N , t ≥ 1. (23)

We assume again that successive decoding is available at the base station and that the

rate achieved by a user in slot t is related to its SIR through Shannon’s formula for the

information theoretic capacity. In particular, if Ri (t) is the rate for user i at slot t, we have

that

Ri (t) =
1

2
log
¡
1 + γ

i
(t)
¢
. (24)

3.2.2 Problem Formulation

A scheduling policy u consists of two components. In particular, a policy defines the decod-

ing permutation as well as power levels at which user transmissions take place in any given

slot. The scheduler (located at the base station) uses the channel state information h (t) ,

as well as the “history” of the system evolution up to time slot t − 1, in order to make a
scheduling decision regarding slot t and informs the users accordingly.

14



The “throughput” of user i at time t, under policy u is

rui (t) =
1

t

tX
τ=1

Ru
i (τ) . (25)

Following the notation of Section 2, the total reward of scheduling policy u is

Fu = lim sup
t→∞

NX
i=1

fi (r
u
i (t)) , (26)

where {fi (·)}Ni=1 are concave, nondecreasing, twice continuously differentiable functions
defined on [0,∞) .

We are interested in the problem

Problem (P2): Determine a policy u∗ such that Fu∗ ≥ Fu, for all u ∈ U .

The design of an optimal policy (i.e., a policy that solves (P2)) follows the algorithmic

steps presented in Section 2.

Step 1: Determine the Achievable Region.

Let h be a random vector with distribution the joint distribution of the fading states,

i.e., Pr(h). Using a special case of a result obtained in [18, page 2808] we have that the

achievable region of the system, is the set of rates defined by

R =
[
P(h)

R (P(h)) , (27)

where

R (P(h)) =
(
r :
X
i∈S

ri ≤ Eh
"
1

2
log

Ã
1 +

1

σ2

X
i∈S

hiPi(h)

!#
, ∀S ⊆ {1, ..., N}

)
,

and the union ranges over all vectors P(h) such that

0 ≤ Pi(h) ≤ bPi, i = 1, ...,N.

Since log(x) is increasing, it follows that R (P(h)) ⊆ R
³bP´ , where bP = ³ bPi´N

i=1
, i.e.,

R =
(
r :
X
i∈S

ri ≤ Eh
"
1

2
log

Ã
1 +

1

σ2

X
i∈S

hi bPi!# , ∀S ⊆ {1, ...,N}) . (28)

This region corresponds to the policy that allocates at each time slot the power vector bP,
i.e., the maximum allowable power to each user, independent of the fading state [18, page

15



2799]. Therefore, we may restrict attention to the set of policies U such that for every

u ∈ U it holds

Pu
i (t) = bPi, for every i = 1, .., N , t ≥ 1. (29)

Hence, in essence a scheduling policy u ∈ U, defines only the decoding order in any given

slot by taking into account the channel state information in that slot as well as the “history”

of the system up to that slot.

Step 2: Ensure that |X (t+ 1)− x (t)| ≤ B.

For the system under consideration we have that under any policy u,

X (t+ 1) = Ru (t+ 1) , x (t) = ru (t) .

The facts that the fading process and the transmit powers are bounded, imply through (24)

that Ru (t) is bounded as well. This in turn implies through (25) that ru (t) is also bounded

and hence the same holds for Ru (t+ 1)− ru (t) .
Step 3: Find a policy that satisfies Condition (C).

We will show that the following policy is optimal.

Policy u∗: At any slot t+ 1 the decoding permutation π∗ satisfies

f 0π∗(1)
¡
rπ∗(1) (t)

¢ ≥ f 0π∗(2)
¡
rπ∗(2) (t)

¢
... ≥ f 0π∗(N)

¡
rπ∗(N) (t)

¢
.

For any given state h consider the set

R (h) =
(
r :
X
i∈S

ri ≤ 1
2
log

Ã
1 +

1

σ2

X
i∈S

hi bPi! , for all S ⊂ {1, ...,M}
)
.

Denoting for simplicity f 0i(ru
∗

i (t)) = f 0i and using an approach similar to [10], or [18], it is
easy to prove that if policy u∗ is employed, then for any point r (h) ∈ R (h) it holds

NX
i=1

f 0iE
h
Ru∗
i (t+ 1)

¯̄̄
ru
∗
(τ) , τ ≤ t, h(t+ 1) = h

i
≥

NX
i=1

f 0iri (h) .

Consider now an arbitrary point r ∈R. According to [18], r can be written as

ri =
X
h

ri (h) Pr (h) ,

with r (h) ∈ R (h) .
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Hence under policy u∗, as in Section 3.1.2 it holds,

NX
i=1

f 0iE
h
Ru∗
i (t+ 1) |r (τ) , τ ≤ t

i
=

NX
i=1

f 0i
X
h

E
h
Ru∗
i (t+ 1) |r (t) ,h (t+ 1) = h

i
Pr (h)

≥
NX
i=1

X
h

f 0iri(h)Pr (h) =
NX
i=1

f 0i
X
h

ri(h)Pr (h) =
NX
i=1

f 0iri.

From the last inequality it is concluded that policy u∗ is such that the vector³
E
h
Ru∗
i (t+ 1)

¯̄̄
ru
∗
(τ) , τ ≤ t

i´N
i=1

,

is a solution to the linear optimization problem over the achievable region R. Hence condi-
tion (C) is satisfied and the proposed policy u∗ solves Problem (P2).

4 Downlink Scheduling over Multiple Wireless Fading Chan-

nels

In this section we deal with downlink scheduling (base station to users) over wireless fading

channels under the assumption that transmission to multiple users from the base station can

take place simultaneously as long as there are sufficient resources available. Simultaneous

transmission to multiple users can be achieved by employing spread spectrum techniques

that utilize multiple channels, e.g., via orthogonal codes. In such an environment, a policy

scheduling user transmissions so as to maximize the sum of the users throughputs, while

ensuring that throughput allocations are proportional to prespecified weights, was presented

in [13]. This is essentially a problem of maximizing the minimum of user weighted through-

puts. We adopt the system model of [13] and we use the framework presented in Section

2 to derive the achievable region and an optimal policy associated with the maximization

of the objective function given in (2) when the performance measure of interest is the user

throughputs. As stated in Section 2, appropriate choice of user objective functions permits

the approximate solution to the max-min optimization problem which is stricter than the

optimization considered in [13].

We now give the description of the system model. We consider N users that receive

information from the base station through multiple wireless fading channels. We assume

that the transmission rate to user i in any given slot t, Ri (t) , can take any value from

the set Si =
n
0, R1i , ..., R

Mi
i

o
, i.e., Ri (t) ∈ Si. The power consumption for user i at slot

t, Pi (t) , is linearly related to its transmission rate and in particular Pi (t) = gi (t)Ri (t) .
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Here, gi (t) is the per bit power consumption for transmission to user i at slot t, and is

varying with time due to fading. The channel state in slot t is described by the vector

g (t) = (g1 (t) , ..., gN (t)) . The assumptions for the process g (t) , t = 1, 2, ... are the same

as the assumptions used for the fading process in Sections 3.1 and 3.2. The main system

resource to be shared is the total transmission power P at the base station and it is required

that
NX
i=1

Pi (t) =
NX
i=1

gi (t)Ri (t) ≤ P, for all t. (30)

Hence, an admissible scheduling policy for this system decides in every slot the rates at

which transmission to users take place (note that a user may not be scheduled in a slot if

its assigned rate is zero), subject to the total power constraint given in (30).

The throughput of user i up to time t, the associated reward functions and the total

reward of an admissible policy u are the same as in Section 3.2.2. We are interested in the

problem

Problem (P3): Determine a policy u∗ such that Fu∗ ≥ Fu, for all u ∈ U .

Let the channel be in a given state g. Then, in order to satisfy the system resource

constraint (30), the user rates must belong to the region

RF (g) =

(
R ∈S1 × · · · × SN :

NX
i=1

giRi ≤ P

)
.

Consider a scheduling policy u and define by t (R,g) the amount of time up to time t that

policy u selects the transmission rate vector R ∈ RF (g) , when the channel is in state g.

Also let t (g) denote the amount of time up to time t that the system is in state g. Following

the steps of Section 3.1.2, it is easy to derive the achievable region and to state an optimal

policy (i.e., a policy that solves (P3)) for the system under consideration. In particular, the

achievable region R, is the set

R =
(
r : r =

X
g

r (g) Pr (g) , r (g) ∈ R (g)
)
,

where R (g) is the convex hull of all transmission vectors R ∈ RF (g).

The optimal policy u∗, is

Policy u∗. At time slot t, select the transmission rate vector R∗ that is the
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solution to the optimization problem

maximize
NX
i=1

ciRi,

subject to : R ∈R (g (t)) ,

where ci = f 0i(r
u∗
i (t)), i = 1, ..., N.

Since R (g (t)) is the convex hull of all vectors in RF (g(t)) it is sufficient to maximizePN
i=1 ciRi over all vectors in RF (g(t)). This latter problem is a form of the Knapsack

problem and hence NP-complete. In spite of this, there are pseudopolynomial time algo-

rithms for finding an optimal solution, which work well in practice [14]. There are also

fully polynomial time approximations to this problem. If in order to ensure small running

time such a polynomial time approximation algorithm is chosen (rather than an exact pseu-

dopolynomial algorithm), then the problem arises whether this approximate solution to the

linear problem guarantees an approximate solution to the original problem and in what

sense. This issue requires extensions to the framework presented in this paper.

5 Relaxing the Assumptions

The basic policy design steps developed in Section 2 rely on certain simplifying assumptions

which permitted us to reveal the essential features of policies involved. However, in certain

systems some of these assumptions may be restrictive. Dealing with these cases requires

a more general version of the stochastic approximation Theorem 1 and several technical

details that depend on the system under consideration. There are various versions of the

stochastic approximation theorem with varying degrees of generality. A fairly general one

can be found in [4, Section 3.2] which we restate in Appendix A.3 so that we can refer to it

in the discussion below. In this section we examine some of the assumptions made in the

previous sections and discuss the manner that may be weakened.

1. Assumptions on {fi (·)}Ni=1 : These can be weakened somewhat. Mainly, these as-
sumptions are imposed so that the Lyapunov function condition (38), as well as (40)

is satisfied. Specifically, for the maximization problem, it can be assumed that fi(x),

i = 1, .., N, are concave, continuously differentiable and satisfy condition (38) (with

the obvious correspondence). Hence it is not required that the second derivative of

fi(x) to be continuous. For example, it suffices that f
0
i(x) is a piecewise linear function.

2. Boundedness of the drift X (t+ 1) − x (t): This assumption may be removed based

on condition (SA.2). For example, in [4, Section 3.2] it was sufficient to make certain
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assumptions on the moments of the input parameters for the system under consider-

ation.

3. Condition (C): This condition may not be true when one looks at the “one step”

conditional expectation. For the systems considered in Sections 3.1, 3.2 and 4, if

we remove the assumption that the system state process consists of i.i.d. variables

Condition (C) will not hold. However, it may still hold when one looks at longer

time intervals. The more general version of the theorem in Appendix A.3 allows us

to deal with such cases. We outline below the approach to be followed for the system

in Section 3.1 if the fading process is regenerative.

Let us make the (unrealistic, see next item) assumption that the updates of average

user powers take place at the regeneration instants Tn of the fading process, and

that E [T1] < ∞. These updates determine the coefficients f 0(pi(Tn)) of the linear
optimization during the whole interval [Tn, Tn+1). Until the next regeneration instant

Tn+1, the permutation employed in every slot is chosen so that (22) is satisfied with

numerators fixed to f 0i(pi(Tn)). That is, at time t, t = Tn, ....Tn+1 − 1, we select the
permutation π∗ so that

f 0π∗(1)
¡
pπ∗(1) (Tn)

¢
hπ∗(1) (t+ 1)

≥ .. ≥
f 0π∗(N)

¡
pπ∗(1) (Tn)

¢
hπ∗(N) (t+ 1)

.

Setting pi,n = pi(Tn), Dn+1 = Tn+1−Tn and bPi(Tn+1) =PTn+1
τ=Tn+1

Pi(τ) we can write

pi,n+1 = pi,n +
1

n+ 1

Ã bPi(Tn+1)
E [T1]

− DnPin
E [T1]

!
+

1

(n+ 1)1+ρ
(n+ 1)ρ

µ
E [T1] (n+ 1)

Tn+1
− 1
¶Ã bPi(Tn+1)

E [T1]
− DnPin

E [T1]

!
.(31)

In this form, there is an obvious correspondence between (31) and (36). Since by

the regenerative assumption Tn is the sum of i.i.d. variables, i.e., Tn =
Pn

m=1Dn, it

holds,

lim
n→∞

E [T1] (n+ 1)

Tn+1
= 1.

It turns out the the term in (31) corresponding to G
(2)
n+1 in (36) is small and satisfies

the requirements of the stochastic approximation theorem. The main inequality to

obtain is (40). For the latter inequality, following the general approach outlined in
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Section 2 it can be seen that it is sufficient to show that the vectorÃ
E

" bPi(Tn+1)
E [T1]

¯̄̄̄
¯pn

#!N

i=1

,

satisfies Condition (C). This can be done in a similar manner as in Section 3.1 after

observing that since the fading process is regenerative it holds

Pr(h) =
E [T1(h)]

E [T1]
,

where T1(h) is the number of slots in [0, T1) that the fading process is in state h.

4. To deal with regenerative fading process above, we made the unrealistic assumption

that updates of average user powers take place at regeneration instants. This as-

sumption may also be removed. In [4, Section 3.2] it was shown for the corresponding

system that is it sufficient to make updates so that no more that 2L regeneration

points occur between two updates, where L is any fixed number. The proof of this

requires the full power of the theorem in Appendix A.3, and is using the fact that

the policy is of index type. Since the policy determined by (22) is also of index type,

the proof should be adaptable to the system of Section 3.1. The main idea is that

if enough history is used for the updates (i.e., time is long enough), then updates

within a regeneration period will not change the numerators in inequalities (22) by

much and the resulting policy will be close to the one where updates take place only

at regeneration instants.

5. The derivation of the achievable region usually requires minimal assumptions. For

example, observe that for the arguments leading to the achievable region in Section

3.1, only require that the ergodicity limits (19) hold.

Finally we discuss the practical issue of ability of the system to adapt to changes.

Measurements of the type (1) become insensitive to changes as time grows. Hence in

practice, either the measurements are confined in a window (t− T, t), or old measurements

are weighed out, i.e., (18) is replaced with,

bxui (t+ 1) = (1− β)
t+1X
τ=1

βt−τXu
i (τ) = βbxui (t) + (1− β)Xu

i (t+ 1) .

For these latter updates it was shown in [3] that for β close to 1, the system performance

remains close to the optimal one. Simulation experiments in [19] showed that for the wireless

system under consideration such a choice provides a good compromise between convergence

and adaptivity.

21



6 Conclusions

We presented a framework for designing optimal adaptive policies, which are related to

fairness, in wireless networks. The proposed framework is especially useful when the policies

for the solution of related linear optimization problems are relatively simple. This situation

arises in several interesting applications. Moreover, it turns out that in certain systems

the linear optimization policies depend minimally on system parameters. In this case, the

policies designed within the proposed framework inherit the same property.

The essential steps involved in the policy design are simple. Taking into account general

assumptions about system parameters and statistics may require considerable technical

details, which obscure the essential simplicity of the method. However, there are several

general theorems based on which the problems arising from the generality of the assumptions

can be addressed.
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A Appendix

A.1 Proof of Inequality (5)

In this appendix we provide a proof of inequality (5) in a slightly more general setting.
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Lemma 2 Let A be a compact set and F (x) a continuous function in <N .Assume that for

a sequence x(t) ∈ <N it holds

lim
t→∞ (inf {|x(t)− y| : y ∈ A}) = 0. (32)

Then

lim sup
t→∞

F (x(t)) ≤ F (x∗).

where x∗ is an optimal solution to the problem

maximize F (x)

subject to x ∈ A.

Proof. The compactness of A ensures that x∗ exists. Therefore, it suffices to show that
for any δ > 0 there is a tδ such that

F (x(t)) ≤ F (x∗) + δ, for all t ≥ tδ.

To show this, note first that the continuity of F (x) and the compactness of A imply the

uniform continuity of F (x) in a compact neighborhood [17],

Aa = {z : |z− y| ≤ a for some y ∈A} , a > 0.

Hence, for the given δ, there is and εδ > 0 such that

|F (x)− F (y)| < δ, whenever |x− y| ≤ εδ and x,y ∈Aa. (33)

Let now ε = min {a, εδ} . Assumption (32) implies that for the given ε there is a t0 such

that

inf {|x(t)− y| : y ∈ A} < ε, t ≥ t0.

Since the function e(y) = |x(t)− y| is continuous in y and A is compact, the infimum is

achieved for a point y(t) ∈ A. That is, we have

|x(t)− y(t)| < ε, t ≥ t0, y(t) ∈ A. (34)

Inequality (34) implies that x(t) ∈ Aa and since obviously y(t) ∈ Aa, we have from (33)

that

F (x(t)) ≤ F (y(t)) + δ ≤ F (x∗) + δ, t ≥ t0,

as desired.
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Notes:

1. If x∗ minimizes F (x), then in an analogous fashion it can be shown that

lim inf
t→∞ F (x(t)) ≥ F (x∗).

2. It is easily seen by the proof that it suffices to assume that F (x) is continuous in a

neighborhood Aa of the set A.

A.2 Stability Region of the Problem in Section 3.1.2

We have to prove that

lim
t→∞ (inf {|p

u (t)− p| : p ∈P}) = 0, (35)

where P = ©p : p =Ph p(h)Pr (h) , p(h) ∈C(h)
ª
. From (20) we have that

p(t)=
X
h

X
π

P(π,h)
t(π,h)

t(h)
Pr (h) ,

belongs to P. For this particular p(t), consider the difference

|pu (t)− p(t)|

=

¯̄̄̄
¯X
h

t(h)

t

X
π

P(π,h)
t(π,h)

t(h)
−
X
h

X
π

P(π,h)
t(π,h)

t(h)
Pr (h)

¯̄̄̄
¯

=

¯̄̄̄
¯X
h

µ
t(h)

t
−Pr (h)

¶X
π

P(π,h)
t(π,h)

t(h)

¯̄̄̄
¯

≤ max {|p| : p ∈ ∪hC(h)}
X
h

¯̄̄̄µ
t(h)

t
−Pr (h)

¶¯̄̄̄
.

Using (19) and the last inequality we conclude that limt→∞ |pu (t)− p(t)| = 0. Since

p(t)∈P, (35) follows.

A.3 A Stochastic Approximation Theorem

In <N consider a sequence yn, n = 1, 2, ... which for ρ > 0 satisfies the recursion

yn+1 = yn +
1

n+ 1
G
(1)
n+1 +

1

(n+ 1)1+ρ
G
(2)
n+1, n ≥ 1. (36)

Also consider a non-decreasing family of σ-fields G1 ⊆ . . . ⊆ G such that for n ≥ 2, G(1)
n

and G
(2)
n are measurable with respect to Gn. Assume that the following hold.
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(SA.1) There exists a compact set A ⊂ <N such that yn, n = 1, 2, ... converges to A a.s.,

i.e.,

lim
n→∞ (inf {|yn − y| : y ∈ A}) = 0.

In what follows fix M > 0 such that A ⊆ ©y ∈ <N : |y| ≤M
ª
.

(SA.2) There exist

• a sequence of events {E1,n}∞n=2 such that E1,n ∈ Gn for n ≥ 2 and

Pr
³
lim inf
n→∞ E1,n

´
= 1

and

• a random variable X ≥ 0 with E [X] <∞

such that for i = 1, 2 and on {|yn| ≤M},

Pr
n
1E1,n+1

¯̄̄
G
(i)
n+1

¯̄̄
> x

¯̄̄
Gn
o
≤ C Pr {X > x} , x ≥ 0. (37)

(SA.3) There exists a continuously differentiable Lyapunov-type function V : <N → <
such that for y ∈<N with |y| ≤M, and h ∈ <N with |h| ≤ 1,

|V (y+ h)−V (y)− hOV (y),hi| ≤ C |h|2 . (38)

Also, there exist events {E2,n}∞n=2 with E2,n ∈ Gn for n ≥ 2, such that

Pr
³
lim inf
n→∞ E2,n

´
= 1, (39)

and for ε > 0 there exists ε > 0 and m ≥ 1 such that for n ≥ m and on E2,n ∩
{|yn| ≤M} ∩ {V (yn) > ε} it holdsD

OV (yn), E
h
G
(1)
n+1

¯̄̄
Gn
iE

< −ε. (40)

Theorem 3 Under conditions (SA.1)-(SA.3),

lim
n→∞ (V (yn))

+ = 0.

26


