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Abstract�We consider the operation of a network in overload
situations, that is, when the incoming traf�c is outside the
feasibility region determined by the network topology. In such a
situation nodes will be overloaded and it is important to maintain
a balanced network overload while ensuring that maximum
amount of traf�c reaches the sink nodes. We formulate the
problem as lexicographic optimization of node overloads, study
the properties of the solution and provide a distributed �ow
reallocation mechanism whose node overloads converge to the
optimal solution.

I. INTRODUCTION

Unpredictability in traf�c load variations, link capacity �uc-
tuations, topology modi�cations, node failures or various types
of intentional misbehavior may lead a network to overload
conditions. A smooth and balanced system response in those
stressful situations is essential for effective crisis management
in the network. This is more of an issue in wireless ad-hoc
and sensor networks where due to the nature of the system
and the likely scenarios of operation, anomalous behavior of
that type is more likely to occur.
We consider a network consisting of an arbitrary spatial

arrangement of nodes. Information may be generated at any
node in the network and needs to be forwarded to a collection
of hub (sink) nodes. The spatial distribution of traf�c gener-
ation intensity is speci�ed by the vector of traf�c generation
rates at each node. In overload condition this vector may lie
outside the feasibility region of the system, that is there may
be no feasible �ow to transfer the information to the sinks,
given the capacity of the system. This may occur for instance
in a sensor network where traf�c generation is event driven
and activity scenarios may light up different portions of the
system creating spatially localized, temporary overloads. In
that case inevitably traf�c backlogs will occur in the nodes.
The distribution of the backlog build-up is an indication of the
behavior of the system.
In this work we study the operation of the system in over-

load. A �uid model is considered where the information �ow
induced by the routing policy is represented by super�ows. A
super�ow is a generalized notion of �ow, where the aggregate
incoming �ow in a node may exceed the outgoing, i.e. �ow
conservation at the nodes need not necessarily hold. Super-
�ows permit us to model more accurately overload situations.

A super�ow is a vector with a nonnegative element for each
network link representing the information forwarding rate at
that link. The difference of incoming minus the outgoing �ow
from a node is the backlog buildup rate at the node. We call
this difference �node overload�. The vector of node overloads
under a certain routing policy is the quantitative performance
objective that represents the overload response of the network
to the routing policy.
We show that in the space of node overload vectors there

is one that is lexicographically minimal and we characterize
it. The overload corresponding to this vector also maximizes
the information rate that reaches the sinks. Furthermore we
show that this vector is the unique solution for a wide class
of optimization problems where the optimization objective
function is the sum of any nondecreasing convex function of
node overloads. We call that vector �most balanced� overload
vector and any super�ow that induces the most balanced
overload vector, �most balanced� super�ow. Finally we present
an adaptive super�ow reallocation policy converging to a most
balanced super�ow.
The paper is organized as follows. In Section II we present

some related work. In Section III we present the system model
and the optimization problem under consideration. Properties
and characterization of the optimal solution are provided in
Section IV. In Section V we propose an adaptive super�ow
reallocation policy converging to a most balanced super�ow.

II. PRELIMINARIES AND SOME RELATED WORK
There are two viewpoints in studying information �ow in

networks like the one we described above, the microscopic and
the macroscopic. At the microscopic level we keep track of the
dynamic evolution of the system at the packet level modeling
the instantaneous information backlog dynamics through ap-
propriate stochastic queueing networks; the associated routing
and �ow control algorithms are viewed operating at the packet
level. At the macroscopic level, under the assumption that the
stochastic dynamic �ows at the links and nodes of the network
have long term averages, we focus on average �ows; hence we
have a �uid model of the system and we study different routing
policies through the properties of their induced �uid �ows.
At the microscopic modeling regime let ai(t) be the total

amount of information generated at node i 2 K (K is the set



of nodes where traf�c is generated) in the time interval [0; t]
and aij(t) the total amount of information transferred to node
j from node i through link (i; j) in the same time interval. If
qi(t) is the information backlog at node i at time t then,

qi(t) = qi(0)+ai(t)+
X

j2Nin(i)

aji(t)�
X

j2Nout(i)

aij(t); i 2 K;

(1)
where Nin(i) and Nout(i) are respectively the set of incoming
and outgoing neighbors of node i:
Stability of the network means bounded backlogs over time,

i.e.,
lim
t!1

supE[qi(t)] <1; i 2 K:

Assuming that the long term averages of the stochastic �ows
ai(t); aij(t) exist,

lim
t!1

ai(t)=t = �i; a.s.,

lim
t!1

aij(t)=t = fij ; a.s:;

the stability of the network implies from (1) that,

�i =
X

j2Nout(i)

fij �
X

j2Nin(i)

fji; i 2 K: (2)

while the link capacity constraint implies that

0 � fij � cij ; i 2 K; j 2 Nout(i): (3)

Equations (2) and (3) are called �ow conservation and link
capacity conditions respectively and are necessary conditions
for stability. While the arrival rate vector � = (�1; ::; �K) is
the average spatial statistical pro�le of the exogenous traf�c
and is not affected by the network control policy, the vector
of �ows f = (fij : i 2 K; j 2 Nout(i)) is the result of
the routing policy and we may say that it characterizes the
routing policy as far as its long term behavior is concerned. A
necessary condition for the feasibility of an arrival rate vector
� is that there is a �ow vector f satisfying (2) and (3). Let
F� be the collection of �ow vectors satisfying (2) and (3) for
arrival rate vector �. Then each possible routing policy that
guarantees stable operation of the network corresponds to a
�ow vector in F�:
The behavior of the system in the stability regime has

been studied extensively in the past. A dynamic routing
and �ow control policy, the Adaptive Back Pressure policy
has been proposed and analyzed, showing that it achieves
maximum throughput in the network. ABP is a distributed
control policy where node i controls the transmissions of its
outgoing links based only on its own backlog as well as its
outgoing neighbors, without any knowledge of the network
topology or its statistics. In the context of the network under
consideration ABP operates as follows at each node i.
� At time t node i compares its backlog qi(t) with the
backlog of its one hop downstream neighbor j 2 Nout(i):

� If qj(t) � qi(t) then link (i; j) idles and no packet is
transmitted (�ow control is performed).

� If qj(t) < qi(t) then link (i; j) transmits full speed a
packet from i to j.

The above policy was proposed initially in [1], [2], in the
context of a multihop radio network and in combination with
a max weight radio access control policy. It was shown that
the combined routing-scheduling scheme achieves maximum
throughput and stabilizes the network if it is possible to do so.
More speci�cally it was shown that under the statistical as-
sumption of i.i.d. arrivals and given that the arrival rate vector
is such that F� is nonempty, the ABP policy achieves stability
of the network. In other words its �uid �ow pro�le behaves
as one of the feasible �ows of F�. A similar policy has been
considered later in [3] in the context of a multiclass service
network and its dynamic behavior was analyzed extending the
results in [2] for deterministic (�; �) traf�c pro�les, i.e. pro�les
that comply to the output streams of a (�; �) regulator (see [4]
for more details on (�; �) regulated traf�c). In [5] the policy
was studied under general Markov modulated statistics and
batch processing to account for synchronization de�ciencies of
different servers due to unequal service times. A generalization
of the policy, incorporating power control for time-varying
channels was presented in [6]. A policy similar to ABP was
proposed and studied in [7], [8], in the context of adversarial
queueing theory. That is, its performance was analyzed under
arrival traf�c patterns that might be the worst possible within
a certain family of arrival patterns, for instance all possible
arrival patterns at the output of a (�; �) regulator. It was
shown that the policy achieves maximum throughput in that
context as well. Finally the ABP policy has been considered
in the context of general service systems in manufacturing
and transportation problems in [9], [10], and its maximum
throughput properties were veri�ed.
In all the works discussed above the system was studied in

its stability region, i.e. when the load did not exceed capacity.
In the following we study the system in the overload region
resorting directly to the �uid model. The behavior of the
system in overload has been considered recently by several
researchers [11], [12], [13], [14], proposing �ow control
at the edge in combination with backlog balancing inside
the network, to achieve desirable throughput. In the current
paper we study the overload build-up and we characterize the
behavior of the policies from that perspective.
Finally, we note that the model and the problem considered

in this paper can address, in a limiting sense, the continuous
assignment problem of Hajek in [15].

III. DEFINITIONS, MODEL AND ASSUMPTIONS
The topology of the network is represented by a directed

graph G = (N;L). The set N consists of network nodes that
may generate and forward traf�c, and a node d that represents
collectively all gateway nodes to the infrastructure network.
The set of links L includes a link between any two nodes that
may communicate directly. It also includes a link to node d
for any network node that may communicate directly with a
gateway node. Link l 2 L has capacity cl. Given a set of nodes
S � N , let Lin(S) be the set of links that start at some node
out of S; in Sc = N � S and end at some node in S: With
Nin(S) we denote the set of nodes in Sc that are starting



points of the links in Lin(S). For simplicity of exposition
de�ne Lout(S) = Lin(S

c) and Nout(S) the set of nodes in
Sc that are ending points of the links in Lout(S). Without loss
of generality we assume that Lout (d) = ?: The set Lin(S)
will also be referred to as the set of �incoming links� of the
cut (S; Sc). Similarly, the set Lout(S) will be referred to as
the set of �outgoing links� of the cut (S; Sc). For simplicity,
if S consists of a single node i; S = fig, we write simply
Lin(i) and similarly for the other notations.
Denote by K the set of nodes N � fdg. Information is

generated at node i 2 K at rate �i � 0 and is destined to sink
node d. A �super�ow� f = fflgl2L ; is any nonnegative vector
with one element for each link that satis�es the following
constraints.

�i +
X

j2Nin(i)

fji �
X

j2Nout(i)

fij � 0; i 2 K (4a)

0 � fl � cl; l 2 L: (4b)

The inequality in (4a) may be strict since we allow for the
possibility of overload at a node. In case equality holds for
every node in K, the super�ow reduces to the standard ��ow�
de�nition. The quantity

qi = �i +
X

j2Nin(i)

fji �
X

j2Nout(i)

fij ;

is the rate at which traf�c is accumulated at node i 2 K for the
speci�c super�ow vector. We refer to qi as the �overload� at
node i under super�ow f . We extend the de�nition of overload
to sink node d by de�ning qd = 0. We denote by bF� the set
of super�ows satisfying (4), and by bQ� the set of overload
vectors induced by super�ows in bF�.
The throughput Tf of a super�ow is de�ned as the sum of

�ow intensities at the links terminating at the sink node, i.e.,

Tf =
X

j2Nin(d)

fjd: (5)

The traf�c load � of the network is the sum of exogenous
arrivals intensities,

� =
X
i2K

�i:

It can be derived from the de�nition of qi that for any subset
S � K it holdsX
i2S

qi =
X
i2S

�i +
X

(i;j)2Lin(S)

fij �
X

(i;j)2Lout(S)

fij � 0: (6)

From the above equation for S = K we get

Tf = ��
X
i2K

qi: (7)

If the super�ow is a �ow then qi = 0 for all i 2 K and
� = Tf ; i.e., the throughput equals the traf�c load.
The performance of the policy in overload mode is quan-

ti�ed through the overload vector q of the corresponding
super�ow. Several physically important properties of a policy
correspond to certain mathematical properties of the overload

vector. From (7) we see that in order to maximize the network
throughput it is enough to minimize the aggregate overload

min
q2 bQ�

X
i2K

qi: (8)

Also observe that if all the buffers at the nodes are equal, the
time to buffer over�ow of node i is the (qi)�1; and the time
to �rst buffer over�ow in the network is, mini2Kfqi�1g =
(maxi2K qi)

�1. Hence overload vectors that are solutions to
the following problem,

min
q2 bQ�

max
i2K

qi; (9)

maximize the time to �rst buffer over�ow in the network. A
stronger criterion than (9) is lexicographic optimization. This
optimization, also known as min-max optimization [16], is
based on the following order relation between vectors. Given a
vector v =(v1; :::; vn) ; let vi, i = 1; :::; n be the ith maximal
coordinate of v. We say that vector v is lexicographically
smaller than vector u, denoted by v � u, if either v1 < u1;
or for some i; 1 � i < n, vj = uj for 1 � j � i and
vi+1 < ui+1. If in addition we allow for the possibility that
vi = ui; for all i = 1; 2; ::n, we denote v4u. Note that if for
two vector v;u we have v � u then by de�nition maxi vi �
maxj ui.
According to the previous discussion, attempting to maxi-

mize throughput and at the same time minimize the time to �rst
buffer over�ow amounts to solving simultaneously problems
(8) and (9). It can be easily seen that solving each of these
problems separately, does not guarantee a solution to the other
one. However, as will be shown in the sequel, lexicographic
optimization of node overloads does provide optimal solution
to both of these problems. In fact, it turns out the an even
stronger property than lexicographic optimization holds for
the network under consideration. To this end, we introduce
the following partial ordering. We say that vector v is more
balanced than vector u, denoted by v ` u, if the following
inequalities hold

iX
l=1

vl �
iX
l=1

ul; i = 1; :::; n: (10)

Note that if for the overload vectors q1, q2 we have that
q1 ` q2 then it follows that q14 q2and furthermore the
throughput under q1 is larger than under q2: Hence a �most
balanced� overload vector according to relation ` is a very
desirable property. A potential complication is that relation
` is a partial ordering and not any two overload vectors are
comparable with respect to that ordering, unlike the throughput
or the lexicographic criterion that are total orderings. Hence
while it is certain than an optimal throughput overload vector
exist and the same holds for a lexicographically optimal
([17]), that is not clear for a most balanced overload vector.
It is shown in the following that for the network under
consideration a lexicographically optimal vector is also most
balanced.



The results of this paper can be easily extended to the case
where it is of interest to provide a weighted most balanced
overload response in the sense of achieving lexicographic
optimization of qi=�i for given constants �i > 0, i 2 K.
This may be of interest in situations where the buffer sizes of
network nodes may differ. For simplicity in the discussion we
avoid introducing the weights in the current presentation.

IV. PROPERTIES AND CHARACTERIZATION OF MOST
BALANCED SUPERFLOWS

Consider a super�ow characterized by the following in-
equalities that hold for any link (i; j) 2 L.

If qi < qj ; then fij = 0; (11a)
If qi > qj ; then fij = cij : (11b)

A super�ow satisfying inequalities (11) is called �Super�ow
of Adaptive Back Pressure policy�, SABP in short. The reason
for this terminology is that, as will be seen in Section V,
a SABP super�ow can be obtained as limit of super�ows
induced by an adaptive �ow update policy that is similar
to the ABP policy described in the introduction. The SABP
super�ow can also be thought of as the equilibrium point of
�sel�sh routing� in cases where the only information available
to users is the backlog change rate at the node where they are
located and at the outgoing neighbors of that node. Hence the
node (or agents located at the node) directs its traf�c only to
nodes with smaller overloads in the hope that this way the
traf�c will encounter smaller congestion. Problems related to
sel�sh routing have been the subject of several studies, see
[18] and the references therein.
The main result of the paper is summarized in the following

theorem.
Theorem 1: A super�ow induces a most balanced overload

vector if and only if it is SABP. The most balanced overload
vector is unique - however there may be more than one
super�ow inducing the most balanced overload vector.
The proof of the theorem is outlined in the following. For

more details the reader is referred to
http://users.auth.gr/~leonid/public/OverloadRespExt.pdf.
We start with the following lemma which shows that a

super�ow inducing a lexicographically optimal node overload
vector is SABP.
Lemma 2: Let f� be a super�ow inducing a lexicographi-

cally optimal vector. Then f� is SABP.
To proceed we need some further properties that are satis�ed

by the overload vector induced by a super�ow. Because of (6)
and (4b) we have for any S � K,X

i2S
qi =

X
i2S

�i +
X

(i;j)2Lin(S)

fij �
X

(i;j)2Lout(S)

fij

�

0@X
i2S

�i �
X

(i;j)2Lout(S)

cij

1A+

: (12)

Let us de�ne for any S � K; S 6= ?;

B(S) ,

0@X
i2S

�i �
X

(i;j)2Lout(S)

cij

1A+

: (13)

For S = ? we use the convention B(S) = 0. The following
lemma provides a lower bound on the maximum overload
values on subsets of K. For a set X , jXj denotes the number
of its elements.
Lemma 3: Under any super�ow f inducing overload vector

q, for any S � K,

max
i2K

qi � max
S�K

B(S)= jSj : (14)
Let

bR1 = max
S�K; S 6=?

B(S)

jSj ;

S1 =
�
S :

B(S)

jSj = bR1; S � K; S 6= ?� ;bS1 = [S2S1S:
The next lemma shows the basic property of SABP super-

�ows related to min-max optimization.
Lemma 4: Let f be a SABP super�ow inducing overload

vector q. Then (14) is achieved with equality and bS1 is the
set of nodes with maximal overloads under f , i.e.,

qi = max
j2K

fqjg = bR1; i 2 bS1:
Hence, bS1 is the set of nodes with maximal overload under a
lexicographically optimal super�ow.
Consider now a SABP super�ow. If bS1 = K then according

to the previous discussion any SABP super�ow has overload
vector q� such that,

q�i =
B(K)

jKj ; i 2 K:

Assume next that bS1 � K. Since maxi2bSc1 qi < q; we
conclude from the de�nition of SABP super�ow that,

fij = 0; for all (i; j) 2 Lin
�bS1� ; (15)

fij = cij ; for all (i; j) 2 Lout
�bS1� : (16)

Consider the reduced network where the subgraph that
consists of the nodes in bS1 is removed and for each link in
Lout

�bS1� we put an exogenous arrival source to the node
in bSc1 where the link terminates with intensity equal to the
link capacity. We can apply the same argument to the reduced
graph in order to determine the set bS2 of nodes on which the
second largest overload for any SABP super�ow is achieved.
In this manner we end-up getting node sets bS1; bS2; :::; bSL;
where on set bSl the lth maximal overload for any SABP
super�ow is achieved. Hence any SABP super�ow determines
uniquely the node overloads. Since by Lemma 2 any most
balanced super�ow is also a SABP super�ow, we conclude.



Lemma 5: A SABP super�ow induces a lexicographically
optimal overload vector if and only if it is SABP. The
lexicographically optimal overload vector is unique.
The next lemma shows that a lexicographically optimal

overload vector is also most balanced.
Lemma 6: Let q� be the overload vector induced by a

SABP super�ow. Then

q� ` q for all q 2 bQ�: (17)
Combining Lemmas 5 and 6 we obtain Theorem 1.
The next Theorem shows that (17) is equivalent to mini-

mizing the sum of any convex nondecreasing function of node
overloads.
Theorem 7: It holds

iX
l=1

q�l �
iX
l=1

ql;for all i = 1; :::; jKj ;

if and only if
jKjX
i=1

g (q�i ) �
jKjX
i=1

g (qi) ; (18)

for any convex nondecreasing function g(q), q � 0.
We note that property (18) is the de�ning property of �most

balanced� assignment in [15].

V. DISTRIBUTED ASYNCHRONOUS SABP COMPUTATION
POLICIES

In this section we present an asynchronous distributed
method for computing SABP super�ows that relies on the
following local adjustment of a �ow, done on a per link basis.
For link (i; j) do the following �ow update:
� If qi > qj and fij < cij then increase fijuntil either
fij = cij or qi = qj

� If qi < qj and fij > 0 then decrease fijuntil either
fij = 0 or qi = qj

If the above iteration is performed in�nitely often by each
link, without any need for coordination of successive itera-
tions among links we have convergence to an SABP. More
speci�cally, let tn; n = 0; :: be a sequence of �ow adjustment
times, tn > tn�1; n = 1; :: and ln; n = 0; :: be a sequence
of links such that the origin node of link ln performs the �ow
adjustment operation described above at time tn on link ln.
Assume that the update operation on each link is performed
in�nitely often, i.e. for any time T and for any link l = (i; j)
there is an update instant tk > T at which node i performs
the update on link l. We have the following theorem
Theorem 8: Let fn be the super�ow vector at time tn and

qn the associated overload vector. If q� is the unique overload
vector associated with all SABP super�ows, then

lim
n!1

qn = q
�

lim
n!1

fn = f
�:

where f� is some SABP super�ow.
Notice that while q� is unique, f�is not. That is, there may

be more than one SABP super�ows. The particular SABP

super�ow to which convergence is obtained in Theorem 8
depends on the sequence ln; n = 0; :: according to which
link �ows are adjusted.

VI. CONCLUSIONS
Polynomial time algorithms for determining a SABP super-

�ow exist, but they do not lead to distributed adaptive policies
which are of main concern when ad-hoc and sensor networks
are considered.
In this work we concentrated on the routing and forwarding

aspects of information transmission. A topic of further inves-
tigation is to consider cross-layer issues where wireless node
interactions, rate adaptations and power control are also taken
into account. Another topic of interest is the study in overload
conditions of policies operating at the packet level, and the
relation of these policies to �ow level policies considered in
the current paper.

REFERENCES
[1] L. Tassiulas, Dynamic link activation scheduling in multihop radio

networks with �xed of changing topology, Ph.D. thesis, University of
Maryland, College Park (1991).

[2] L. Tassiulas, A. Ephremides, Stability properties of constrained queueing
systems and scheduling policies for maximum throughtput in multihop
radio networks, IEEE Transactions on Automatic Control 37 (12) (1992)
1936�1949.

[3] L. Tassiulas, Adaptive back-pressure congestion control based on local
information, IEEE Transactions on Automatic Control 40 (2) (1995)
236�250.

[4] R. Cruz, A calculus for network delay, part i: Network elements in
isolation, IEEE Transactions on Information Theory 37 (1991) 114�131.

[5] L. Tassiulas, P. Bhattacharya, Allocation of interdendent resources for
maximum throughput, Stochastic Models 16 (1).

[6] M. J. Neely, E. Modiano, C. E. Rohrs, Dynamic power allocation and
routing for time varying wireless networks, IEEE Journal on Selected
Areas in Communications, Special Issue on Wireless Ad-hoc Networks
23 (1) (2005) 89�103.

[7] W. Aiello, E. Kushilevitz, R. Ostrovsky, A. Rosen, Adaptive packet
routing for bursty adversarial traf�c, in: Proc. ACM Symposium on
Theory of Computing, 1998.

[8] B. Awerbuch, P. Berenbrink, A. Brinkmann, C. Scheideler, Simple
routing strategies for adversarial systems, in: Proc. IEEE Symposium
on Foundations of Computer Science, 2001.

[9] G. Dai, W. Lin, Maximum pressure policies in stochastic processing
networks, Operations ResearchTo appear.

[10] G. Dai, W. L. R. Moorthy, C. P. Teo, Berth allocation planning
optimization in container terminals, preprint.

[11] V. Tsibonis, L. Georgiadis, L. Tassiulas, Exploiting wireless channel
state information for throughput maximization, IEEE Transactions on
Information Theory 50 (11) (2004) 2566�2582.

[12] M. J. Neely, E. Modiano, C.-P. Li, Fairness and optimal stochastic
control for heterogenous networks, in: IEEE Infocom 2005, Miami,
Florida, USA, 2005.

[13] A. Eryilmaz, R. Srikant, Fair resource allocation in wireless networks
using queue-length based scheduling and congestion control, in: IEEE
Infocom, Maimi, Florida, USA, 2005.

[14] A. L. Stolyar, Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm, Queueing SystemsTo appear.

[15] B. Hajek, Performance of global load balancing by local adjustment,
IEEE Transactions on Information Theory 36 (6) (1990) 1398�1414.

[16] D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, Englewood
Cliffs, New Jersey 07632, 1992.

[17] L. Georgiadis, P. Georgatsos, K. Floros, S. Sartzetakis, Lexicographi-
cally optimal balanced networks, IEEE/ACM Transactions on Network-
ing 10 (6) (2002) 818�829.

[18] T. Roughgarden, E. Tardos, How bad is sel�sh routing?, ACM 49(2)
(2002) 236�259.


