Balancing a double inverted pendulum using optimal control and Laguerre functions

Technical Report

Lazaros Moysis
Aristotle University of Thessaloniki, Greece, 54124
2016

Abstract

The problem of stabilization of a double inverted pendulum mounted on a cart is presented. This highly unstable system is linearized around its equilibrium and then is kept in an upright position using two different methods. First through lqr control and secondly using Laguerre functions. The system is simulated in Matlab.

1 Introduction

A double inverted pendulum system is an extension of the single inverted pendulum, mounted on a cart. The problem of balancing an inverted pendulum is one of the most classic control engineering problems [1, 2, 3] and is a subject of extensive research [4, 5, 6, 7, 8, 9, 10, 11], since such systems can be used to accurately describe many real life problems, like balancing artificial limbs, rocket launches, trajectory control and many more.

The double inverted pendulum is a nonlinear system with a high level of nonlinearities, which is extensively used in testing new control methods. Many different methods have been established for its control. Examples include the linear quadratic regulator feedback design [6], a nonlinear extension called State-Dependent Riccati Equation, where we consider the matrices of the state space system to be dependent on the position of the pendulum, fuzzy control methods, line adaptive fuzzy control, variable universe adaptive fuzzy control, fuzzy nine point controller, neural network controllers, as well as a combination of all these. The interested reader should refer to [6] and references therein. In the present work, lqr and mpc methods will be tested [5, 9].

2 Pendulum model and linearization

The procedure of deriving the differential equations that describe the model of a double pendulum is described analytically in [4, 5, 6, 9, 10, 11].

As a short outline, the procedure follows like this. Initially, we define the three objects of our model, which are the cart, the lower pendulum and the upper pendulum. Each object has its mass m_i and for the lengths of each pendulum is L_1, L_2.

For each mass we define its Kinetic Energy T_i and its Potential Energy P_i. The energy of the system is

$$T = T_1 + T_2 + T_3 \quad P = P_1 + P_2 + P_3$$

The Langrangian L is the difference between kinetic and potential energy $L = T - P$. The states of the system are
The Lagrange Equations of Motion are defined as
\[
\frac{d}{dt} \left(\frac{dL}{d\dot{\theta}} \right) - \frac{dL}{d\theta} = Q \tag{1}
\]
where \(Q\) the vector of external forces acting on the system. These equations lead to the system ([6]):
\[
D(\theta)\ddot{\theta} + C(\theta, \theta')\dot{\theta} + G(\theta) = Hu \tag{2}
\]
where
\[
D(\theta) = \begin{pmatrix}
 d_1 & d_2 \cos \theta_1 & d_3 \cos \theta_2 \\
 d_2 \cos \theta_1 & d_4 & d_5 \cos (\theta_1 - \theta_2) \\
 d_3 \cos \theta_2 & d_5 \cos (\theta_1 - \theta_2) & d_6
\end{pmatrix} \tag{3}
\]
\[
C(\theta, \theta') = \begin{pmatrix}
 0 & -d_2 \sin (\theta_1) \theta_1' & -d_3 \sin (\theta_2) \theta_2' \\
 0 & 0 & d_5 \sin (\theta_1 - \theta_2) \theta_2'
\end{pmatrix} \tag{4}
\]
\[
G(\theta) = \begin{pmatrix}
 -f_1 \sin \theta_1 \\
 -f_2 \sin \theta_2
\end{pmatrix} \tag{5}
\]
\[
H = \begin{pmatrix}
 1 \\
 0 \\
 0
\end{pmatrix} \tag{6}
\]
with
\[
d_1 = m_0 + m_1 + m_2 \\
d_2 = (m_1/2 + m_2) L_1 \\
d_3 = m_2 L_2/2 \\
d_4 = (m_1/3 + m_2) L_1^2 \\
d_5 = m_2 L_1 L_2/2 \\
d_6 = m_2 L_2^2/3 \\
f_1 = (m_1/2 + m_2) L_1 g \\
f_2 = m_2 g L_2/2
\]
and g is the gravitational acceleration.

The above equations describe the system’s motion and are clearly nonlinear. The linearization of these equations around the equilibrium

$$(\theta_0, \theta_1, \theta_2, \theta'_0, \theta'_1, \theta'_2) = (0, ..., 0)$$

leads to the following state space system

$$x'(t) = Ax(t) + Bu(t)$$
$$y(t) = x(t)$$

where

$$A = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
D(0)^{-1} \frac{dG(0)}{d\theta} & I & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$
$$B = \begin{pmatrix}
0 \\
D(0)^{-1} H
\end{pmatrix}$$

and the state vector is

$$x = \begin{pmatrix}
\theta \\
\theta'
\end{pmatrix}$$

If we compute the above matrices for the following data: $m_0 = 1.5\text{kg}$, $m_1 = 0.5\text{kg}$, $m_2 = 0.75\text{g}$, $L_1 = 0.5\text{m}$, $L_2 = 0.75\text{m}$ we end up with

$$A = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & -7.4920 & 0.7985 & 0 & 0 & 0 \\
0 & 74.9266 & -33.7147 & 0 & 0 & 0 \\
0 & -59.9373 & 52.1208 & 0 & 0 & 0
\end{pmatrix}$$
$$B = \begin{pmatrix}
0 \\
0 \\
0 \\
-0.6070 \\
1.4984 \\
-0.2839
\end{pmatrix}$$

3 Linear Quadratic Regulator solution (LQR)

Now that the system is defined, our next aim is to define a cost function depending on the position and the input and minimize it with respect to these parameters. Let

$$J = x^T Q x + u^T R u$$

where Q, R are weight matrices for each parameter. According to [6], we will define

$$Q = diag(5, 50, 50, 20, 700, 700) \quad R = 1$$

although of course other cost functions can be defined, depending on the capabilities of the mechanical system used in a real life simulation. The input that is used is of the form $u = -K x$, where K is the state feedback matrix and is the solution of the Riccati equation.

This matrix can be obtained from Matlab using the command $k=lqr(sys,Q,R)$, where sys is the above state space system, to which we have set $y = x$ so that the states are equal to the outputs. The matrix K is

$$k = (-2.2361 \ 499.6181 \ -578.2160 \ -8.2155 \ 19.1832 \ -88.4892)$$

so after the feedback is applied, the new system’s matrix is

$$A - Bk = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-1.357 & 295.8 & -350.2 & -4.987 & 11.64 & -53.72 \\
3.351 & -673.7 & 832.7 & 12.31 & -28.74 & 132.6 \\
-0.6348 & 81.9 & -112 & -2.332 & 5.446 & -25.12
\end{pmatrix}$$
Consider the response for initial conditions

\[
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
\theta_2 \\
\theta'_0 \\
\theta'_1 \\
\theta'_2 \\
\end{pmatrix}
= \begin{pmatrix} 0 \\ 10 \\ -10 \\ 0 \\ 0 \\ 0 \end{pmatrix}
\]

(18)

that is, for a relatively small deflections from the equilibrium. It should be noted here that although we refer to the deflection angles in degrees, in MATLAB, they should be inputted in radians, as can be seen from the MATLAB code at the end. The six states can be seen in Figure 2.

For larger deflections towards the same direction

\[
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
\theta_2 \\
\theta'_0 \\
\theta'_1 \\
\theta'_2 \\
\end{pmatrix}
= \begin{pmatrix} 0 \\ 20 \\ 20 \\ 0 \\ 0 \\ 0 \end{pmatrix}
\]

(19)

the states can be seen in Figure 3. Again we can see that the system can be balanced, although the cart is stabilized far from the point 0, to which it returns to with a very low pace.
4 Simulation Code for LQR

```matlab
% Define the parameters
m0=1.5;
m1=-0.5;
m2=-0.75;
L1=0.5;
L2=0.75;
dt=0.02;
Q=diag([5 50 50 700 700 700]);
% One can also try the following
% Q=diag([700, 0, 0, 0, 0, 0])
% Q=diag([110 110 110 0 0 0])
R=1;
Nh=40;
g=10;
% Define the system matrices
d0=[m0 + m1 + m2; (m1/2 + m2)*L1, (m2*L2)/2; (m1/2 + m2)*L1, ...
   (m1/3 + m2)*L1^2, (m2*L1+L2)/2; (m2*L2)/2, (m2*L1+L2)/2, (m2*L2^2)/3];
g=[0;0;0;0;-(m1/2 + m2)*L1+10;0;0, -(m2*L2^2)/2];
% Define the State Space System
a=zeros(3),eye(3);-inv(d0)*dg, zeros(3);
b=[zeros(3,1);inv(d0)*[1;0;0];
c=eye(6);
sys=ss(a,b,c,0);
% Compute the feedback k
k=lqr(sys,Q,R)
% Define the new system
sysnew=ss(a-b*k,b,c,0)
```
5 Model predictive control using Laguerre functions

The basic idea of solving a problem through model predictive control is to find a way to construct the optimal control trajectory. The control sequence will be computed for a specific time interval called Control Horizon \(N_c \), and it will determine the progress of the system for a longer time interval called the Prediction Horizon \([13]\).

The first step in this procedure is the discretization of the model. Using zero order hold with sampling period \(T = 0.002s \), the discrete time model is

\[
x(k + 1) = A_d x(k) + B_d u(k)
\]

\[
y(k) = x(k)
\]

with

\[
A_d = \begin{bmatrix}
1 & 0 & 0 & 0.0020 & 0 & 0 \\
0 & 1.0001 & -0.0001 & 0 & 0.0020 & 0 \\
0 & -0.0001 & 1.0001 & 0 & 0 & 0.0020 \\
0 & -0.0150 & 0.0016 & 1 & 0 & 0 \\
0 & 0.1499 & -0.0674 & 0 & 1.0001 & -0.0001 \\
0 & -0.1199 & 0.1042 & 0 & -0.0001 & 1.0001
\end{bmatrix}
\]

\[
B_d = \begin{bmatrix}
0 \\
0 \\
0.0012 \\
-0.0030 \\
0.0006
\end{bmatrix}
\]

the next step is to construct the augmented model, which is

\[
\begin{bmatrix}
\Delta x(k + 1) \\
y(k + 1)
\end{bmatrix} = \begin{bmatrix}
A_d & 0 \\
IA_d & I
\end{bmatrix}\begin{bmatrix}
\Delta x(k) \\
y(k)
\end{bmatrix} + \begin{bmatrix}
B_d \\
IB_d
\end{bmatrix}\Delta u(k)
\]

\[
y(k) = \begin{bmatrix}
0 & I
\end{bmatrix}\begin{bmatrix}
\Delta x(k) \\
y(k)
\end{bmatrix}
\]

where \(C = I \), since we want to have \(y = x \).

Our aim now is to compute the control sequence \(\Delta u(k) \), using Laguerre functions \([13]\). Laguerre functions are used in order to compute the optimal control input \(\Delta u(k) \), which is then applied to the system through state feedback

\[
\Delta u(k) = -K_{mpc}x_{aug}(k)
\]

where

\[
K_{mpc} = L(0)^T\Omega^{-1}\Psi
\]
with

\[L(0)^T = \sqrt{1 - a^2} (1 - a^2 - a^3 \ldots (-1)^{N_c - 1} a^{N_c - 1}) \]

(27)

\[\Omega = \sum_{m=1}^{N_p} \phi(m)Q\phi(m)^T + R_L \]

(28)

\[\Psi = \sum_{m=1}^{N_p} \phi(m)Q A_{aug}^m \]

(29)

\[\phi(m)^T = \sum_{i=0}^{m-1} A_{aug}^{m-i-1} B_{aug} L(i)^T \]

(30)

\[L(i) = (l_1(i) \ldots l_{N_c}(i))^T \]

(31)

where \(l(i) \) are the Laguerre functions, \(a \in (0, 1) \) and \(Q, R_L \) are the regulator matrices, \(Q \) is a 12 by 12 diagonal matrix and \(R \) is also a diagonal \(N_c \times N_c \) matrix.

Let the parameters be

\[a = 0.4 \quad Q = diag((11 11 11 0 0 0 11 11 11 0 0 0)) \quad R_L = 0 \]

(32)

and the control and prediction horizons

\[N_p = 1000 \quad N_c = 200 \]

(33)

The feedback matrix \(K_{mpc} \) is computed to be

\[K_{mpc} = L(0)^T \Omega^{-1} \Psi = \]

\[= (37.7155 \quad -283.1523 \quad 453.8848 \quad 33.5609 \quad 4.5332 \quad 71.5215 \quad 0.0422 \quad 0.0205 \quad 0.0187 \quad 0 \quad 0 \quad 0) \]

(34)

With this feedback, the system becomes

\[x_{aug}(k + 1) = (A_{aug} - B_{aug} K_{mpc}) x_{aug}(k) + B_{aug} \Delta u(k) \]

(35)

\[y(k) = C_{aug} x_{aug}(k) \]

(36)

From the above system we can recreate the original 6 by 6 pendulum system, since \(C = I \). The original system is just the 6 by 6 block part of \((A_{aug} - B_{aug} K_{mpc})\) and the first 6 lines of \(B_{aug} \).

The response for initial conditions

\[
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
\theta_2 \\
\theta'_0 \\
\theta'_1 \\
\theta'_2
\end{pmatrix} = \begin{pmatrix}
0 \\
5 \\
5 \\
0 \\
0 \\
0
\end{pmatrix}
\]

(37)

can be seen in Figure 4. For larger deflections

\[
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
\theta_2 \\
\theta'_0 \\
\theta'_1 \\
\theta'_2
\end{pmatrix} = \begin{pmatrix}
0 \\
15 \\
-15 \\
0 \\
0 \\
0
\end{pmatrix}
\]

(38)

the response can be seen in Figure 5.

Here we can observe that the lower pendulum has for a time period a large angular velocity, which of course is undesired.
6 Simulation Code for MPC

%% Discretize and get Augmented System
format long
sysd=c2d(sys,0.002,'zoh');
[ad,bd,cd,dd]=ssdata(sysd);
% One can also try:
% ad=expm(a*0.02)
% bd=b*0.02;
syd=ss(ad,bd,cd,dd);
adcomp=[ad, zeros(6); cd*ad, eye(6)];
bdcomp=[bd; cd*bd];
ccdcomp=[zeros(6), eye(6)];
augmented=ss(adcomp,bdcomp,ccdcomp,0,0.002);

%% Design MPC Using Laguerre Functions
a=0.4;
beta=sqrt(1-a^2);
Np=1000;
Nc=200;
q=diag([1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0]);

% Create Laguerre Matrix
[A1,L0T]=lagd(a,Nc);
clear L;
L(:,1)=L0T;
for kk=2:Np;
 L(:,kk)=A1*L(:,kk-1);
end

%% Define Psi and Omega
psi=0;
omega=0;
for i=1:Np
 f=0;
 lag=[];
 for j=0:i-1
 f=f+adcomp'(i-1-j)*bdcomp*L(:,j+1)';
 end
 psi=psi+f'*Q*adcomp';
 omega=omega+f'*Q*f;
end

%% Define Augmented System with Feedback
finalsys=ss(adcomp-bdcomp*L0T'*pinv(omega)*psi,bdcomp,cdcomp,0,0.002);

%% Define Original System with Feedback
am=(adcomp-bdcomp*L0T'*pinv(omega)*psi); %A after feedback
final=ss(am(1:6,1:6),bdcomp(1:6),eye(6),0,0.002);

% Plot for Chosen Initial Conditions
[y,t,x]=initial(final,[0;deg2rad(5);deg2rad(5);0;0;0;],7);
[y,t,x]=initial(final,[0;deg2rad(15);deg2rad(-15);0;0;0;],10);
y(:,2:3)=rad2deg(y(:,2:3));
y(:,5:6)=rad2deg(y(:,5:6));
for i=1:1:6
 subplot(2,3,i)
 plot(t,y(:,i))
 grid
end

In the above code we made use of the function `lagd` which is taken from [13].

function [A,L0]=lagd(a,N)
v(1,1)=a;
L0(1,1)=1;
for k=2:N
 v(k,1)=(-a).^(k-2)*(1-a*a);
 L0(k,1)=(-a).^(k-1);
L0=sqrt((1-a*a))*L0;
A(:,1)=v;
for i=2:N
 A(:,i)= [zeros(i-1,1);v(1:N-i+1,1)];
end

References

