
Replicated Server Placement with QoS Constraints

Georgios Rodolakis Stavroula Siachalou, Leonidas Georgiadis

Hipercom Project, INRIA Rocquencourt,

78153 Le Chesnay Cedex, France

Georges.Rodolakis@inria.fr.

Electrical and Computer Engineering Dept.,

Aristotle University of Thessaloniki, Greece.

ssiachal@auth.gr, leonid@auth.gr.

Abstract

The problem of placing replicated servers with QoS constraints is considered. Each server

site may consist of multiple server types with varying capacities and each site can be placed in

any location among those belonging to a given set. Each client can de served by more than one

locations as long as the request round-trip delay satisfies predetermined upper bounds. Our main

focus is to minimize the cost of using the servers and utilizing the link bandwidth, while serving

requests according to their delay constraint. This is an NP-hard problem. A pseudopolynomial

and a polynomial algorithm that provide guaranteed approximation factors with respect to the

optimal for the problem at hand are presented.

1 Introduction

In today’s Internet there is an explosive growth of the World Wide Web. As the Web is becoming a

widely accepted medium for distributing data and all kind of services, network traffic increases due to

the growing number of Web users that access different sites. In such an environment, it is important

to satisfy user requirements for Web access and to optimize system performance. This is achieved by

providing Web access response times that satisfy QoS requirements and by minimizing the total cost

of using the servers and utilizing the link bandwidth. Improvement of the Web service performance

can be achieved by replicating servers at appropriately selected sites.

The problem of maximizing the performance and minimizing the cost of a computing system

has been addressed in the past in several papers. Krishnan et al [1] developed polynomial optimal

solutions to place a given number of servers in a tree network to minimize the average retrieval cost

1

of all clients. Li et al [2] investigated the placement of a limited number of Web proxies in a tree so

that the overall latency for accessing the Web server is minimized. In [3] two objectives were studied:

minimization of the overall access cost by all clients to access the Web site and minimization of the

longest delay for any client to access the Web site. The problem was reduced to the placement of

proxies in a set of trees whose root nodes are the server replicas. Jia et al [4] took the read and

update operations into consideration. Qiu et al [5] also assumed a restricted number of replicas and

no restriction of the number of requests served by each replica. A client could be served by a single

replica and the cost for placing a replica was also ignored. The objective was to minimize the total

cost for all clients to access the server replicas, while the cost of a request was defined as the delay,

hop count or the economic cost of the path between two nodes. They compared several heuristic

solutions and found that a greedy algorithm had the best performance. Chen et al [6] tackled the

replica placement problem from an other angle: minimizing the number of replicas when meeting

clients’ latency constraints and servers’ capacity constraints by using a dissemination tree. In [7] the

authors considered the problem of placing a set of mirrors only at certain locations such that the

maximum distance from a client to its closest mirror (server replica), based on round trip time, is

minimized. They assumed no cost for placing a mirror and showed that placing mirrors beyond a

certain number offered little performance gain. Sayal et al presented some selection algorithms to

access replicated Web servers in [8]. The algorithms found the closest replicated server for a client

based on different metrics such as hop counts, round trip time and the HTTP request latency. In

[9] the objective was to minimize the amount of resources, storage and update, required to achieve

a certain level of service. They assumed that all servers in the network are organized into a tree

structure rooted at the origin server.

In this paper we approach the problem of replicated server placement with QoS constraints from

a system administrator’s perspective. Thus we are interested in serving the users’ requests so that

their delay requirements are satisfied, while at the same time minimizing the total cost of placing

the servers and using the link bandwidth. We consider that each server site may be comprised of a

number of different server types with varying processing capacities. We also assume that a server

site may by placed on any of a given set of locations and each client can be served by more than

one location. Our objective is to select optimally the locations where the servers must be placed,

the types that comprise each server, the proportion of traffic that must be routed by each client

to each of the servers and the routes that will be followed by the requests issued by a client to a

2

server. The problem is NP-hard and therefore an optimal solution is not likely to be found. We

present a pseudopolynomial approximation algorithm and a polynomial time algorithm that provide

guaranteed approximation factors with respect to the optimal for the problem at hand.

Due to space limitation proofs are omitted. For a complete version of the paper the interested

reader is referred to the site http://genesis.ee.auth.gr/georgiadis/english/public/QoS IP2005.pdf.

2 Problem Formulation

Let G(V,E) represent a network with node set V , and link set E. Let also H be a subset of V . We

are interested in placing servers at some of the nodes in H, that will serve requests originated by any

of the nodes in V . We assume that the servers contain the same information and hence any node

may obtain the requested information by accessing any of the servers.

With link (i, j) there is an associated delay dij . Requests should be obtained in a timely fashion,

and hence there is a boundD on the time interval between the issuing of the request and the reception

of the reply. We refer to this bound as the “round-trip delay bound”. Note that the processing time

of a request at the server can be incorporated in this model by replacing D with D+ dp, where dp is

an upper bound on the request processing time at the server.

The load in requests per unit of time originated by node i ∈ V is gi. To transfer an amount of

x requests per second, it is required to reserve bandwidth αx on the links traversed by the requests.

The transfer of server replies corresponding to the x requests back to the requesting node, requires

the reservation of βx units of bandwidth on the links traversed by the replies.

The cost of transferring 1 unit of bandwidth on link (i, j) is eij . Hence the cost of transferring x

requests per second on link (i, j) is αeijx while the cost of transferring the replies to these requests

is βeijx. A node i can split its load gi to a number of servers and routes as long as the delay bound

D between the issuing of the request and the reception of the reply is satisfied. At each node j ∈ H

there is a set Sj of server types that can be selected. Server type s, 1 ≤ s ≤ Kj , (Kj = |Sj |) costs fsj
units and can process up to Us

j requests per second.

Our objective is to determine,

1. the locations (subset of the nodes in H) where the servers will be placed,

2. the amount of traffic (in requests per unit of time) that will be routed by each node to each of

the selected locations,

3. the routes through which the node traffic will be routed to each of the selected locations,

3

4. the type of servers and the number of each type that should be opened at each location,

so that,

1. the round-trip delay bound for each request is satisfied,

2. the total cost of using the servers and utilizing the link bandwidth is minimized.

Notice that in the current setup we do not consider link capacities. In effect we assume that the

network links have enough bandwidth to carry the requested load by the network nodes. This is a

reasonable assumption in an environment where the server requests are a small portion of the total

amount of information carried by the network. The general problem where link capacities are also

included, is a subject of further research.

2.1 Optimization Problem Formulation

A feasible solution to the problem consists of the following:

• A set of locations F ⊆ H where the servers will be placed.

• A subset of server types Gj ⊆ Sj that should be opened at location j ∈ F.

• The number nsj of server types s ∈ Gj that should be opened at location j ∈ F .

• A set of round-trip routes Rij between node i ∈ V and facility j ∈ F . A round-trip route,

denoted rij = (prij , qrij), consists of two simple paths, prij and qrij . Path prij originates at

node i and ends at server location j, and is used for transferring requests. Path qrij originates

at server location j and ends at node i, and is used for transferring replies.

• The amount of requests per unit of time, xrij , accommodated on round-trip route rij .

The constraints of the problem are the following:

• The request load of each node should be satisfied. That is,

X
j∈F

X
r∈Rij

xr = gi, i ∈ V. (1)

• The round-trip delay of each round-trip route should be at most D. That is,

X
l∈p

dl +
X
l∈q

dl ≤ D, for r = (p, q) ∈ R, (2)

where R is the set of all round-trip routes, R = ∪i∈V ∪j∈F Rij , and the summation is over all

links of the corresponding paths.

• The total server capacity at server location j ∈ H should be at least as large as the request

4

rate arriving at location j. That is,

X
i∈V

X
r∈Rij

xr ≤
X
s∈Gj

nsjU
s
j , j ∈ H. (3)

The objective cost function to be minimized is

X
j∈F

X
s∈Gj

nsjf
s
j +

X
l∈E

el(α
X

r=(p,q)∈R
l∈p

xr + β
X

r=(p,q)∈R
l∈q

xr). (4)

The first term in (4) corresponds to the cost of opening the servers, while the second term corresponds

to the cost of reserving bandwidth on the network links in order to satisfy the node requests. The

term involving the factor α corresponds to the bandwidth reserved on a link for transmission of node

requests, while the term involving the factor β corresponds to the bandwidth reserved on the same

link for transmitting replies.

For the rest of the paper we assume that the node loads gi, i ∈ V are nonnegative integers and

that splitting of these loads to a number of server locations may occur in integer units. In practice

this is not a major restriction, since usually the load is measured in multiples of a basic unit.

2.2 Problem Decomposition

In this section we decompose the problem defined in Section 2.1 into three subproblems which can

be solved independently. As will be seen all three problems are NP-hard.

For a round-trip route r = (p, q), define the cost Cr = α
P

l∈p el + β
P

l∈q el. Let r∗ij be a

minimum-cost round-trip route between node i and server location j, satisfying the round-trip delay

D. It can be easily seen that it suffices to restrict attention to solutions that assign all the load

from node i to server location j on r∗ij . Hence, setting cij = Cr∗ij , the second term in (4) becomesP
i∈V

P
j∈F cijxij .

Consider now the first term in (4). Let fj(y) be the minimum cost server type assignment at

location j, under the assumption that the request load at that location is y. By definition, the

feasible solution that assigns this minimum cost server assignment at location j for request load

yj =
P

i∈V
P

r∈Rij xr, is at least as good as a solution inducing the same load at location j. Hence,

we may replace this term with
P

j∈F fj (yj) .

For our purposes, it is important to observe that the function fj(y) defined in the previous

5

paragraph is subadditive, i.e., it satisfies the inequality

fj(y1) + fj(y2) ≥ fj(y1 + y2) for all y1 ≥ 0, y2 ≥ 0. (5)

To see this, note that if S(y1), S(y2) is the set of servers achieving the optimal costs fj(y1), fj(y2)

respectively, then the set of servers S(y1)∪S(y2) provides a feasible solution for request load y1+y2,

with cost fj(y1)+ fj(y2). Since fj(y1+ y2) is by definition the minimum cost server assignment with

request load y1 + y2, (5) follows.

From the discussion above it follows that we need to solve the following problems.

Problem 1. Given a graph, find a round-trip route with minimum cost, satisfying the round-trip

delay bound for any node i ∈ V and server location j ∈ H. This determines cij , i ∈ V, j ∈ H.

Problem 2. Given a set of server types Sj and a required load y at node j ∈ H, find the optimal

selection of server types and the number of servers of each type so that the load is accommodated.

That is, determine nsj(y) so that
P

s∈Gj
nsj(y)U

s
j ≥ y and fj(y) =

P
s∈Gj

nsj(y)f
s
j is minimal.

Problem 3. Given non-decreasing subadditive functions fj(y), costs cij , integer node loads g(i) ≥
0, i ∈ V , solve

min
X
j∈H

fj(y) +
X
i∈V

X
j∈H

cijxij

subject to:
X
j∈H

xij = g(i), i ∈ V,
X
i∈V

xij = y, j ∈ H, xij ≥ 0.

Remark. Regarding Problem 1, in certain environments it may be desirable to have a delay bound

only on the route from the server to the requesting node. For example, this may be the case if the

requests concern the viewing of a video clip. Problem 1 can be easily modified to account for this

type of environment. In fact, the problem is now simpler, since the delay constraint concerns only

the one-way end-to-end delay.

The decision problems associated to Problems 1 and 2 are NP-hard. Indeed, when β = 0, the as-

sociated decision problem to Problem 1 is reduced to the Shortest Weight-Constrained Path problem

which is known to be NP-hard [10]. Also, the associated decision problem to Problem 2 amounts to

the Unbounded Knapsack Problem which is NP-hard [11]. However for both problems pseudopoly-

nomial algorithms exist (see Section 3) and, as will be discussed in Section 4, fully polynomial time

approximation algorithms can be developed. Regarding Problem 3, there is an extensive work in the

6

literature under various assumptions on the function fj(y) and on the costs cij ([12], [13], [14], [15],

[16], [17], [18]). Most of the work is concentrated on the case of “metric” costs, i.e., it is assumed

that costs satisfy the inequality cij + cjk ≥ cik. However, this inequality does not hold in our case.

In the next section, by combining algorithms for the three problems discussed above, we provide

a pseudopolynomial time approximation algorithm for the problem addressed in this paper. The

algorithm for Problem 3 is based on the algorithm proposed in [18] and uses the fact that fj(y) is

subadditive step function. In Section 4 we modify the algorithm in order to obtain a polynomial time

algorithm with approximation factor close to the best possible (unless NP⊆DTIME(nO(log logn)). The
performance of the algorithm in simulated networks is studied in Section 5.

3 Pseudopolynomial Algorithm

In this section we discuss pseudopolynomial algorithms for each of the Problems 1, 2 and 3. By

combining theses algorithms we get a pseudopolynomial algorithm for the problem at hand.

3.1 Pseudopolynomial Algorithm for Problem 1

Let Fij(d) be the minimum cost (forward) path from node i to j with delay at most d, and Bij(d)

the minimum cost (backward) path from node j to i with delay at most d. Then it can be easily seen

that,

cij = min
0≤d≤D

{Fij(d) +Bij(D − d)} (6)

Based on (6), cij can be determined provided Fij(d) and Bij(d) are known. There are fully polynomial

time algorithms for computing these quantities, however in this section we will concentrate on efficient

pseudopolynomial algorithms that work well in practice [19], [20]. We provide the discussion for

Fij(d), since the same holds for Bij(d). The algorithm in [19], [20] are based on the fact that Fij(d)

is a right continuous non-increasing step function with a finite number of jumps. Hence, in order

to compute Fij(d) one needs only to compute its jumps, which in several practical networks are not

many. Another useful feature of these algorithms is that in one run they compute Fij(d) from a given

node j ∈ H to all other nodes in V .

Let dfij(k), 1 ≤ k ≤ Kf
ij , i ∈ V be the jump points of Fij(d) such that d

f
ij(k − 1) ≤ dfij(k) ≤

D, k = 2, ..,Kf
ij . Similarly, let d

b
ij(k), 0 ≤ k ≤ Kb

ij , i ∈ V be the jump points of Bij(d). The optimal

round-trip costs cij , j ∈ H, i ∈ V can be computed using Algorithm 1. The jumps in steps 2 and 3

7

can be computed using the algorithm in [19]. The “for” loop in step 6 implements the minimization

required by (6).

Algorithm 1 Algorithm for finding the minimum cost round-trip route

Input: Graph G with link costs and delays.
Output: The array c with the costs of the round-trip routes.
1. For any node j in H do
2. Compute jump points of Fij(d), d

f
ij(k), 1 ≤ k ≤ Kf

ij , i ∈ V

3. Compute jump points of Bij(d), d
b
ij(k), 0 ≤ k ≤ Kb

ij , i ∈ V
4. For i ∈ V do
5. cij =∞
6. For k = 1 to Kf

ij do

7. Let dbij be the largest jump point of Bij(d) not exceeding D − dfij(k)

8. cij ← min
n
cij , Fij(d

f
ij(k)) +Bij(d

b
ij)
o

Using the algorithm and the analysis presented in [19] it can be proved that the total worst

case running time for the computation of the jump points is O (|V |D (|V | log |V |+ |E| log |V |)) .
The running time of the minimum operation (line 8) is O

³
|V |2D

´
. Thus the running time of this

algorithm is dominated by the time needed to compute the jump points.

3.2 Pseudopolynomial Algorithm for Problem 2

We restate Problem 2 in its generic form, to simplify notation.

Problem 2 (generic form). Given a set of server types S, server capacities Us, server costs

fs > 0 and a required load y, find the optimal selection of server types G and the number of servers

of each type so that the load is satisfied. That is, determine ns(y) so that
P

s∈G ns(y)Us ≥ y and

f(y) =
P

s∈G ns(y)fs is minimal.

Problem 2 is similar to the Unbounded Knapsack Problem (UKP) [11]. The difference is that

in UKP the inequality constraint is reversed and maximization of the cost
P

s∈Gj
ns(y)fs is sought.

A pseudopolynomial algorithm for Problem 2 can be developed in a manner analogous to the one

used for UKP. Specifically, number the servers from 1 to |S| and define A(f, i) to be the largest load
achievable by using some among the first i servers so that their total cost is exactly f . The entries

of the table A(f, i) can be computed in order of increasing i and f using the dynamic programming

equation

A(f, i+ 1) = min{A(f, i), U i+1 +A(f − f i+1, i+ 1)}, (7)

with A(f, 0) = 0 for all f , A(f, i) = −∞ if f < 0, and A(0, i) = 0 for all 0 ≤ i ≤ K. The optimal

8

server selection cost is then determined as f(y) = min{f | A(f,K) ≥ y}. By keeping appropriate
structures one can also determine the server types and the number of servers of each type for achieving

the optimal solution.

The function f(y) has properties similar to those of Fij(d) and Bij(d). Specifically, it is a right

continuous non-decreasing step function. Moreover, based on (7) and using an approach similar to

[21], an efficient pseudopolynomial algorithm can be developed for finding the jump points of f(y).

Again, an important property in our case is that in one run of the algorithm, all jump points of f(y)

up to an upper bound can be determined. The running time of this approach can be bounded by

O (|S| y), where |S| is the number of server types.

3.3 Pseudopolynomial Algorithm for Problem 3

In [18] a polynomial time algorithm O(|V |3 log |V |) is provided for Problem 3 in the case of concave

facility cost functions. It is assumed that the cost fj(y) of placing servers at node j ∈ H to accom-

modate load y can be computed at unit cost and that all nodes have unit loads. It is shown that the

proposed algorithm achieves an approximation factor of ln |V | compared to the optimal. In our case
we have arbitrary integer node loads gi and the functions fj(y) are subadditive and can be computed

exactly only in pseudopolynomial time. As observed in [22] the assumption of unit loads can be

removed by considering a modified network where node i is replaced with gi nodes each having the

same links (and link costs). However, now the algorithm becomes pseudopolynomial (even assuming

unit costs for computing fj(y)) since the number of nodes in the modified network can be as large

as |V gmax|, where gmax = maxi∈V {gi}.
The approximability proof for general costs cij in [18] carries over without modification if fj(y) are

subadditive rather than concave functions. Hence the approximability factor in our case becomes

ln |V gmax|.
The algorithm in [18] is the only known one that can provide performance guarantees in terms

of approximability to the optimal for general costs cij . Moreover, its worst case running time is

among the best of the proposed algorithms. Hence, we will use the algorithm in [18] as the basis for

our development. We present it below (Algorithm 2) adapted to our situation. For the moment we

assume that fj(y) can be computed exactly at unit cost.

The algorithm performs a number of iterations. At each iteration a node j∗ in H is selected and

the load of some of the nodes in V is assigned to j∗. Let matrix ψ(i, j) represent the total load from

9

node i assigned to server location j at the beginning of an iteration (i.e., the beginning of the while

loop at Step 3). Hence the load of node i remaining to be assigned is r(i) = g(i)−Pj∈H ψ(i, j).

A node such that r(i) > 0 is called unassigned. For server location j ∈ H consider the unassigned

nodes arranged in non-decreasing order of their costs cisj , i.e., ci1j ≤ ci2,j ≤ ≤ cimj. Let

Rj(n) =
Pn

s=1 r(is), 1 ≤ n ≤ m, and nj(k) = max {n : Rj(n) ≤ k}. Define also lj(k) = k−Rj(nj(k)).

The variable loadj holds the total load assigned to node j ∈ H at the beginning of an iteration.

In step 5, the most economical (cost per unit of assigned load) load assignment for each of the server

locations is computed. In steps 7 and 8, the server location with the minimum economical assignment

is selected and the associated load is placed on this location. In steps 9 to 13 updating is taking place

of the remaining loads of the nodes that will place their load on the selected server location.

Algorithm 2 Generic algorithm for solving Problem 3

Input: Graph G, the array c with the costs of the routes and the Knapsack list
Output: Locations and types of servers, load assigned from each client to the selected locations.
1. For j ∈ H set loadj = 0;
2. For i ∈ V set ψ(i, j) = 0;
3. While there is an unassigned node do
4. For j ∈ H do

5. t(j) = mink
fj(loadj+k)−fj(loadj)+ nj(k)

s=1 r(is)cisj+lj(k)cinj(k)+1
j

k

6. k(j) = argmink
fj(loadj+k)−fj(loadj)+ nj(k)

s=1 r(is)cisj+lj(k)cinj(k)+1
j

k
7. Let j∗ = argminj∈H {t(j)}
8. Set loadj∗ ← loadj∗ + k(j∗)
9. For 1 ≤ s ≤ nj∗(k

∗) do
10. ψ(is, j

∗)← ψ(is, j
∗) + r(is)

11. r(is) = 0
12. ψ(inj∗ (k∗)+1, j

∗) = lj∗(k
∗)

13. r(inj∗(k∗)+1)← r(i+ 1)− lj∗(k(j
∗))

The average running time of this algorithm can be improved by taking advantage of the fact

that in our case fj(y) is a step function. Specifically, it can be shown that in order to compute the

minimum in step 5, one needs to do the computation only for values of k such that loadj + k is a

jump point of fj(y), or k = Rj(n) for some n.

Based on the implementation in [18], Algorithm 2 has worst case running time

O(|V |3 g2max log(|V |2 gmax)).
Letting |S| be the maximum number of server types in any of the server locations, taking into

account that the maximum load on any facility is |V | gmax and that we may need to compute at most

10

|V | functions fj(y), we conclude that the worst case computation time of the complete algorithm is

O
³
|V |D (|V | log |V |+ |E| log |V |) + |S| |V |2 gmax + |V |3 g2max log(|V |2 gmax)

´
.

The algorithm presented above works well in practice as will be seen in Section 5. However, it is

pseudopolynomial and it is theoretically important to know whether there exists a polynomial time

algorithm that can provide a guaranteed approximation factor with respect to the optimal. In the

next section we will show that this can be done based on the algorithm presented above.

4 Polynomial Algorithm

In this section, by generalizing the approach in [18] we provide a polynomial time approximation

algorithm for arbitrary integer node loads and non-decreasing subadditive functions that are not

necessarily computable exactly in polynomial time. Note that a concave function is also subadditive

and hence our results carry over to concave functions. However, as will be seen, for concave functions

the approximation constants can be made smaller.

The approach we follow is to provide polynomial time approximation algorithms for each of

Problems 1, 2 and 3. By combining these algorithms, we get a polynomial time algorithm for the

problem at hand with guaranteed performance factor compared to the optimal.

In the previous section the costs cij and the functions fj(y) were computed exactly using pseu-

dopolynomial algorithms for Problems 1 and 2 respectively. The use of polynomial time approxima-

tion algorithms for these problems provides only approximate values for cij and fj(y). That is, we

can only ensure that for any ε > 0, we provide in polynomial time values cij and f j(y) (for fixed y)

such that cij ≤ cij ≤ (1 + ε)cij and fj(y) ≤ f j(y) ≤ (1 + ε)fj(y), y ≥ 0. Replacing cij and fj(y)

with cij and f j(y) in Problem 3 and providing an α-approximate solution for the resulting instance,

provides also an (1+ε)α- approximate solution for the original problem. This important observation

was used in [22] and we present it here in the next lemma.

Lemma 1 Consider the problems

min
x∈A

g(x), A ⊆ Rn, (8)

min
x∈A

g(x), A ⊆ Rn, (9)

11

where g(x) ≥ 0. If for x ∈ A, g(x) ≤ g(x) ≤ βg(x), then an α−approximate solution for problem
(9), α ≥ 1, is a βα-approximate solution for (8).

Using Lemma 1 we can proceed as follows.

• Compute in polynomial time approximate values cij ,

• Compute in polynomial time approximate values f(y) (for a given y ≥ 0),
• Provide an approximation algorithm for Problem 3, based on Algorithm 2, using the approxi-

mate values cij , f(y).

Difficulties arise in the approach outlined above for the following reasons. First, to compute the

minimum in Step 5 of Algorithm 2, f(y) must be computed for all values of y in the worst case,

and the number of these computations is bounded by
P

i∈V gi, i.e., it is not polynomial in the input

size, even if f(y) is computable at unit cost. Second, the amount of load assigned to a node in H

at each iteration of the while loop at step 9 can be 1 in the worst case and hence the number of

iterations of the while loop may be again
P

i∈V gi in the worst case. Third, while f(y) is subadditive,

it cannot be guaranteed that f(y) is subadditive as well, and hence the approximation constants

cannot be guaranteed a priori. Hence, the straightforward application of Algorithm 2 will result

in pseudopolynomial worst case running time and will not provide us with guaranteed performance

bounds. As will be seen, however, we can modify the approach so that the resulting algorithm runs

in polynomial time at the cost of a small increase in the approximation factor.

4.1 Polynomial Algorithms for Problem 1 and 2

A fully polynomial time approximation algorithm for the problem of finding the minimum constrained

path from a source to a given destination was developed by Hassin [23]. An improvement of this

algorithm was presented in [24]. The latter algorithm can be used as a basis for the development of a

fully polynomial time approximation algorithm for Problem 1. We skip the details here and mention

that the adaptation consists in modifying Algorithm SPPP in [24] using an approach similar to the

one followed for Algorithm 1. The resulting algorithm runs in t = O(|E||V |(log log |V | + 1/ε)) for
each route.

A fully polynomial time approximation algorithm for Problem 2 can be developed by paralleling

the approach for the UKP [11, Section 8.5]. The resulting algorithm has a worst case running time

of T = O(1ε2 |S| log |S|), where |S| is the number of server types.

12

4.2 Polynomial Algorithm for Problem 3

We now address the main problem of Section 4, i.e., the development of a polynomial algorithm for

Problem 3, using the approximate costs cij and f j(y). As explained above, we intend to use Algorithm

2 as the basis for the development. Assume for the moment that cij and fj(y) are computable exactly.

As was mentioned above the fact that the node loads are general nonnegative integers in our case,

renders the algorithm pseudopolynomial even under this assumption. However, if the functions fj(y)

are concave, then the algorithm becomes polynomial. This is due to the fact that for concave functions

Algorithm 2 can assign all the load of each node to a single server. This is shown in the next lemma.

Recall that a function f(y) defined for integer y is called concave if for all y in its domain of definition

it holds, f(y + 1)− f(y) ≤ f(y)− f(y − 1).

Lemma 2 If the functions fi(y) are concave and Algorithm 2 is applied, then the load of each node

in V can be assigned to a single server.

Lemma 2 implies that when cij and fj(y) are computable in polynomial time and fj(y) are

concave, the algorithm runs in polynomial time. The running time is O(|V |3 log |V |+ |V |2 (t+ T)),

where t and T are the running times for Problems 1 and 2 as described in the previous section, and

the approximation factor is log (|V | gmax), where gmax = maxi∈V {gi}.
We now return to the problem at hand. In our case, fj(y) is subadditive rather than concave and

is not computable exactly in polynomial time. Hence the results above cannot be applied directly to

obtain a polynomial time algorithm. The approach we follow is to construct in polynomial time a

concave function efj(y), such that for any y in its domain of definition efj(y) is computed in polynomial
time and,

fj(y) ≤ efj(y) ≤ αfj(y). (10)

Then, by applying Lemmas 1 and 2 we get a polynomial time algorithm. To proceed we need some

definitions.

Consider a nonnegative function φ : {0, 1, . . . ,W}→ Q+ (Q+ is the set of nonnegative rationals)

and let A be the convex hull of the set of points S = {(y, φ(y)), y = 0, 1, . . . ,W} ∪ {(0, 0), (W, 0)}.
Recall that the convex hull of a set of points S is the smallest convex set that includes these points. In

two dimensions it is a convex polygon. The vertices of the polygon correspond to a subset of S, of the

form S0 = {(yk, φ(yk)), k = 1, ..,K}∪{(0, 0), (W, 0)} where yk ∈ {0, 1, . . . ,W}, y1 = 0, yK =W, and

yk < yk+1 for all k, 1 ≤ k ≤ K − 1.

13

Consider the piecewise linear function φ2(y) with break points the set S
0, i.e., for yk ≤ y < yk+1,

φ2(y) is defined as,

φ2(y) = φ(yk) +
φ(yk+1)− φ(yk)

yk+1 − yk
(y − yk), (11)

The function φ2(y) is concave. We call φ2(y), the “upper hull” of φ(y). If φ(y) is non-decreasing, the

same holds for φ2(y). By construction it holds for all y ∈ {0, 1, ...,W} , φ(y) ≤ φ2(y).

If the function φ(y) is subadditive and non-decreasing, then it also holds that its upper hull is

smaller than twice the function value.

Lemma 3 If a function φ : {0, 1, . . . ,W} → Q is subadditive and non-decreasing, then it holds for

its upper hull φ2(y), φ2(y) ≤ 2φ(y).

Consider now the subadditive function f(y) of interest in our case (we drop the index j for

simplicity). As a consequence of the approximate solution to Problem 2, for a given ε > 0 and a

given y ∈ {0, 1, ...,W} , W = |V | gmax, we can construct in polynomial time a non-decreasing function
such that

f(y) ≤ f(y) ≤ (1 + ε)f(y). (12)

Let f2(y) be the upper hull of f(y). By (12), f2(y) is smaller than or equal to the upper hull of

(1 + ε)f(y), which in turn by Lemma 3 is smaller than 2(1 + ε)f(y) (notice that (1 + ε)f(y) is

subadditive). Hence we will have

f(y) ≤ f2(y) ≤ 2(1 + ε)f(y). (13)

Since f2(y) is concave, if we replace cij with cij and f(y) with f2(y), we can provide an approximate

solution to Problem 2 with approximation factor log (|V | gmax). From (13) and Lemma 1 we will then
have a solution to our original problem with approximation factor 2(1 + ε) log |V gmax|.
The problem that remains to be solved is the construction of the upper hull of f(y) in polynomial

time. There are at mostW 0 =W+2 points in the set
©
(y, f(y)), y = 0, 1, . . . ,W

ª∪{(0, 0), (W, 0)} and
the upper hull of the points in this set can be constructed (i.e., its break points can be determined) in

time W 0 logW 0 [25]. However, in our case W = |V | gmax and hence the straightforward construction
of the upper hull requires pseudopolynomial construction time.

To address the latter problem, we construct first a non-decreasing step function bf1(y) with poly-
nomial number of jump points (y is a jump point of bf1(y) if bf1(y − 1) 6= f1(y)) that is a good

14

approximation to f(y), and then we construct the upper hull of bf1(y). Since bf1(y) has polynomial
number of jump points its upper hull will also have polynomial number of break points and can be

constructed in polynomial time.

We have by definition f(0) = 0, f(1) = f(1) > 0. Consider the sequence of integers bf0 = 0, bfk,
k = 1, ...,K, generated by Algorithm 3.

Algorithm 3

Input: Algorithm for computing f(y), �1 > 0.

Output: The sequence, bfk, k = 0, 1, ...,K.
1. bf0 = 0, bf1 = f(1), y1 = 1, k = 2,

2. bfk = (1 + �1)f(yk−1)
3. If bfk > f(W), set yk =W, K = k and stop. Else,

4. Determine yk such that f(yk − 1) ≤ bfk ≤ f(yk),i.e.,
5. k = k + 1, go to step 2.

The sequence bfk, k = 0, 1, ...,K can be used to construct a step function that is a good approxi-

mation to f(y). This is shown in the next lemma.

Lemma 4 a) In Algorithm 3, K = O
³
1
�1
log f(W)

f1

´
. The worst case running time of Algorithm 3 is

O
³
T log(W) 1�1 log

f(W)

f1

´
, where T is the worst case time (over all y, 1 ≤ y ≤W) needed to compute

f(y). b) Consider the step function defined as follows: if yk ≤ y < yk+1 for some k, 1 ≤ k ≤ K − 1,
then bf(y) = bfk, and bf(W) = bfK . It holds,

bf(y) ≤ f(y) ≤ (1 + �1) bf(y) (14)

Based on (14), we can use ef(y) = (1 + �1) bf(y) as a function to approximate f(y).
Lemma 5 Let �0 > 0, �1 > 0 be given. Let f(y) be the optimal solution to Problem 2 and assume

that we compute for a given y the approximate function f(y) so that

f(y) ≤ f(y) ≤ (1 + �0) f(y). (15)

a) For the purposes of computing the step function bf(y) satisfying (14), f(y) may be assumed non-
decreasing. b) It holds for ef(y) = (1 + �1) bf(y)

f(y) ≤ ef(y) ≤ (1 + (�1 + �0 + �1�0)) f(y), (16)

15

c) The number of jump points of bf(y), hence of ef(y), is O ³ 1
�1
log (|V | gmax))

´
and the running time

of Algorithm 3 is O
³
1
�1
T (log (|V | gmax))2

´
, where T is the worst case time (over all y, 1 ≤ y ≤W)

needed to compute f(y).

From the discussion above we have polynomial time Algorithm 4 for computing the server loca-

tions.

Algorithm 4 Polynomial Time Algorithm For Calculating Server Locations

Input: Polynomial Algorithm for Problem 1, Algorithms 2 and 3, � > 0.
Output: Array of server locations.
1. For i ∈ V, j ∈ H, compute cij so that cij ≤ cij ≤ (1 + �)cij , i ∈ V, j ∈ H.

2. For j ∈ H, construct the step functions bfj(y),from f j(y) according to Algorithm 3, using as

subroutine the algorithm for computing, for a given y > 0, f j(y) such that fj(y) ≤ f j(y) ≤
(1 + �)fj(y).

3. Construct the upper hull of efj(y) = (1 + �) bfj(y). Let φj(y) be this upper hull.
4. Use Algorithm 2 to solve Problem 3, where cij is replaced by cij and fj(y) is replaced by φj(y).

In the algorithm, for simplicity, we pick a single � for all the approximations. If needed, a separate

� can be used for each of the approximations.

The worst case running times of each step are:

1. O(|V |2t) = O(|E||V |3(log log |V |+ 1/�))
2. O(|V | 1�T (log (|V | gmax))2) = O(1�3 |V | |S| log |S| (log (|V | gmax))2)
3. O(K logK) = O(1�2 log (|V | gmax) log log (|V | gmax))
4. O(|V |3 log |V |)
The resulting algorithm has a guaranteed performance ratio of 2(1 + �)2 log (|V | gmax) and its

worst case running time is dominated by steps 1 and 2

O(|E||V |3(log log |V |+ 1/�) + 1

�3
|V | |S| log |S| (log (|V | gmax))2).

5 Numerical Results

In this section we evaluate the total cost of using servers and utilizing the link bandwidth on random

network topologies using two different routing methods.

To generate random networks a number |V | of nodes and a number |E| = γ |N | of edges, γ > 1 is

chosen. We use the graph generator random graph() from the LEDA package [26]. A random edge

is generated by selecting a random element from a candidate set C defined as follows. C is initialized

16

Random Networks

25
57
95

17
98
54

14
96
08

14
73
40

14
59
56

14
53
43

25
75
47

19
83
03

19
10
54

19
10
54

19
10
54

19
10
54

120000

170000

220000

270000

100 200 400 500 600 800
Delay Constraint

A
ve

ra
ge

 T
ot

al
 C

os
t

MinCost MinDelay

Figure 1: Average Total Cost for different Delay Constraints

to the set of all |V | (|V | − 1) pairs of distinct nodes. An edge (i, j) in C is selected randomly and

removed from C. The process is repeated until |E| edges are selected.
Ten different random network topologies are generated with |V | = 100 nodes and |E| = 500

edges. For each network the delay of a link is picked randomly with uniform distribution among the

integers [1, 100] and the cost is generated in such a manner that it is correlated to its delay. Thus,

for each link l a parameter bl is generated randomly among the integers [1, 5]. The cost of link l is

then bl (101− dl). Hence the link cost is a decreasing function of its delay. We run the algorithm for

6 different delay constraints D = {100, 200, 400, 500, 600, 800}. We assume that the the same server
types can be placed in each of the locations. For our simulations we use 4 different server types with

capacities and costs equal to {(100, 3000) (150, 3500) (250, 4000) (350, 5000)} respectively. We set the
factors α = 0.1 and β = 0.2 and assume the load in requests per unit of time originated by each

node is randomly chosen among the integers [1, 100]. We also assume H = V , i.e., servers may be

placed in any of the nodes. We run two sets of experiments which differ in the manner the request

round-trip routes are selected. Specifically we consider the following algorithms:

MinDelay: In this algorithm the minimum delay round-trip routes are selected without consider-

ing the route cost. A route thus selected is rejected if its delay is larger than the specified constraint.

This manner of selecting routes has been employed in [8].

MinCost:. This is the algorithm proposed in the current work. That is, the round-trip routes

are selected so that they are of minimum cost provided that they satisfy the delay constraint.

For the simulations we used the pseudopolynomial algorithm since it works sufficiently well for

the selected instances and its implementation is considerably simpler than the polynomial algorithm.

In Figure 1 we present the average total cost of using the servers and utilizing the link bandwidth.

We make the following observations. The cost for both algorithms decreases as the delay constraint

increases and levels off after certain value of the delay constraint. This is explained as follows.

17

For smaller delay constraints, several locations are becoming unreachable by the nodes. Hence the

options of directing the node load to the various locations are reduced and as result the overall

cost of the solution increases. The leveling-off of the computed cost is due to the fact that as the

delay constraints become looser, all the minimum cost round-trip routes are selected by MinCost

algorithm and all the minimum delay round-tip routes by the MinDelay algorithm. We also observe

in Figure 1 that the total cost of MinCost algorithm is always smaller than MinDelay, as expected,

and the significance is becoming more pronounced for larger delays. This behavior is again due to

the manner in which routes are selected by the two algorithms for a given delay constraint. For

strict delay constraints, both algorithms choose mainly the permissible minimum delay round-trip

routes and hence they have similar performance. For looser constraints, the fact that MinCost picks

the minimum cost round-trip routes that satisfy the delay constraint instead of simply the minimum

delay route (as MinDelay does) allows it to reduce the routing cost.

6 Conclusions

In this paper we presented a pseudopolynomial approximation algorithm and a polynomial time

algorithm for the NP-hard problem of replicated server placement with QoS constraints. The pseu-

dopolynomial algorithm works well in several practical instances and is simpler than the polynomial

time algorithm. The polynomial time algorithm is significant from a theoretical point of view and

can be useful to employ if the problem instance renders the pseudopolynomial time algorithm very

slow.

In this work we did not consider link capacities. It is an interesting open problem to incorporate

the latter constraint into the problem. Another problem of interest is to consider the case where not

all the database is replicated to each of the servers.

References

[1] R. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,” IEEE/ACM Transactions

on Networking, vol. 8, no. 5, pp. 568—582, October 2000.

[2] B. Li, M. Golin, G. Italiano, and X. Deng, “On the optimal placement of web proxies in the

internet,” in IEEE INFOCOM, 1999.

18

[3] X. Jia, D. Li, X. Hu, and D. Du, “Optimal placement of web proxies for replicated web servers

in the internet.” The Computer Journal, vol. 44, no. 5, pp. 329—339, 2001.

[4] X. Jia, X. H. D. Li, W. Wu, and D. Du, “Placement of web-server proxies with consideration of

read and update operations on the internet,” The Computer Journal, vol. 46, no. 4, 2003.

[5] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web server replicas,” in IEEE

INFOCOM, April 2001, pp. 1587—1596.

[6] Y. Chen, R. Katz, and J. Kubiatowicz, “Dynamic replica placement for scalable content deliv-

ery,” in First International Workshop on Peer-to-Peer Systems, 2002, pp. 306—318.

[7] S. Jamin, C. Jiu, A. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror palcement on the

internet,” in IEEE INFOCOM, April 2001, pp. 31—40.

[8] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek, “Selection algorithms for replicated

web servers,” in Workshop on Internet Server Performance, Madison, Wisconsin, 1998.

[9] X. Tang and J. Xu, “On replica placement for QoS-aware content distribution,” in IEEE INFO-

COM, 2004.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory on NP-

Completeness. W. H. FREEMAN AND COMPANY, 1979.

[11] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Spinger-Verlag, 2004.

[12] F. Chudak and D. Williamson, “Improved approximation algorithms for capacitated facility

location problems,” in Integer Programming and Combinatorial Optimization, 1999.

[13] M. Korupolu, C. Plaxton, and R. Rajaraman, “Analysis of a local search heuristic for facility

location problems,” Journal of Algorithms, vol. 37, pp. 146—188, 2000.

[14] V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit, “Local search heuristics for

k-median and facility location problems,” in In Proceedings of the 33rd ACM Symposium on

Theory of Computing, 2001, pp. 21—29.

[15] K. Jain and V. Vazirani, “Approximation algorithms for the metric facility location and k-

median problems using the primal-dual schema and the lagrangian relaxation,” Journal of the

ACM, vol. 48, pp. 274—296, 2001.

19

[16] M. Pal, I. Tardos, and T. Wexler, “Facility location with nonuniform hard capacities,” in IEEE

Symposium on Foundations of Computer Science, October 14-17, 2001, p. 329.

[17] F. Chudak and D. Shmoys, “Improved approximation algorithms for the uncapacitated facility

location problem,” SIAM Journal on Computing, vol. 33, no. 1, pp. 1—25, 2003.

[18] M. T. Hajiaghavi, M. Mahdian, and V. S. Mirrokni, “The facility location problem with general

cost functions,” Networks, vol. 42, no. 1, pp. 42—47, 2003.

[19] S. Siachalou and L. Georgiadis, “Efficient QoS routing,” Computer Networks, vol. 43, pp. 351—

367, 2003.

[20] P. V. Mieghem, H. de Neve, and F. Kuipers, “Hop-by-hop quality of service routing,” Computer

Networks, vol. 37, pp. 407—423, 2001.

[21] R. Andonov and S. Rajopadhye, “A sparse knapsack algo-tech-cuit and its synthesis,” in Inter-

national Conference on Application Specific Array Processors ASPA ’94. IEEE, 1994.

[22] M. Mahdian, E. Markakis, A. Saberi, and V. Varizani, “Greedy facility location algorithms

analyzed using dual fitting with factor-revealing LP,” Journal of the ACM, vol. 50, no. 6, pp.

795—824, 2003.

[23] R. Hassin, “Approximation schemes for the restricted shortest path problem,” Mathematics of

Operations Research, vol. 17, no. 1, pp. 36—42, 1992.

[24] D. H. Lorenz and D. Raz, “A simple and efficient approximation scheme for the restricted

shortest path problem,” Operations Research Letters, vol. 28, no. 5, pp. 213—221, 2001.

[25] M. de Berg, O. Schwarzkoph, M. V. Kreveld, and M. Overmars, Computional Geometry: Algo-

rithms and Applications. Springer-Verlag, 2000.

[26] K.Mehlhorn and S. Naher, “Leda: A platform for combinatorial and geometric computing,”

Cambridge University Press, 2000.

20

