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Abstract

Adaptive algorithms are obtained for the solution of separable optimization problems in
multiclass M/GI/1 queues with Bernoulli feedback. Optimality of the algorithms is estab-
lished by modifying and extending methods of stochastic approximation. These algorithms,
can be used as a basis for designing policies for semi-separable and approximate lexico-
graphic optimization problems and in the case of M/GI/1 queues without feedback, they
also provide a simple policy for lexicographic optimization. The results obtained on stochas-
tic approximation imply convergence of classical recursions such as Robbins-Monroe in cases
where the conditional second moment of their increments is not Þnite.

Keywords: Stochastic Scheduling, Queueing Systems, Adaptive Control, Stochastic Ap-
proximation.



1 Introduction

AnM/GI/1 queue with Bernoulli feedback consists of a single server and a set ofN queueing

nodes denoted by N := {1, . . . , N}. Exogenous arrivals to the queues are Poisson with rate
λi for node i ∈ N . The service requirement of each job in node i ∈ N is independent of

all else and has distribution Bi(·). The service in each queue is Þrst-come-Þrst-served and
upon completion at node i ∈ N a job is routed to node j ∈ N with probability pij and

leaves the system with probability pi0 := 1−Pj∈N pij .

For this model, we address the problem of allocating the server to the nodes in order

to satisfy certain design criteria. The service allocation policies we consider are nonidling,

nonpreemptive for each job in each node, and nonanticipative. The last term means that

scheduling decisions do not depend on the arrival times of jobs that will arrive in the future

and on the service times of jobs that will complete service in the future. Call such policies

admissible and denote their set by Π. To date, only policies that minimize the weighted

sum of average delays have been identiÞed, see Klimov [17],[18] and Tcha and Pliska [26].

While this may be appropriate for some situations, there are applications (see [2]) for which

it is natural to consider more general functions of average delays. In this paper, we address

a class of such optimization problems and provide optimal scheduling policies.

For u ∈ Π, i ∈ N and n ≥ 1, denote by Rui (n) the delay of the nth job in node i

under policy u, to arrive either externally or from a node in N\{i}. Also, set Ru (n) :=
(Ru1 (n) , . . . , R

u
N (n))

T . We Þrst consider the following problem.

Separable minimization Consider real valued, convex and continuously differentiable

functions {φi(·)}i∈N on R with the property that for M > 0 and θ, h ∈ RN such that

|θ| ≤M , |h| ≤ 1, there exists a constant C ≥ 0, depending on M, such that¯̄
φi(θi + hi)− φi(θi)− φ0i(θi)hi

¯̄ ≤ Ch2i , i ∈ N . (1)

For such functions consider the following problem.

Problem (S) inf {lim supn→∞
P
i∈N φi ((1/n)

Pn
k=1R

u
i (k)) : u ∈ Π}.

The condition in (1) is satisÞed if the φi�s are twice continuously differentiable. This

somewhat weaker form is imposed in order to accommodate integrals of piece-wise linear

functions arising in applications (see [2]).

We provide simple adaptive policies that solve this problem. The policies are of the

following type. At each decision instant, the delays at the various nodes are estimated and

then used to determine the priorities of the nodes that remain Þxed until the next decision

instant. The choice of the decision instants is fairly arbitrary and the only statistical param-

eters that are used are the Þrst moments of the service times and the routing probabilities.
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We develop techniques of Stochastic Approximation to prove the optimality of the policies

under minimal statistical assumptions, namely Þniteness of the second moment of service

times.

Problem (S) can be used as a basis for the solution of semi-separable and approximate

lexicographic and min-max optimization problems that arise naturally in applications. In

the special case of models without feedback, a simple policy for lexicographic optimization

can easily be derived. While we have strong reasons to believe that the same policy is

optimal for the general problem of queues with feedback, we lack a proof at this time. For

details on these variants of problem (S), the reader is referred to [2].

The optimal policies for the problem of minimizing linear costs of average delays in

queues with feedback are strict priority rules. When there is no feedback, the policy becomes

particularly simple. See [28] and references therein for related work, which relies mainly

on methods of dynamic programming and moment generating functions. The linearity of

the cost is heavily used in these approaches and it is difficult to see how to use these

techniques for the more general problems considered in this paper. Our approach here is

rather different; it relies on the structure of the space of achievable mean delays and uses

techniques of Stochastic Approximation.

For multi-class M/GI/1 queues without feedback, the set of achievable vectors of mean

delays was characterized by Coffman and Mitrani [6], Gelenbe and Mitrani [11] and extended

by Georgiadis and Viniotis [12]. The result was based on the conservation law of Kleinrock

[16]. The set is a polymatroid whose vertices can be achieved by strict priority policies. A

simple derivation of this fact was obtained in Shanthikumar and Yao [25]. They also show

that this property holds for several other models which, however, do not include models

with feedback considered in this paper.

Several problems of deterministic optimization can be solved efficiently by special meth-

ods when the constraint set is a polymatroid; see [10] and [15]. In particular, it is well

known that linear programs can be solved by a �greedy� procedure. In [8], [9], [22] and

[23] it is proposed to utilize the solution of the deterministic optimization problem in order

to obtain scheduling policies for M/GI/1 queues without feedback. The computation of

a dynamic priority policy of the type of Section 3.7 in [16] is presented in [8]. To imple-

ment this approach for non-linear costs, one would have to estimate the coefficients of the

achievable polymatroid. For some of the models in [25] however, some of the coefficients

have not been computed to date. In [9] an approximation is used to circumvent this prob-

lem. In addition, the approach requires the estimation of the arrival rates and of the Þrst

and second moments of the service times. Two computations must then be performed on

these estimates. The Þrst one obtains the optimal vector of delays while the second one

determines the dynamic priority that achieves it. These computations must be repeated as

the model parameters ßuctuate and the estimates are updated. Randomized policies of the
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type suggested on p.205 of [11] can be used instead of dynamic priority policies but they

are usually considered impractical because the variance of the delays may be unacceptably

high.

The introduction of feedback in the model, entails considerable complications. The

achievable region of mean delays for this model was determined in Tsoucas [27]. The set is

again a polytope whose vertices can be achieved by strict priority policies. It is no longer

a polymatroid, however. Linear programs on this polytope can be solved efficiently by

means of Klimov�s algorithm [17]. More general deterministic optimization problems on this

polytope are considered in Bhattacharya et al [1]. The proposed algorithm for computing

node priorities at the decision instants is based on Klimov�s algorithm [17]. An alternative

algorithm which has appeared in the literature as a solution to linear optimization problems

for queues with feedback, [20], and has certain computational advantages in some situations

can also be used (see [2]). In contrast to the previous approaches, our policies do not require

the computation of the optimal point or the knowledge of the boundaries of the polytope;

the only statistical parameters used are the Þrst moment of the service times and the routing

probabilities.

In our earlier work [3], we analyzed adaptive policies that solve lexicographic optimiza-

tion problems with linear cost functions for queues without feedback. Besides addressing a

considerably more general problem, our technique here departs from the one in [3] in two

signiÞcant respects. First, our policies in [3] were analyzed in the case where updates were

performed only at the beginning of busy periods. As a consequence, the updates become

infrequent for large utilizations, which leads to large variability of delays. For the policy

presented in the paper, the only restriction on the time between updates is that this time

is no more than 2L busy periods, where L is Þxed but arbitrary. Hence, even if a busy

period is long, updates can be done at short intervals, for example at the completion of

every service or at short time intervals, and the policy would still be optimal. The variance

of our optimal policy can be controlled in this way. Second, in [3] we required that the

fourth moment of the service time distribution be Þnite. Here, Þniteness of only the second

moment is required. This condition cannot be weakened further. Measurements in existing

systems suggest that service requirements can be quite volatile. It is therefore desirable

to establish the applicability of our policies under the weakest possible assumptions. The

generality of model and of the update instants, together with the weakening of the moment

assumptions lead to considerable complications and require new techniques.

The difficulty of analyzing queueing systems under policies with general update rules

seems to be an inherent one. It also appears in a class of stochastic gradient algorithms

which give rise to one-dimensional recursions. Chong and Ramadge [4] were able to deal

with this difficulty. Our approach is similar in spirit but the models and the problem

formulations are quite different and require substantially different techniques. Our results
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were derived independently. Furthermore, one should be able to use our method to reduce

the requirement in [4] that no moment of the service time distribution lower than the sixth

be inÞnite. This is straightforward for [5].

It turns out that our method for reducing moment requirements has broader applicabil-

ity. Methods of analyzing stochastic recursions typically require Þniteness of the conditional

second moment of their increments. We replace this requirement by a stochastic dominance

condition and Þniteness of the conditional Þrst moment. The relevant result is Theorem 3

in §4.2.

The remaining of this paper is organized as follows. The optimal policy for problem

(S) is described in §2. Optimality is established in §3. Results on stochastic approximation
that are used in §3 are proved in §4.

A few words on notation: It is assumed that all processes considered in this paper are

constructed on a common probability space (Ω,F ,P). Almost sure (a.s.) convergence is
with respect to P. We do not distinguish between random variables that are equal almost

surely and drop the indication �a.s.� The symbol C is used in inequalities to denote a

sufficiently large positive constant. Its value is immaterial and may be different in different

inequalities. The derivative of a function f(x) is denoted as f 0(x). Finally, for x ∈ R, deÞne
x+ := max {x, 0}.

2 A policy for separable minimization

2.1 Preliminaries

Let λ := (λ1, . . . , λN)
T and denote by P the matrix with elements {pij}i,j∈N . We make the

following assumptions:

(C.1) For each node i ∈ N there exists a node j ∈ N such that λj > 0 and with positive

probability a job in j will visit i before leaving the system.

(C.2) The matrix I − P is invertible.

(C.3) The service time distributions, Bi(·), i ∈ N , have Þnite second moments, i.e.R∞
0 t2dBi(t) <∞.

(C.4) With βi :=
R∞
0 t dBi(t), i ∈ N , β := (β1, · · · , βN )T ∈ RN and λ := (λ1, · · · , λN)T ∈

RN , the stability condition λT (I − P )−1β < 1 holds.

Conditions (C.1) and (C.2) imply that there is a unique and positive α ∈ RN+ that solves
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the ßow equations

α = λ+ αP. (2)

As in [27] it can be shown that for u ∈ Π the sequence of delay vectors {Ru (n)}n≥1
satisÞes certain linear constraints that are imposed by the work conserving property of u.

To describe them two sets of constants are needed. First, for S ⊆ N and i ∈ S let aSi denote
the expected total amount of service that a job starting in node i receives before exiting S

for the Þrst time. In matrix notation Þrst step equations give

aS = (I − PSS)−1 βS . (3)

Second, non-negative constants {F (S) : S ⊂ N} exist, that are independent of u ∈ Π; by
convention set F (∅) = 0. With {αi}i∈N as deÞned in (2), the constraints are written as a

polytope

A :=
(
x ∈ RN :

X
i∈N

aNi αixi = F (N ) ;
X
i∈S
aSi αixi ≥ F (S) , S ⊂ N

)
.

Lemma 1 (a) For u ∈ Π and S ⊂ N ,

lim
n→∞

X
i∈N

aNi αi
1

n

nX
k=1

Rui (k) = F (N ), (4)

lim inf
n→∞

X
i∈S
aSi αi

1

n

nX
k=1

Rui (k) ≥ F (S) . (5)

Equality obtains and the limit exists in (5) if u gives priority to nodes in S over nodes in

N\S.

(b) For x in A there exists a policy u ∈ Π such that limn→∞ (1/n)Pn
k=1R

u(k) = x.

As the above result shows, the constants {F (S) : S ∈ N} are fundamental in charac-
terizing the system. While they are hard to compute in general (and not known todate for

some models), it is worth noting that the policy proposed here does not use the knowledge

of these constants.

The next lemma shows that the inÞmum in Problem (S) can be achieved and establishes a

connection with an associated deterministic problem. For x ∈ RN set φ (x) :=P
i∈N φi(xi),

for n ≥ 1 set R̄u(n) := (1/n)Pn
k=1R

u(k), and denote y∗ := min {φ(x) : x ∈ A}.

Lemma 2 There exists a policy v in Π that solves Problem (S) and furthermore,

lim
n→∞φ

¡
R̄v(n)

¢
= y∗. (6)
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Proof Since A is compact and φ(·) is continuous, there exists x∗ ∈ A such that φ(x∗) = y∗.
This and Lemma 1(b) imply that

inf

½
lim sup
n→∞

φ
¡
R̄u (n)

¢
: u ∈ Π

¾
≤ y∗.

The result will follow if we show that for u ∈ Π,
lim inf
n→∞ φ

¡
R̄u(n)

¢ ≥ y∗. (7)

For δ > 0 consider the set

Aδ :=
(
x ∈ RN :

¯̄̄̄
¯X
i∈N

aNi αixi − F (N )
¯̄̄̄
¯ ≤ δ, X

i∈S
aSi αixi ≥ F (S)− δ, S ⊂ N

)
.

The continuity of φ(·) and the compactness of A imply that for any D > 0, δ > 0 can be

chosen so that min
n
φ(x) : x ∈ Aδ

o
≥ y∗ − D. Lemma 1 and the continuity of φ(·) imply

that lim infn→∞ φ
¡
R̄u(n)

¢ ≥ y∗ − D, and this establishes (7). 2

We next present a policy that solves Problem (S).

2.2 Optimal policy

The scheduling policies used in computer operating systems and communication networks

are usually of the following kind: A Þxed scheduling rule is employed for a certain time

interval at the end of which the rule is updated in order to incorporate new information

such as system performance, traffic ßuctuations, etc. The frequency of updates is restricted

by the overhead of monitoring and limited computational resources. The policy we consider

is similar. It employs a Þxed priority rule that is updated at instants that can also be chosen

quite arbitrarily.

SpeciÞcally, for u ∈ Π let {Fut }t≥0 be the σ-Þeld generated by the vector of queue lengths
{ηu(s)}0≤s≤t which we take to be right continuous. The a policy π ∈ Π that we propose

here speciÞed by

� a sequence of update instances {σπn}∞n=1: these are Fπt -stopping times (set σπ0 = 0);
� a permutation π (σπn) of N that determines a Þxed priority rule with which jobs are

served in the interval [σπn, σ
π
n+1), n = 0, 1, . . . . A permutation π on N is identiÞed

with a Þxed priority rule where node πi has priority over node πj for i < j.

The sequence of permutations {π (σπn)}∞n=0 is determined from Klimov�s [17] algorithm

which is given next.
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Algorithm (A.1) Its input is a vector c ∈ RN and its output consists of all permutations
π on N that can be obtained via the following two steps.

Step 1. Set SN := N and

νN := min

(
ci
aNi

: i ∈ N
)
.

Pick

πN ∈ argmin
(
ci
aNi

: i ∈ N
)
. (8)

Step 2. For k = 0, . . . ,N − 2, set SN−(k+1) := SN−k\ {πN−k}, and

νN−(k+1) := min

ci −
Pk
l=0 a

SN−l
i νN−l

a
SN−(k+1)
i

: i ∈ SN−(k+1)
 .

Pick

πN−(k+1) ∈ argmin
ci −

Pk
l=0 a

SN−l
i νN−l

a
SN−(k+1)
i

: i ∈ SN−(k+1)
 . (9)

To indicate dependence on c we will write {νi (c) , Si (c) , πi (c)}i∈N .

The input to algorithm (A.1) at the decision instant σπn is determined as follows. Let

Aπi (t) be the number of jobs served at node i by time t under policy π, incremented by one.

The additional job is included in order to have a positive quantity for all t ≥ 0. Also, set

θi (t) :=
1

Aπi (t)

Z t

0
ηπi (s) ds, ξi (t) :=

t

Aπi (t)
φ0i (θi (t)) . (10)

Policy π uses permutation π (σπn) := π (ξ (σ
π
n)) , n = 0, 1, . . ., i.e., an output of Algorithm

(A.1) with input {ξi (σπn)}i∈N .

It is clear that no optimality property can hold unless an upper bound is imposed on the

lengths of intervals between updates
©
σπn+1 − σπn

ª∞
n=0

. Assume that the system is empty at

t = 0, set T0 = 0 and by Tn, n ≥ 1, denote the end of the nth busy period. We impose on
π

Condition (U) For some L ≥ 1 for each n ≥ 0 there is m ≥ 1 such that

TnL ≤ σπm < T(n+1)L.

Consequently, successive updates are no more than 2L busy periods apart.
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3 Optimality of policy π

3.1 Preliminaries

In this section and the next we embark on a somewhat lengthy proof of the fact that policy

π solves Problem (S).

Recall that for n ≥ 1, Tn denotes the end of the nth busy period. Since the server does
not idle whenever there are jobs in the system, it is clear that the length of a busy period

and hence Tn, is invariant over policies u ∈ Π. The same is true for Aui (Tn) and we can
therefore set Ani := A

u
i (Tn). For n ≥ 1 and i ∈ N deÞne the indices

θni := θi (TnL) =
1

AnL,i

Z TnL

0
ηπi (s) ds ξni := ξi (TnL) =

TnL
AnL,i

φ0i (θni) . (11)

If it can be shown that limn→∞ φ (θn) = y∗ then it will follow that limn→∞ φ
¡
R̄π (n)

¢
= y∗.

This implication can be established easily by using the continuity of φ, the compactness of

A and the identity

Aui (Tn)−1X
k=1

Rui (k) =

Z Tn

0
ηi (s) ds, i ∈ N , n ≥ 0, u ∈ Π. (12)

So we only need to prove

Theorem 1 limn→∞ φ (θn) = y∗.

The proof begins with the derivation of a recursion for {θn}∞n=1. Set τ := E [T1] and

recall that {αi}i∈N is the solution of the throughput equation (2). Note that, by (C.1),

αi > 0, i ∈ N . For n = 0, 1, . . . and i ∈ N set

Kn+1,i :=
A(n+1)L,i −AnL,i

Lταi
, an+1,i :=

A(n+1)L,i
(n+ 1)Lταi

, Jπn+1,i :=
1

Lταi

Z T(n+1)L

TnL

ηπi (s)ds.

(13)

It can be easily veriÞed that for i ∈ N and n = 1, 2, . . . ,

θn+1,i = θni +
1

n+ 1

h
Jπn+1,i − θniKn+1,i

i
+

1

n+ 1

Ã
1

an+1,i
− 1

!h
Jπn+1,i − θniKn+1,i

i
. (14)

Observe that by (11), θ0 = 0. More generally we will consider sequences {θn}∞n=0 generated
by (13) with arbitrary initial condition θ0 ∈ RN .
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Almost sure convergence properties of this recursion can be studied in the framework of

stochastic approximation. To this end, for ρ > 0 write in the obvious correspondence with

(14)

θn+1 := θn +
1

n+ 1
f
(1)
n+1 +

1

(n+ 1)1+ρ
f
(2)
n+1, (15)

and set

fn+1 := f
(1)
n+1 +

f
(2)
n+1

(n+ 1)ρ
, n ≥ 0. (16)

We will see later that f
(2)
n+1 = O (1) in a sense that will be made precise, and that the

convergence properties of (14) are determined primarily by f
(1)
n+1.

Consider the following Liapunov-type function.

θ∗ ∈ argmin {φ (θ) : θ ∈ A} , (17)

V (θ) :=
X
i∈N

[φi (θi)− φi (θ∗i )] . (18)

We use the term �Liapunov-type�, since V (θ) ≥ 0 only when θ ∈ A. As shown in the proof
of Lemma 2,

lim inf
n→∞ V (θn) ≥ 0. (19)

Theorem 1 will then follow if it is shown that

lim
n→∞ (V (θn))

+ = 0. (20)

This will be our objective for the remainder of this section.

Before proceeding with a rigorous description of our technique it seems worthwhile to

devote a few paragraphs to the heuristic considerations that have motivated it. To obtain

a recursion for {V (θn)}∞n=0, we expand V (θn+1) about V (θn) with remainder rn+1.

V (θn+1) = V (θn) +
1

n+ 1

D
∇V (θn), f (1)n+1

E
+

1

(n+ 1)1+ρ

D
∇V (θn), f (2)n+1

E
+ rn+1, n ≥ 0,

(21)

where by (1), (15) and (16),

|rn+1| ≤ C

(n+ 1)2
|fn+1|2 , (22)

on {|θn| ≤M} ∩ {|fn+1| ≤ n+ 1}, n ≥ 0.

Central in most a.s. convergence results of stochastic approximation is Theorem 1 of

Robbins and Siegmund [21]. The next lemma is a slight extension of that result. Although it

is not used until §4.1 we state it here because it provides a useful guide to the developments
that follow.
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Lemma 3 On (Ω,F ,P) consider a nondecreasing family of σ-Þelds G0 ⊆ G1 ⊆ . . . ⊆ F and
Gn-measurable random variables {zn, βn, ξn, ζn}n≥0 such that βn, ξn and ζn are non-negative
and

E
h
zn+1

¯̄̄
Gn
i
≤ zn (1 + βn) + ξn − ζn. (23)

Then, limn→∞ zn exists and is Þnite, and
P∞
n=0 ζn <∞ on the set( ∞X

n=0

βn <∞,
∞X
n=0

ξn <∞
)
∩
n
lim inf
n→∞ zn > −∞

o
.

Recall the deÞnition of the σ-Þelds {Fπt }t≥0 and set

Fn := FπTnL . (24)

Since {Tn}∞n=0 are invariant with respect to policies u ∈ Π, π has been dropped from the

notation.

The deterministic counterpart in [1] and an analogy with [3] suggest an application of

this lemma with zn = V (θn), βn = 0, Gn = Fn and

ζn = − 1

n+ 1
E
hD
∇V (θn), f (1)n+1

E ¯̄̄
Fn
i

= − 1

n+ 1

D
∇V (θn), E

h
f
(1)
n+1

¯̄̄
Fn
iE

The last equality follows since θn is Fn-measurable. Two difficulties arise which are absent
in [3].

(a) It must be shown that
D
∇V (θn), E

h
f
(1)
n+1

¯̄̄
Fn
iE
≤ 0, n ≥ 0. We will see that this is true

only on certain events and whenever V (θn) > 0.

(b) To apply Lemma 3 one must take the conditional expectation of
D
∇V (θn), f (2)n+1

E
with

respect to Fn. However, this may be inÞnite according to the results in Section 9.10 of
Wolff [29], since assumption (C.3) of §2.1 only requires Þniteness of second moments of the
service time distributions. The same problem arises in taking the conditional expectation

of |rn+1|.

Existing results in stochastic approximation seem inadequate for handling difficulties (a)

and (b) which turn out to be substantial. For this reason we have formulated and proved a

convergence result which applies to this situation. We state it next and show that it implies

(20) and hence Theorem 1. Its proof, which is based on Lemma 3, is deferred until §4.
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3.2 A result on stochastic approximation

In RN consider a sequence {θn}∞n=0 which for ρ > 0 satisÞes the recursion

θn+1 = θn +
1

n+ 1
f
(1)
n+1 +

1

(n+ 1)1+ρ
f
(2)
n+1, n ≥ 0. (25)

Also consider a non-decreasing family of σ-Þelds F0 ⊆ F1 ⊆ . . . ⊆ F such that for n ≥ 1,
f
(1)
n and f

(2)
n are measurable with respect to Fn. Assume that the following hold.

(SA.1) There exists a compact set A ⊂ RN such that {θn}∞n=0 converges to A a.s., i.e.,

lim
n→∞ inf {|θn − y| : y ∈ A} = 0.

In what follows Þx M > 0 such that A ⊆
n
θ ∈ RN : |θ| ≤M

o
.

(SA.2) There exist

� a sequence of events {E1n}∞n=1 such thatE1n ∈ Fn for n ≥ 1 and P (lim infn→∞E1,n) =
1 and

� a random variable X ≥ 0 with E [X] <∞
such that for i = 1, 2 and on {|θn| ≤M},

P
n
1E1,n+1

¯̄̄
f
(i)
n+1

¯̄̄
> x

¯̄̄
Fn
o
≤ CP {X > x} , x ≥ 0. (26)

(SA.3) There exists a continuously differentiable Liapunov-type function V : RN → R

such that for θ ∈ RN with |θ| ≤M and h ∈ RN with |h| ≤ 1,

|V (θ + h)− V (θ)− h∇V (θ), hi| ≤ C |h|2 . (27)

Also, there exist events {E2,n}∞n=1 with E2,n ∈ Fn for n ≥ 1, such that

P
³
lim inf
n→∞ E2,n

´
= 1, (28)

and for D > 0 there exists D̄ > 0 and m ≥ 0 such that for n ≥ m and on E2,n ∩
{|θn| ≤M} ∩ {V (θn) > D} D

∇V (θn), E
h
f
(1)
n+1

¯̄̄
Fn
iE
< −D̄. (29)

Theorem 2 Under conditions (SA.1)-(SA.3),

lim
n→∞ (V (θn))

+ = 0.

11



3.3 VeriÞcation of conditions (SA.1)-(SA.3)

Consider recursions (14) and (25) which as the notation suggests, are identiÞed term-wise.

The associated σ-Þeld is {Fn}∞n=0 as deÞned in (24).

Conditions (SA.1) and (SA.2)

Condition (SA.1) is a simple consequence of Lemma 1. For (SA.2) recall the deÞnition

of Kni from (13) and for n ≥ 0 set

Nn+1 :=
T(n+1)L − TnL

Lτ
, Kn+1 :=

X
i∈N

Kn+1,i. (30)

Note that Jπni ≤ LτKniNn for i ∈ N . This implies that on {|θn| ≤M}¯̄̄
f
(1)
n+1

¯̄̄
≤ N max {Lτ,M} (Kn+1Nn+1 +Kn+1) .

To bound
¯̄̄
f
(2)
n+1

¯̄̄
recall the deÞnition of ani from (13) and for n ≥ 1 set

bn :=
TnL
nLτ

.

For 0 < ρ < 1/2 deÞne the event

E1,n :=

½
max

½
ani,

1

ani

¾
≤ 1 + 1

nρ
, i ∈ N

¾
∩
½
max

½
bn,

1

bn

¾
≤ 1 + 1

nρ

¾
. (31)

On {|θn| ≤M} we get

1E1,n+1

¯̄̄
f
(2)
n+1

¯̄̄
≤ N max {Lτ,M} (Kn+1Nn+1 +Kn+1) .

That P (lim infn→∞E1n) = 1 follows easily from the law of the iterated logarithm. See e.g.

p.374 of Dudley [7].

Note that the sequences {Kn}∞n=1, {Nn}∞n=1 are i.i.d. random variables and thatKn+1, Nn+1
are independent of Fn. Furthermore, recall condition (C.3) of §2.1 which requires that the
distributions of service times have Þnite second moments. By virtue of Section 9.10 in [29]

this implies that E
£
K2
1

¤
and E

£
N2
1

¤
are Þnite and by the Cauchy-Schwartz inequality,

E [K1N1] ≤ E
h
K2
1

i1/2
E
h
N2
1

i1/2
<∞.

We can therefore pick

X := N max {Lτ,M} (K1N1 +K1) (32)

12



and the veriÞcation of (SA.2) is complete.

Condition (SA.3)

We verify now (SA.3) for the Liapunov-type function V given by (18). Condition (27)

immediately follows from (1) of §1. It remains to show that (28) and (29) are satisÞed. This
is the lengthiest part of the proof and occupies the rest of this section.

We begin by upper-bounding the term
D
∇V (θn), E

h
f
(1)
n+1

¯̄̄
Fn
iE
. In addition to the

properties of {Kn}∞n=1 mentioned in the paragraph containing (32), note that E [K1i] = 1,
i ∈ N . For u ∈ Π, i ∈ N and n ≥ 0 set

Jun+1,i :=
1

Lταi

Z T(n+1)L

TnL

ηui (s) ds, J̄un+1 := E
h
Jun+1

¯̄̄
Fn
i
. (33)

From (14) and (15) we obtainD
∇V (θn), E

h
f
(1)
n+1

¯̄̄
Fn
iE
=
X
i∈N

φ0i (θni)
h
J̄πn+1,i − θni

i
. (34)

From the convexity of {φi}i∈N one gets for i ∈ N , θ ∈ RN ,

φ0i (θi) (θ
∗
i − θi) ≤ φi (θ∗i )− φi (θi) .

This and (18) imply thatX
i∈N

φ0i (θni)
h
J̄πn+1,i − θni

i
=

X
i∈N

φ0i (θni)
h
J̄πn+1,i − θ∗i

i
+
X
i∈N

φ0i (θni) (θ
∗
i − θni)

≤
X
i∈N

φ0i (θni)
h
J̄πn+1,i − θ∗i

i
− V (θn) , n ≥ 0. (35)

Next, recall the deÞnition of ξn from (11) and consider the variables {νi (ξn) , Si (ξn) , πi (ξn)}n≥0
in Algorithm (A.1). Whenever there is no possibility of confusion we will drop their depen-

dence on ξn altogether. From (A.1) and the deÞnition of policy π observe that

TnL
AnL,πN−k

φ0πN−k
¡
θn,πN−k

¢
=

kX
l=0

a
SN−l
πN−kνN−l, k = 0, . . . , N − 1.

This implies

X
i∈N

φ0i (θni)
h
J̄πn+1,i − θ∗i

i
=

N−1X
l=0

νN−l
X

i∈SN−l
a
SN−l
i αi

h
J̄πn+1,i − θ∗i

i

+
N−1X
l=0

νN−l
X

i∈SN−l
a
SN−l
i αi

µ
ani
bn
− 1

¶h
J̄πn+1,i − θ∗i

i
, (36)

13



which together with (34) and (35) implies

D
∇V (θn), E

h
f
(1)
n+1

¯̄̄
Fn
iE

≤
N−1X
l=0

νN−l
X

i∈SN−l
a
SN−l
i αi

h
J̄πn+1,i − θ∗i

i

+
N−1X
l=0

νN−l
X

i∈SN−l
a
SN−l
i αi

µ
ani
bn
− 1

¶h
J̄πn+1,i − θ∗i

i
−V (θn). (37)

We will show that for appropriate choice of events E2,n, the Þrst two terms in (37) can be

upper bounded by an arbitrarily small positive quantity as n→∞ on the set E2,n∩{|θn| ≤
M} ∩ {V (θn) > D}, which implies (29). We will need the following fact.

Lemma 4 J̄πn+1 ∈ A , n ≥ 0.

Proof The truth of this statement will be intuitively clear from the argument given below.

A proof in exacting detail using the measure-theoretic deÞnition of conditional probability,

will be tedious and lengthy given the complexity of the model and not pertinent to our

objective here.

Consider policy u which agrees with π in [0, T(n+1)L) and in the kth cycle, [TkL, T(k+1)L),

k ≥ n + 1, acts as policy π would, if this (kth cycle) was the nth cycle. Since arrivals are
Poisson and service times are mutually independent and independent of the arrivals it

follows that given Fn, i.e., the history up to time TnL, the cycles
n
[TkL, T(k+1)L)

o
k≥n are

i.i.d. and the process {ηu (t+ TnL) : t ≥ 0} is regenerative with respect to the cycle process.
Therefore for i ∈ N ,

lim
k→∞

1

AkL,i

Z TkL

0
ηui (t) dt =

1

Lταi
E

"Z T(n+1)L

TnL

ηui (t) dt

¯̄̄̄
¯Fn

#
. (38)

Note that E
hR T(n+1)L
TnL

ηu (t) dt
¯̄̄
Fn
i
= E

hR T(n+1)L
TnL

ηπ (t) dt
¯̄̄
Fn
i
since u and π agree on [0, T(n+1)L).

To conclude note that u belongs in the set of admissible policies Π and by Lemma 1(a), the

lhs of (38) belongs in A. 2

Consider Þrst the second term on the rhs of (37). Recall from (11) that ξni = (bn/ani)φ
0
i (θni) /αi.

Also recall the deÞnition of E1,n from (31) and note that bn/ani ≤ 4 on E1n. Finally note
that from the assumptions leading to (1), {φ0i (·)}i∈N are non-negative and continuous.

These observations imply that |ξn| ≤
√
NCM on {|θn| ≤M} ∩E1,n, where

CM := 4max
i∈N

½
1

αi
max

©
φ0i (θi) : |θ| ≤M

ª¾
. (39)

The following result is immediate.
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Lemma 5 For D > 0 there exists m such that for all n ≥ m one has on E1,n ∩ {|θn| ≤M},

N−1X
l=0

νN−l
X

i∈SN−l
a
SN−l
i αi

µ
ani
bn
− 1

¶h
J̄πn+1,i − θ∗i

i
< D.

Proof From (31) and Lemma 4 it can be seen that the lhs is bounded above by

6

nρ
N max

i∈N

n
sup

n
νi (ξ) : |ξ| ≤

√
NCM

oo
max
S⊆N

(
max

(X
i∈S
aSi αixi : x ∈ A

))
,

which tends to zero as n→∞, since νi(·) is bounded on bounded sets as can be easily seen
from its deÞnition in Algorithm (A.1). 2

Let us turn our attention now to the Þrst sum on the rhs of (37). Observe thatP
i∈N a

SN
i αiθ

∗
i = F (N ) since θ∗ ∈ A. As lemma 4 shows, the same is true for J̄πn+1.

Thus, the Þrst term on the rhs of (37) becomes

N−1X
l=1

νN−l
X

i∈SN−l
a
SN−l
i αi

h
J̄πn+1,i − θ∗i

i
, n ≥ 0. (40)

In the special case where updates are performed only at instants {TkL}k≥0, policy π serves
nodes in the order {π1 (ξk) , . . . , πN (ξk)} during the interval [TnL, T(n+1)L), k ≥ 0, and the
situation is the same as in [3]. From Lemma 1(a) and because θ∗ ∈ A one has

X
i∈SN−l

a
SN−l
i αiJ̄

π
n+1,i = F (SN−l) ≤

X
i∈SN−l

a
SN−l
i αiθ

∗
i l = 1, . . . , N − 1. (41)

Since it can be easily veriÞed from (A.1) that νN−l ≥ 0 for l = 1, . . . , N − 1, (41) implies
that (40) is non-positive, as desired. However, when updates are performed during busy

cycles the situation is considerably more delicate. Two observations are crucial. The Þrst

one is that the contribution of indices l with small values of νN−l is correspondingly small.

Lemma 6 For D > 0 there exists δ > 0 such thatX
{l≥1:νN−l≤δ}

νN−l
X

i∈SN−l
a
SN−l
i αi

h
J̄πn+1,i − θ∗i

i
< D.

Proof Indeed, by Lemma 4 and the fact that A is compact the lhs is bounded from above

by

2Nδmax
S⊆N

max
x∈A

X
i∈S
aSi αixi =: Cδ,

15



and we can pick δ < D/C. 2

The second observation is that for δ > 0 and for indices l such that νN−l > δ, with

high probability as n → ∞, policy π gives priority to nodes {π1, . . . , πN−l} over nodes
{πN−l+1, . . . , πN} in the interval [TnL, T(n+1)L). By Lemma 1(a) the terms

X
i∈SN−l

a
SN−l
i αi

h
J̄πn+1,i − θ∗i

i

should be bounded from above by some small positive quantity. This is the content of

Lemma 10 below. A series of deÞnitions and auxiliary results leads to it. We begin with

two lemmas which establish the continuity properties of ν (·) and π (·). Their proofs are
deferred to the Appendix, as it would be distractive to give them here.

Lemma 7 For {ci}i∈N and δ > 0 the exists D > 0 such that

¯̄
νl (c)− νl

¡
c0
¢¯̄
< δ, l = 1, . . . , N, whenever max

i∈N
¯̄
ci − c0i

¯̄
< D.

Some more notation is needed in order to formulate the continuity property of π (·).
For scalars {ci}i∈N and δ ≥ 0 deÞne the ordered partition of N into δ-clusters Uδ (c) :=n
Uδi (c)

oMδ(c)

i=1
by requiring that

� for i1, i2 ∈ N with i1 < i2, nodes πi1 , πi2 belong to the same δ-cluster, say Uδk (c) iff
νl (c) ≤ δ for l = i1, . . . , i2 − 1,

� the clusters are numbered so that πN (c) ∈ Uδ1 (c) and, for i1, i2 ∈ N with i1 < i2,

πi1 ∈ Uδk1 (c) and πi2 ∈ Uδk2 (c) with k1 6= k2 implies k1 > k2.

For δ = 0 denote this partition by U (c) := {Ui (c)}M(c)i=1 .

Next, consider an ordered partition U = {Ui}Mi=1 of N . Say that a permutation u on N
is of type U if for 1 ≤ k < m ≤ M and i, j ∈ N , ui ∈ Uk and uj ∈ Um implies that i > j.

Similarly say that a policy u ∈ Π is of type U if for 1 ≤ k < m ≤M , it always gives priority
to nodes in Um over nodes in Uk.

Lemma 8 For a compact set K ⊂ RN and δ > 0 there exists D > 0 such that, for all c ∈ K,

π
¡
c0
¢
is of type Uδ (c) whenever max

i∈R
¯̄
ci − c0i

¯̄
< D.
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For n ≥ 1 we now seek to Þnd an event on which policy π is of type Uδ (ξn) in the
interval [T(n−1)L, T(n+1)L). For the rest of the paper, whenever there is no possibility of
confusion, the intersection of sets, A∩B, will be written as AB. Recalling the deÞnition of
CM from (39), we have the following result, whose proof is provided in the Appendix.

Lemma 9 Take �D > 0 satisfying Lemma 8 for the compact set
n
|ξ| ≤ √NCM

o
and δ > 0.

Then there exists D0 > 0 such that with the deÞnition

Dn+1 :=
©
Kn+1 +Nn+1 +Kn+1Nn+1 < D

0n
ª
, (42)

one has that

|ξi (t)− ξni| < �D, t ∈ [T(n−1)L, T(n+1)L), i ∈ N , (43)

onDnDn+1E1,n−1E1,n∩{|θn| ≤M} . In particular, on this event and for t ∈ [T(n−1)L, T(n+1)L),
policy π is of type Uδ (ξn).

Consider now any policy v ∈ Π of type Uδ (ξn) with the following property: In the
interval [TnL, T(n+1)L), n ≥ 0, v follows policy π until the Þrst time in this interval (if it

exists) that π is not of type Uδ (ξn). As a consequence of Lemmas 8 and 9, v agrees with
π on E1,n−1E1,nDnDn+1 ∩ {|θn| ≤M}. In addition, if νN−l (ξn) > δ for some l ≥ 1 then

v gives priority to nodes in SN−l (ξn) over nodes in N\SN−l (ξn). Then, as in the proof of
Lemma 4 and by Lemma 1(a)X

i∈SN−l
a
SN−l
i αi

h
J̄vn+1,i − θ∗i

i
≤ 0. (44)

Recalling that our goal is to bound from above the quantityX
i∈SN−l

a
SN−l
i αi

h
J̄πn+1,i − θ∗i

i
,

we turn our attention to the quantity
n
J̄πn+1,i − J̄vn+1,i

o
i∈N . On E1,n−1E1,n ∩ {|θn| ≤M},¯̄̄

J̄πn+1,i − J̄vn+1,i
¯̄̄
≤ 2LτE

h
1(DnDn+1)cKn+1Nn+1

¯̄̄
Fn
i

≤ 2Lτ
³
1Dc

n
E [K1N1] +E

h
1{K1N1+K1+N1≥=0n}K1N1

i´
. (45)

We can now obtain the desired bound.

Lemma 10 For δ > 0 let �D, D0 and {Dn}∞n=1 be as in Lemma 9. Then for D00 > 0 there exists
m0 ≥ 0 such that for n ≥ m0 and on DnE1,n−1E1,n ∩ {|θn| ≤M},X

{l≥1:νN−l>δ}
νN−l

X
i∈SN−l

a
SN−l
i αi

h
J̄πn+1,i − θ∗i

i
< D

00
. (46)
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Proof Recall from the discussion preceding (39) that |ξn| ≤
√
NCM on {|θn| ≤M}∩E1,n.

From (44), (45), it follows that on DnE1,n−1E1,n ∩ {|θn| ≤M} ,
X

{l≥1:νN−l>δ}
νN−l

X
i∈SN−l

a
SN−l
i αi

h
J̄πn+1,i − θ∗i

i
≤ CE

h
1{K1N1+K1+N1≥=0n}K1N1

i
,

where

C := 2LτN2 max
l=1,...,N−1

n
sup

n
νN−l (ξ) : |ξ| ≤

√
NCM

oo
max
S⊆N

½
max
i∈N

aSi αi

¾
;

note that C < ∞ because of the boundedness of νi(·) on bounded sets. The result follows
since E [K1N1] <∞ and by Lebesgue�s dominated convergence theorem

lim
n→∞E

h
1{K1N1+K1+N1≥=0n}K1N1

i
= 0.

2

There is only a short step remaining to complete the veriÞcation of Assumption (SA.3).

Fix D > 0 and pick δ > 0 such that the statement of Lemma 6 holds for D/4. With this

choice of δ > 0 and as prescribed by Lemmas 9, 10 take m0 ≥ 0 such that (46) holds for

D
00
= D/4. Then take m1 ≥ m0 such that Lemma 5 holds for D/4. Because of (37), the

above choices imply that (29) holds for D̄ := D/4, E2,n := E1,n−1E1,nDn and m := m1.

Finally, observe that by the Borel-Cantelli lemma P (lim infn→∞Dn) = 1. It was remarked
earlier that P (lim infn→∞E1,n) = 1 from the law of iterated logarithm. Thus (28) holds

and this completes our proof of Theorem 1 provided that Lemmas 7, 8 and Theorem 2 can

be established.

4 Two results on stochastic approximation

Our main objective here is to prove Theorem 2 of §3.2. Three features of the result are
noteworthy from the point of view of stochastic approximation. First, assumption (SA.3)

requires uniform negativity of the inner product in (29) only outside the level sets of V .

This is a weakening of the usual assumption, see e.g. Gladyshev [13] and was necessary for

our problem. The weakened assumption may also be useful in applications where the drift

depends on time. Theorem 12.2, p.69 of Métivier [19] is similar to ours but as it is stated,

is not correct. The attempted proof illustrates the difficulties that are circumvented by our

technique. Second, assumption (SA.2) replaces the requirement for Þniteness of the second

moment of fn+1, deÞned in (16), by the rather weak stochastic bound of (26). Third, by

exploiting assumption (SA.1) which requires that {θn}∞n=1 converges to a compact set, no
growth conditions are required on E [|fn+1| |Fn] in terms of |θn|. See p.243 of [21] for a
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discussion of this requirement. Our observation may be useful more generally since only

stability considerations are required to establish Assumption (SA.1).

It is natural to investigate if, in the usual results of stochastic approximation, the re-

quirements of Þniteness of the second moment of fn+1 can be replaced by our (SA.2). In §4.2
we present such a result. It includes variants of the classical theorems of Robbins-Monroe

and Kiefer-Wolfowitz and should also be useful in queueing applications when (SA.1) does

not hold.

4.1 Proof of Theorem 2

We start by restating and proving Lemma 3. The difference between this lemma and

theorem 1 of [21] is that non-negativity of zn is not assumed and convergence is proved

restricted to the set {lim infn→∞ zn > −∞}.

Lemma 3 On (Ω,F ,P) consider a nondecreasing family of σ-Þelds G0 ⊆ G1 ⊆ . . . ⊆ F
and Gn-measurable random variables {zn, βn, ξn, ζn}n≥0 such that βn, ξn and ζn are non-
negative and

E
h
zn+1

¯̄̄
Gn
i
≤ zn (1 + βn) + ξn − ζn. (47)

Then, limn→∞ zn exists and is Þnite, and
P∞
n=0 ζn <∞ on the set( ∞X

n=0

βn <∞,
∞X
n=0

ξn <∞
)
∩
n
lim inf
n→∞ zn > −∞

o
.

Proof Because of the similarity with [21] only a brief sketch will be given. Following their

reduction steps we can take βn = 0, n ≥ 0 with no loss of generality. For a, b non-negative
rationals deÞne the Fn-stopping times

sb := min {n ≥ 0 : zn < −b} ,

ta := min

(
n ≥ 0 :

nX
k=0

ξk > a

)

and set Tab := ta ∧ sb. Then set un := zn − Pn−1
k=0 (ξk − ζk), n = 1, 2, . . . , and show

that {un∧Tab}∞n=1 is a supermartingale bounded from below. From the supermartingale

convergence theorem and by taking unions over a ∈ Q+ we obtain that limn→∞ un∧sb
exists and is Þnite on {P∞

k=0 ξk <∞}. From this and by unraveling deÞnitions we get that

limn→∞ zn exists and is Þnite and
P∞
k=0 ζk < ∞ a.s. on {sb =∞}. Taking unions over

b ∈ Q+ completes the proof. 2

We will need a consequence of this result.
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Lemma 11 On (Ω,F ,P) consider a nondecreasing family of σ-Þelds G0 ⊆ G1 ⊆ . . . ⊆ F
and consider Gn-measurable random variables {zn, βn, ξn, ζn}n≥0 such that zn and βn are
nonnegative and

zn+1 = zn(1 + βn) + ξn+1 − ζn+1, n ≥ 0.
In addition assume that there exist sequences of events {An, Bn}n≥0 with An and Bn in Gn
and nonnegative Gn-measurable random variables

n
�ξn, �ζn

o
n≥0 such that

E
h
1An+1ξn+1

¯̄̄
Gn
i
≤ �ξn,

E
h
1Bn+1ζn+1

¯̄̄
Gn
i
= �ζn.

Then, limn→∞ zn exists and is Þnite, and
P∞
n=0

�ζn <∞ a.s. on( ∞X
n=0

�ξn <∞
)
∩ lim inf

n→∞ An ∩ lim inf
n→∞ Bn.

Proof We can again take βn = 0, n ≥ 0. Next, for n0 ≥ 0 deÞne �zn0 := zn0 and for n ≥ n0
�zn+1 := �zn + 1An+1ξn+1 − 1Bn+1ζn+1.

From the assumptions of the theorem, taking conditional expectations yields

E
h
�zn+1

¯̄̄
Gn
i
≤ �zn + �ξn − �ζn, n ≥ n0.

Lemma 3 is now applicable and implies that limn→∞ �zn exists and is Þnite, and
P∞
n=0

�ζn <∞
a.s. on

nP∞
n=0

�ξn <∞
o
∩ {lim infn→∞ �zn > −∞}. Observe that for n ≥ n0 �zn = zn on

∩n≥n0An∩n≥n0 Bn. It follows that limn→∞ zn exists and is Þnite, and
P∞
n=0

�ζn <∞ a.s. on( ∞X
n=0

�ξn <∞
)
∩ lim inf

n→∞ An ∩ lim inf
n→∞ Bn.

2

Recall that our goal is to show limn→∞ (V (θn))+ = 0 a.s. Not being able to prove this

directly we will show that for all D > 0, limn→∞
³
(V (θn)− D)+

´2
= 0 a.s. We Þrst need the

following lemma. Recall also thatM > 0 is the constant Þxed in assumption (SA.1) of §3.2.

Lemma 12 For D > 0 there exists C ≥ 0 such that for θ ∈ RN with |θ| ≤M and h ∈ RN
with |h| ≤ 1¯̄̄

(V (θ + h)− D)2 − (V (θ)− D)2 − 2 (V (θ)− D) h∇V (θ), hi
¯̄̄
≤ C |h|2 .
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Proof From (27) it is easy to see that proving the case D = 0 is sufficient. Write¯̄̄
V 2 (θ + h)− V 2 (θ)− 2V (θ) h∇V (θ), hi

¯̄̄
≤ 2 |V (θ)| |V (θ + h)− V (θ)− h∇V (θ), hi|

+ |V (θ + h)− V (θ)|2 . (48)

For the Þrst term on the right hand side note that V is continuous and hence bounded for

|θ| ≤ M . The desired bound is then implied by (27). For the second term on the right

hand side we make use of the facts that V is continuously differentiable and that the setn
θ ∈ RN : |θ| ≤M + 1

o
is convex. The intermediate value theorem in Rudin [24] p.218 is

therefore applicable and gives

|V (θ + h)− V (θ)| ≤ sup {|∇V (θ)| : |θ| ≤M + 1} |h| .
The desired bound follows. 2

We derive next a recursion for
³
(V (θn)− D)+

´2
. As a consequence of previous lemma

we can write the expansion

(V (θn+1)− D)2 = (V (θn)− D)2 + 2

n+ 1
(V (θn)− D)

D
∇V (θn), f (1)n+1

E
+

2

(n+ 1)1+δ
(V (θn)− D)

D
∇V (θn), f (2)n+1

E
+ rn+1, (49)

where, recalling (16), one has on {|θn| ≤M} ∩ {|fn+1| ≤ n+ 1}

|rn+1| ≤ C

(n+ 1)2
|fn+1|2 . (50)

For n ≥ 0 deÞne the event Gn := {V (θn) > D} and note that³
(V (θn)− D)+

´2
= (V (θn)− D)2 1Gn , (51)

1Gn+1 = 1Gn +
³
1GcnGn+1 − 1GnGcn+1

´
. (52)

Multiplication of (49) by 1Gn+1 and the deÞnitions

zn :=
³
(V (θn)− D)+

´2
ζn+1 := − 2

n+ 1
(V (θn)− D)

D
∇V (θn), f (1)n+1

E
1Gn

ξn+1 := (V (θn)− D)2
³
1GcnGn+1 − 1GnGcn+1

´
+

2

n+ 1
(V (θn)− D)

D
∇V (θn), f (1)n+1

E³
1GcnGn+1 − 1GnGcn+1

´
+

2

(n+ 1)1+δ
(V (θn)− D)

D
∇V (θn), f (2)n+1

E
1Gn+1

+rn+11Gn+1 , (53)
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yield the recursion

zn+1 = zn + ξn+1 − ζn+1.
With a view toward applying Lemma 11 set Bn+1 := E2,n ∩ {|θn| ≤M}. Then, assumption
(29) implies that there exist D̄ > 0 and m ≥ 0 such that for n ≥ m

�ζn := E
h
1Bn+1ζn+1

¯̄̄
Fn
i
≥ 0. (54)

We now proceed to bound ξn+1 in (53). Note that on GnG
c
n+1, 0 < V (θn) − D ≤ V (θn)−

V (θn+1) and hence

|V (θn)− D| 1GnGcn+1 ≤ |V (θn+1)− V (θn)| .
Similarly one obtains

|V (θn)− D| 1GcnGn+1 ≤ |V (θn+1)− V (θn)| .

As was observed in Lemma 12, continuous differentiability of V (·) implies that V (θn) and
∇V (θn) are bounded on {|θn| ≤M} ∩ {|fn+1| ≤ n+ 1} and

|V (θn+1)− V (θn)| ≤ C

n+ 1
|fn+1|

Taking also (50) into account in (53) one obtains on {|θn| ≤M} ∩ {|fn+1| ≤ n+ 1}

ξn+1 ≤ C

(n+ 1)2
|fn+1|2 + C

(n+ 1)1+δ

¯̄̄
f
(2)
n+1

¯̄̄
.

The following result is crucial in applying Lemma 11 without requiring the Þniteness of

second moments of ξn+1.

Lemma 13 Consider a nondecreasing family of σ-Þelds G0 ⊆ G1 ⊆ . . . ⊆ F, and a sequence
of random variables {Yn}∞n=0 such that for n ≥ 0 Yn is Gn-measurable. Assume that there
exists a random variable Y ≥ 0 with E [Y ] <∞ such that for all x ≥ 0,

P
n
|Yn+1| > x

¯̄̄
Gn
o
≤ CP {Y > x} .

Then

(a) supnE
h
|Yn+1|

¯̄̄
Gn
i
<∞ ,

(b) P {|Yn| > n infinitely often} = 0,

(c) for k > 1
∞X
n=1

1

nk
E
h
|Yn|k 1 {|Yn| ≤ n}

¯̄̄
Gn−1

i
<∞.

22



Proof Part (a) is immediate and part (b) follows from the Borel-Cantelli lemma. Part (c)

can be established with minor modiÞcations of the proof of Theorem 2.19, p.36 in Hall and

Heyde [14]. 2

Part (a) of Lemma 13 and assumption (SA.2) imply that on {|θn| ≤M},

sup
n
E
h
1E1,n+1

¯̄̄
f
(2)
n+1

¯̄̄ ¯̄̄
Fn
i
<∞.

We can thus set

An+1 := E1,n+1 ∩ {|fn+1| ≤ n+ 1} ∩ {|θn| ≤M}
�ξn := C

µ
1

(n+ 1)1+δ
+

1

(n+ 1)2
E
h
1An+1 |fn+1|2

¯̄̄
Fn
i¶

≥ E
h
ξn+11An+1

¯̄̄
Fn
i
.

With this choice and (54) Lemma 11 implies that limn→∞
³
(V (θn)− D)+

´2
exists and is

Þnite, and
P∞
n=0

�ζn <∞ a.s. on( ∞X
n=0

�ξn <∞
)
∩ lim inf

n→∞ An ∩ lim inf
n→∞ Bn.

But (SA.2) implies that for all x ≥ 0 ,

P
n
1E1,n+1 |fn+1| > x

¯̄̄
Fn
o
≤ CP {2X > x} .

Part (c) of Lemma 13 implies that
P∞
n=0

�ξn < ∞ a.s. on lim infn→∞An ∩ lim infn→∞Bn.
Thus, it will follow that limn→∞ (V (θn)− D)+ exists and is Þnite if it is shown that

P
³
lim inf
n→∞ An

´
= P

³
lim inf
n→∞ Bn

´
= 1.

But this follows easily from (SA.1)-(SA.3) and part (b) of Lemma 13. To conclude our proof

of Theorem 2 note that if P {limn→∞ V (θn) > D} > 0 then (29) implies that P
nP∞

n=0
�ζn =∞

o
>

0, a contradiction. We have thus shown that limn→∞ (V (θn)− D)+ = 0, a.s. 2

4.2 A variant of Theorem 2

For F0 ⊆ F1 ⊆ . . . ⊆ F a non-decreasing family of σ-Þelds, {Yn}∞n=1 a sequence of RK
valued random variables such that Yn is Fn-measurable for n ≥ 1, and Borel-measurable
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functions fn : R
N ×RK −→ RN , n ≥ 1, consider the sequence {θn}∞n=1 in RN that satisÞes

the recursion

θn+1 = θn +
1

n+ 1
fn+1 (θn, Yn+1) , n ≥ 0, (55)

and assume that the following hold.

� (H.1) For θ ∈ RN and y ∈ RK ,¯̄̄
fn+1(θ, y)

2
¯̄̄
≤ C

³
1 + |θ|2 +

¯̄̄
y2
¯̄̄´
, n ≥ 0. (56)

� (H.2) There exists a random variable X ≥ 0 with E[X] <∞ such that for n ≥ 0,

P {|Yn+1| > x|Fn} ≤ CP {X > x} , x ≥ 0. (57)

� (H.3) There exists a non-negative, differentiable Liapunov-type function V : RN −→
R such that for θ, h ∈ RN ,

|V (θ + h)− V (θ)− h∇V (θ), hi| ≤ C |h|2 (58)¯̄̄
θ2
¯̄̄
≤ CV (θ) . (59)

Also, for n = 0, 1, . . . ,

h∇V (θn), E [fn+1|Fn]i ≤ 0,
and for D > 0, there exists D̄ > 0 and m ≥ 0 such that for n ≥ m and on {V (θn) > D},

h∇V (θn), E[fn+1|Fn]i < −D̄.

Theorem 3 Under these assumptions

lim
n→∞V (θn) = 0.

A proof of this can be easily obtained from Lemmas 11 and 13. Conditions (58) and

(59) required on V (·) are somewhat stringent but cannot be weakened. They are satisÞed
by quadratic functions.
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APPENDIX

A Proof of Lemmas 7 and 8

In this appendix, we provide a proof of Lemmas 7 and 8, which are restated for convenience.

We begin with some notation. The R-restriction of the network on a set of nodes R ⊆ N
is a network obtained from the original one by removing all nodes in N\R and routing to
the outside jobs that would be routed to nodes in set N\R from nodes in the set R. For

scalars {ci}i∈R denote the variables of Algorithm (A.1) by
n
νRi (c) , S

R
i (c) , π

R
i (c)

o
i∈R and

the δ-cluster partition of R by UR,δ (c) :=
n
UR,δi (c)

oMR,δ(c)

i=1
and set UR (c) := UR,0 (c).

Lemma 7 For all {ci}i∈N and δ > 0 the exists D > 0 such that¯̄
νl (c)− νl

¡
c0
¢¯̄
< δ, l = 1, . . . , N, whenever max

i∈N
¯̄
ci − c0i

¯̄
< D.

Proof We prove by induction on k

(I1) For k = 1, . . . , N , for R ⊆ N such that |R| = k, for {ci}i∈R, and for δ > 0 there exists
D > 0, depending on δ and {ci}i∈R, such that¯̄̄

νRl (c)− νRl
¡
c0
¢¯̄̄
< δ, l = 1, . . . , k, whenever max

i∈R
¯̄
ci − c0i

¯̄
< D.

The statement is trivially true for k = 1. We assume its truth for k = n − 1 < N and

prove it for k = n. We Þrst show that for δ > 0 there exists D1 > 0 such that,

πRn
¡
c0
¢ ∈ UR1 (c) , whenever max

i∈R
¯̄
ci − c0i

¯̄
< D1. (60)

This is trivially true if UR1 (c) = R so assume the opposite and take i ∈ R\UR1 (c). The
deÞnition of UR1 (c) implies that there exists δ0 > 0 such that ci − cmaRi /aRm ≥ δ0 for all
m ∈ UR1 (c). Note that the choice of δ0 depends on {ci}i∈R. Therefore,

c0i − c0m
aRi
aRm

= c0i − ci +
Ã
ci − cm a

R
i

aRm

!
+
¡
cm − c0m

¢ aRi
aRm

≥ δ0 − 2B
R

bR
max
i∈R

¯̄
ci − c0i

¯̄
, (61)

where

bR := min
i∈R

aRi , B
R := max

i∈R
aRi . (62)

It suffices to take D1 < b
Rδ0/2BR for (60) to hold.
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Take {c0}i∈R such that maxi∈R |ci − c0i| < D1, set j := πRn (c
0) and for i ∈ �R := R\ {j}

deÞne

�ci := ci − cj a
R
i

aRj
, �c0i := c

0
i − c0j

aRi
aRj
. (63)

Note that Algorithm (A.1) on �R with inputs {�ci}i∈ �R and {�c0i}i∈ �R gives outputs ν
�R
l (�c) =

νRl (c) and ν
�R
l (�c

0
i} = νRl (c0) respectively for l = 1, . . . , n. Statement (I1) for �R and {�ci}i∈ �R

and δ > 0 implies that there exists �D > 0 such that¯̄̄
ν
�R
l (�c)− ν �Rl

¡
�c0
¢¯̄̄
< δ, l = 1, . . . , n, whenever max

i∈ �R

¯̄
�ci − �c0i

¯̄
< �D.

From the easily veriÞed inequality

¯̄
�ci − �c0i

¯̄ ≤ 2BR

bR
max
i∈R

¯̄
ci − c0i

¯̄
, (64)

taking D2 := bR�D/2BR and maxi∈R |ci − c0i| < min {D1, D2} gives
¯̄̄
νRl (c)− νRl (c0)

¯̄̄
< δ, l =

1, . . . , n− 1. Finally, it is easily seen that
¯̄̄
νRn (c)− νRn

¡
c0
¢¯̄̄ ≤ 1

bR
max
i∈R

¯̄
ci − c0i

¯̄
(65)

and thus for D3 := bRδ it suffices to take D := min {D1, D2, D3} in order to satisfy (I1) for
k = n. 2

Lemma 8 For a compact set K ⊂ RN and δ > 0 there exists D > 0 such that, for c ∈ K,

π
¡
c0
¢
is of type Uδ (c) whenever max

i∈R
¯̄
ci − c0i

¯̄
< D.

Proof It will be sufficient to prove

(I2) For k = 1, . . . , N , for R ⊆ N such that |R| = k, for a compact set K ⊂ Rk and

for δ > 0, there exists D > 0, depending only on K and δ, such that for c ∈ K with¯̄̄
UR,δ1 (c)

¯̄̄
= m, m = 1, . . . , k, one has that

πR
¡
c0
¢
is of type UR,δ (c) whenever max

i∈R
¯̄
ci − c0i

¯̄
< D.

We employ induction on k and m and observe that (I2) is trivially true for m = k = 1.

Assuming its truth for m = 1, k = 1, . . . , n − 1 < N we proceed to prove it for m = 1,

k = n.
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As in the proof of (60) we Þrst show that there exists D1 > 0 such that

πRn
¡
c0
¢
= πRn (c) whenever max

i∈R
¯̄
ci − c0i

¯̄
< D1. (66)

Take {c0i}i∈R such that maxi∈R |ci − c0i| < D1 and deÞne {�ci}i∈ �R as in (63). Observe that
since c ∈ K, �c will belong in a compact set �K ⊂ Rk−1. On �R, {�ci}i∈ �R, �K and δ > 0, (I2)

for m = 1, k = n − 1 implies that there exists �D > 0 such that π
�R (�c0) is of type U �R,δ (�c)

whenever maxi∈ �R |�ci − �c0i| < �D. Note that U
�R,δ (�c) and π

�R (�c0) are the restrictions of UR,δ (c)
and πR (c0), respectively, on �R, i.e.,

UR,δ (c) =
n
U �R,δ (�c) ,UR,δ1 (c)

o
,

πR
¡
c0
¢
=
n
π
�R ¡�c0¢ , πRN ¡c0¢o .

From (64) and (66), taking D2 < b
R�D/2BR and D := min {D1, D2} establishes (I2) for m = 1,

k = n.

To complete the proof assume that (I2) holds for k = n, m = 1, . . . , p− 1 < k and prove
it for k = n, m = p. There is nothing to prove if p = n so take p < n. Fix a number

0 < δ1 < δ whose value will be determined later and set p1 :=
¯̄̄
UR,δ11 (c)

¯̄̄
. Two cases ensue.

Case 1: p1 < p. Here the result follows immediately since δ1 < δ and (I2) applied for

k = n, R, K, δ1 and m = p1 implies the existence of D1 > 0 such that πR (c0) is of type
UR,δ1 (c) (and hence of type UR,δ (c)) whenever maxi∈R |ci − c0i| < D1.

Case 2: p1 = p. Then, by deÞnition,

ci −
p−1X
l=0

a
SRn−l(c)
i νRn−l (c) > δa

�R
i , i ∈ �R := R\UR,δ1 (c) , (67)

νRn−l (c) ≤ δ1, l = 1, . . . , p− 1. (68)

We Þrst show that there exists D1 > 0 such that

πR
¡
c0
¢
is of type

n
�R,UR,δ1 (c)

o
whenever max

i∈R
¯̄
ci − c0i

¯̄
< D1. (69)

For i ∈ �R write

c0i −
p−1X
l=0

a
SRn−l(c

0)
i νRn−l

¡
c0
¢
= ci −

p−1X
l=0

a
SRn−l(c)
i νRn−l (c)
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+c0i − ci + aRi
³
νRn (c)− νRn

¡
c0
¢´

+
p−1X
l=1

µ
a
SRn−l(c)
i νRn−l (c)− a

SRn−l(c
0)

i νRn−l
¡
c0
¢¶
, (70)

where we have used the fact that SRn (c) = S
R
n (c

0) = R. From (68) we have the inequality¯̄̄̄
¯̄p−1X
l=1

µ
a
SRn−l(c)
i νRn−l (c)− a

SRn−l(c
0)

i νRn−l
¡
c0
¢¶¯̄̄̄¯̄ ≤

p−1X
l=1

¯̄̄̄
a
SRn−l(c)
i − aS

R
n−l(c

0)
i

¯̄̄̄
νRn−l (c)

+
p−1X
l=1

a
SRn−l(c

0)
i

¯̄̄
νRn−l (c)− νRn−l

¡
c0
¢¯̄̄

≤ n
³
BR − bR

´
δ1

+nBR max
l=1,...,p−1

¯̄̄
νRn−l (c)− νRn−l

¡
c0
¢¯̄̄
.(71)

Due to Lemma 6 there exists D2 > 0 such that, for all c ∈ K, maxl=1,...,p−1
¯̄̄
νRn−l (c)− νRn−l (c0)

¯̄̄
<

δ1, whenever maxi∈R |ci − c0i| < D2. Consider such {c0i}i∈R. In (70), the bounds from (67),

(68), (65), and (71) imply that

c0i −
p−1X
l=1

a
SRn−l(c

0)
i νRn−l

¡
c0
¢
> δbR − 2B

R

bR
max
i∈R

¯̄
ci − c0i

¯̄− ³2BR − bR´nδ1 > 0,
if, recalling (62), we take

δ1 < δmin

(
1,

b
�R

2 (2BR − bR)n

)
, (72)

and whenever maxi∈R |ci − c0i| < min {D2, D3}, with D3 := b
�RbRδ/4BR. We can there-

fore take D1 := min {D2, D3} for (69) to hold and henceforth consider {c0i}i∈R such that

maxi∈R |ci − c0i| < D1.

For i ∈ �R set

�ci := ci −
p−1X
l=0

a
SRn−l(c)
i νRn−l (c)

�c0i := c0i −
p−1X
l=0

a
SRn−l(c

0)
i νRn−l

¡
c0
¢
.

Observe that since c ∈ K Lemma 6 implies that �c will belong in a compact set �K ⊂ Rn−p.
Now (I2) for k = n − p, �R, �K, δ and m ≤ n − p implies the existence of �D > 0 such that
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π
�R (�c0) is of type U �R,δ (�c) whenever maxi∈ �R |�ci − �c0i| < �D. From (65) and (71) we obtain

¯̄
�ci − �c0i

¯̄ ≤ ¯̄
ci − c0i

¯̄
+ aRi

¯̄̄
νRn (c)− νRn

¡
c0
¢¯̄̄
+
p−1X
l=1

¯̄̄̄
a
SRn−l(c)
i νRn−l (c)− a

SRn−l(c
0)

i νRn−l
¡
c0
¢¯̄̄̄

≤ 2BR

bR
max
i∈R

¯̄
ci − c0i

¯̄
+
³
2BR − bR

´
nδ1. (73)

Strengthening (72) require that δ1 < min {δ, �D}min
n
1,min

n
1, b

�R
o
/
³
2
³
2BR − bR

´
n
´o

and set D4 := bR�D/4BR. Then, (73) implies that maxi∈ �R |�ci − �c0i| < �D and therefore that

π
�R (�c0) is of type U �R,δ (�c) whenever maxi∈R |ci − c0i| < min {D1, D4}. Also note that U �R,δ (�c)

and π
�R (�c0) are the restrictions on �R of UR,δ (c) and πR (c0), respectively. Thus, the choice

D := min {D1, D4} satisÞes (I2) for m = p, k = n and the proof is complete. 2

B Proof of Lemma 9

We restate the lemma here for convenience.

Lemma 9 Take �D > 0 satisfying Lemma 8 for the compact set
n
|ξ| ≤ √NCM

o
and δ > 0.

Then there exists D0 > 0 such that with the deÞnition

Dn+1 :=
©
Kn+1 +Nn+1 +Kn+1Nn+1 < D

0n
ª
, (74)

one has that

|ξi (t)− ξni| < �D, t ∈ [T(n−1)L, T(n+1)L), i ∈ N , (75)

onDnDn+1E1,n−1E1,n∩{|θn| ≤M} . In particular, on this event and for t ∈ [T(n−1)L, T(n+1)L),
policy π is of type Uδ (ξn).

Proof We will only consider the case where t ∈ [TnL, T(n+1)L); the case t ∈ [T(n−1)L, TnL)
is similar.

For t1 ≥ 0, t2 ≥ 0, i ∈ N consider the equality

θi (t2)− θi (t1) = Lταi
Aπi (t2)

·
1

Lταi

Z t2

t1
ηπi (s) ds−

(Aπi (t2)−Aπi (t1))
Lταi

θi (t1)

¸
.

It implies that for t ∈ [TnL, T(n+1)L) and on E1,n ∩ {|θn| ≤M}

|θi (t)− θni| ≤ 2

n
[Kn+1,iNn+1Lτ +MKn+1,i]

≤ 2max {Lτ,M}
n

[Kn+1Nn+1 +Kn+1] . (76)
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From the bound
TnL

A(n+1)L,i
≤ t

Aπi (t)
≤ T(n+1)L

AnL,i
, i ∈ N ,

and the deÞnition of ξi (·) in (10) one gets for t ∈ [TnL, T(n+1)L)

|ξi (t)− ξni| ≤ T(n+1)L
AnL,i

¯̄
φ0i (θni)− φ0i (θi (t))

¯̄
(77)

+

Ã
T(n+1)L
AnL,i

− TnL
A(n+1)L,i

!
φ0i (θni) .

We will bound each term on the rhs by �D/2.

For the Þrst term note that

T(n+1)L
AnL,i

=
1

αiani

·
bn +

Nn+1
n

¸
≤ 6max

i∈N

½
1

αi

¾
,

the inequality holding on E1,n ∩ {Nn+1 < n}. From the continuity of {φ0i (·)}i∈N , there
exists D1 > 0 such that on {|θn| ≤M},

|θi (t)− θni| < D1 implies
¯̄
φ0i (θi (t))− φ0i (θni)

¯̄
<
�D

12
min
i∈N

{αi} , i ∈ N .

Then, by (76) the Þrst term on the rhs of (77) is bounded from above by �D/2 on E1,n ∩
{|θn| ≤M}∩{Kn+1Nn+1 +Kn+1 +Nn+1 < nD2}, where D2 := min {1, D1/ (2max {Lτ,M})} .

To get an upper bound of �D/2 on the second term of the rhs of (77), verify that

T(n+1)L
AnL,i

− TnL
A(n+1)L,i

≤ 1

αiani

·
bn
ani

Kn+1
n

+
Nn+1
n

¸
≤ 8max

i∈N

½
1

αi

¾
Kn+1 +Nn+1

n
,

the second inequality holding on E1,n. The desired bound holds on E1,n ∩ {|θn| ≤M} ∩
{Kn+1 +Nn+1 < nD3} where

D3 :=
�D

16

mini∈N {αi}
maxi∈N max {φ0i (θ) : |θ| ≤M}

.

Repeating the above for the case t ∈ [T(n−1)L, TnL), we have thus shown that the choice
D0 := min {D2, D3} satisÞes the statement of the lemma. 2
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