Dynamic Brain Sources of Visual Evoked Responses

S.Makeig, M. Westerfield, T.-P. Jung, S.Enghoff, J. Townsend, E.Courchesne & T.J. Sejnowski

The Salk Institute

Science: January 2002.

Scope

- Understanding the averaged electrical responses:

Stimulus-Evoked brain events

VS

Stimulus-Induced changes in ongoing brain dynamis

- Exploratory-Data Analysis of multichannel data
 - + source identification
- Phase resetting of multiple processes:

a Single-Trial characterization

from Winfree & Sayers to Brandt, Tass & Nicolelis

Experimental Set-up

spatial visual selective attention experiment

76-s block of trials, green was the target location

task: button-press when stimuli (flashed disks)

appeared in the attended location

30 block per subject / 15 subjects

EEG data, 29 scalp sites + 2 EOG,

SF: 256 HZ, BW:0.01-100 Hz, low-pass: 40 Hz.

Responses to <u>nontarget</u> stimuli presented to the <u>left</u> of fixation were analysed (after artifact rejection **922 in average**, since nontarget trials per location was 480)

METHODS

- ERP spectrum vs ST-EEG spectrum (Short-FT)
- **2** Event-Related Spectral Perturbation: Averaged vs ST response
- **3** Event-Related Intertrial Coherence ITC (phase-locking factor)
- **4** *Sorting* Single-Trials
- **6 ERP-Image** tool
- 6 ICA
- Clustering

RESULTS

Power spectra of 1-s post-stimulus epochs: ave. vs ST-epochs

Similarity in frequency dependence and scalp topography.

Below < 20Hz, spectral amplitude of ave-epochs 5 times higher than expected: in a Signal + Noise model, where averaging suppresses the variance of noise 1/N times

 \bigcirc pre to post-stimulus \land in α -power : ave. vs ST-epochs

at each frequency and latency window, the consistency across trials of EEG spectral phase was measured

phase resetting
during N1 period,
in all channels
and frequencies <20 Hz

At 10 Hz, in central posterior channels, ITC remains high for 700 ms

Visual ERPs are not sums of a sequence of brief fixed-latency, fixed polarity potential events:

Coupling with the ongoing activity

The relationship between the ST rhythmic EEG activity and its ERP-aver.

Signal separation: spatially fixed, temporally independent processes

Single-trial signals **from all conditions** [50 250]ms were concatenated

Cluster Analysis was used to group the ICs across subjects.

The clusters containing components in common, but not corresponding to non-brain artifacts were considered as responsible for the ERP-generation.

8 clusters were detected:

A Rhythmic α_{CP} responsible for α -ringing and fitted by two dipoles in left/right calcarine cortices

A FC cluster with phase resetting in θ/α -band responsible for frontal N1

Two lateral posterior ones accounted for the early-P1, N1

Two μ -rhythm related clusters

Single-dipole modeling of FC-components resulted to localization of activity in or near left dorsal anterior cingulate cortex

The selected components can explain 80% of the grand-average signal

Conclusions

- □ background oscillatory EEG processes are not irrelevant to brain stimulus processing
- ☐ ☐ Phase resetting of EEG processes can explain
- (i) why epochs of small α -energy result to an ERP-average of small amplitude
- (ii) the α -ringing effect
- (iii) why ERP latencies do not match the 50-100 ms latency of initial neural activation in visual areas
- □□□ The role of ST-analysis for understanding the cortical dynamics. The conjunction of *Source-separation* and *Source-localization*.

Discussion

- ICA limitations / mixing all conditions during ICA computations
- **2** phase resetting

Deep brain stimulation

3 Exploratory Data Analysis