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Scope

- To investigate the functional role of bursting firing mode
of thalamic relay neurons
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- to study theinteraction between primary somatosensory cortex
and thalamus in awake, freely moving rats during different behaviors:

immobility, whisker twitching (7-12 Hz whisker mov.) , exploratory whisking

- to understand the signal detection process
that involves athalamocortical loop
and is mediated via oscillatory neural activity.



METHODS

| mplantation of recording electrodesin 3rats:
In ventroposterior medial thalamic nucleus (VPM) and S
63/ 58 single-units in VPM /S|

| nactivation of Sl-activity by Muscimol Infusion

Nerve cuff electrode
. platinum

- bands

Construction and I mplantation
of Nerve Cuff Electrode

for infraorbital nerve stimulati oh

stimulation
to nerve cuff
electrode

Stimuli: current pulses, 100 us

Behavioral Analysesviavideo recordings.
(i) quiet immobility

(i) active (motor activity but no whiskers)

(ii1) whisking (large whisker movements/ exploratory behavior)

(iv) whisker twitching (WT): small amplitude whisker mov at 7-12 Hz
accompanied by oscillatory activity in brainstem, VPM & Sl



Data Analysis
Whisker twitching periods were verified by the 1% Princ. Comp. within an area
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A burst wasdefined as: minimum 2 spikes and maximum ISI: 10 msec
& minimum separation from other bursts: 100 msec

Theamount of cortical area (SI)
activated dueto a stimulus:

Cumulative summation of the g5
number of electrodes activein
successive (post-stim) time bins



Partial Directed Coherence (PDC) :

A frequency domain representation of Granger-causality
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Multivariate autor egr essive modeling
of the signals derived from neuronal spiking data
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RESULTS
During WT behavior, robust oscillations
were observed in VPM & Sl.
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Rhythmic burst activity was char acteristic only of the WT behavior
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After SI wasinactivated by muscimol infusion,
animals showed no WT-behavior,
thalamic-oscillatory activity was blocked and bur st-activity disappear ed
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The cortical area activated
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The direction of Information Flow was determined, via PDC-analysis,
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and compared for the different behavioral-states, e.g.
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during quiet/active/whisking states
(i) therewas no difference between VPM Sl & SI-VPM
(i1) and no difference between states, e.g. PDC(quiet)= PDC(active)

(|||) but in WT-behavior: PDCS|_>VP|\/| > PDCVPM—)SI

quiet state
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DISCUSSION

thalamocortical neurons fire in bursting mode during WT-behavior
Sl does respond to stimuli during WT-behavior

wep- there isrelay of sensory information

the inactivation showed that WT-behavior depends on S|
PDC-analysis during WT showed more influence from SI 2>V PM

===mp- PUrsting can have functional role : optimal signal detection

the probability of VP neuron responding to a stimulus
was highest when a burst occurred 120 ms earlier

= dUINNG WT the vibrissal system is primed
to detect the incoming stimuli

an hyperalert state during the WT-behavior
which is based on oscillatory activity

Conclusion

the nervous system is not a passive detector of afferent stimuli,
but it plays an active role in optimizing
the detection of potential incoming sensory information
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