Feature-Space Clustering for fMRI Meta-Analysis

C. Goutte, L.K. Hansen, M.G. Liptrot & E. Rostrup

Human Brain Mapping: July 2001.

Scope

Exploratory data analysis as a possible alternative to inferential analyses

Generalize the existing methodologies for clustering raw time series: for *data reduction* & *meta-analysis* of *single-voxel* neuroimaging analyses.

Baumgartner et al. "Fuzzy clust. vs correlation analysis" [Magn. Reson Imaging, 1998],

Tonini & Edelman. "Functional Clustering in Neuroimaging Data" [Neuroimage, 1998]

Baune et al. "Dynamical Cluster Analysis of cortical fMRI activation" [Neuroimage, 2001]

Baumgartner et al. "Assessing coactivation in fMR via MST" [Neuroimage, 2001]

1

OUTLINE

DATA

Images (128 x 128 pels): FOV of 230 mm, 10mm slice thickness, were acquired in a para-axial orientation parallel to the *calcarine sulcus*.

ROI was limited to a 68 x 82 2D voxel map (each voxel: 1.8 x 1.8 x 10 mm)

Visual paradigm: 20 sec of rest period (darkness / a light fixation dot), 10 sec of full-field checkerboard reversing at 8 Hz 20 sec of rest period

PREPROCESSING

Detrending

Data reduction (omnibus F test)

Features extraction from cross-correlation

between the <u>Raw signal</u> f(x,y,z,t) and <u>the paradigm</u> p(t)

Features extraction for *Metaclustering*

fusion of attributes from standard voxelwise analyses:

standard Student t test (rest statistic

VS activation):-t

♦ Kolmogorov – Smirnov test

: - d statistic

• Correlation with the paradigm (delayed 7 sec)

: - r coefficient

- FIR filter model, fitted on the fMRI signal :
 - std of the fitted signal
 - delay estimated from the FIR filter
- Gamma filter model, fitted on the fMRI signal:
 - strength parameter from the fitted signal
 - delay estimated from filter

CLUSTERING

K-means Algorithm

RESULTS

Preprocessing

Clustering on delay and strength

- The data in clusters 1, 2 & 4 display very significant activations of various strength.
- 2 The delay to 90% of maximum activation is 6.5, 6.2, 6.8 sec
- 3 There is a significant undershoot in cluster 1 around images 85-105.

- 4 out of 8 resulting clusters display some kind of activation.
- 2 The 3rd cluster shows lateral activation in two smaller areas that correspond to V5
- 3 The delays for the negative activation are 1-1.5 sec sorter

than the delays for the positive activation.

Meta clustering in the 7D feature-space

Selected K=26

24 voxels

The projection of CA on 2D plots, as a means to compare the different features

The ordering of clusters according to each feature to access the consensus in the features e.g. FIR-std assigns similar rank to cluster with positivenegative activation (t-stat. based [1] vs [26])

e conventional SPMs criticism

t-stat. & KS-stat. rely heavily on a square wave design.

• Timing of the haemodynamic response.

CONCLUSIONS

- Existense of voxel-groups characterized by negative pattern of activation.
- No evidence for "Initial dip"
- Parsimonious description of the Data
- Complementary information revealed by the plethora of different approaches for voxel-based analysis

Discussion

- ① Theoretical considerations
 (metric / convergence / K-means modeling limitations etc.)
- © Fusion of neuroimaging modalities
 Anatomical vs Functional clustering (anat.MRI & fMRI)
- Time-series Clustering for exploring/testing putative Temporal-Coding schemes

Friedrich & Laurent "Dynamic Optimization of Odor Representation", Science, vol 291, Feb 2001