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The problem

Visualizing the variability of MEG responses

understanding the single-trial variability

Describe the single-trial (EEG) variability in the presence of artifacts

make single-trial analysis robust, robust prototyping



Aristotle University of Thessaloniki4

Our approach

CLUSTERING

FUZZY

CONDITIONAL

creating clusters

0 or 1 [0, 1]
partial membership 

content constraints 

criteria grades
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Every Pattern to only one clusterEvery Pattern to every cluster 
with partial membership

ClusteringFuzzy Clustering
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Fuzzy C Means
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FCM 2D Example

compact groups
spurious patterns

FCM sensitivity 
to noisy data
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Conditional Fuzzy Clustering

The presence of Condition(s)

Condition(s)Pattern

mark
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Conditional Fuzzy C Means

scaled to [0, 1]

],...,,[ 21 NfffF =

<Xdata, F> � CFCM � <U, Centroids>

F affects the computations of U matrix and consequently the centroids.
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FCM VS CFCM
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Graph-theoretic 
Visualization Techniques

Topology Representing Graphs

Build a graph G [C x C] Topological relations between prototypes

Gij corresponding to the strength of connection between prototypes Oi and Oj

Computation of the graph G

- For each pattern find the nearest prototypes and increase the 
corresponding values in G matrix

- Simple elementwise thresholding � Adjacency Matrix A

A: a link connects two nearby prototypes only when they are natural 
neighbors over the manifold 
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Graph-theoretic 
Visualization Techniques

Compute the G graph via CFCM results

Apply CFCM algorithm: (O, U) = CFCM(X, Fk, C)

Build )(.,][ ''' τθ −== ijijijCxNij uuuthatsuchuU

Compute G = U’.U’T FCG: Fuzzy Connectivity Graph
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Graph-theoretic 
Visualization Techniques

Minimal Spanning Tree MST-ordering
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Minimal Spanning Tree with MST-ordering
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Graph-theoretic 
Visualization Techniques

Locality Preserving Projections

Dimensionality Reduction technique Rp � Rr r<p
Linear approach ≠ MDS, LE, ISOMAP

Alternative to PCA: different criteria, direct entrance of a new point into the 
subspace

- generalized eigenvector problem

- use of FCG matrix

- select the first r eigenvectors and tabulate them (Apxr matrix)

P = [pij]Cxr = OA
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The experiments

Magnetoencephalography Electroencephalography

+ 197 single trials

+ control recording

110 single trials

Online outlier rejection
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The datasets
Feature Extraction

MEG EEG

X_data [197 x p1], p:number of features X_data [110 x p2], p:number of features

pT

msec msec

µV
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Applications (MEG)
Exploit the background noise for better clustering

Spontaneous activity as a auxiliary set of signalsMEG single trials  +

Exploit the distances 
to extract the grades
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Applications (EEG)
Robust Prototyping

Elongate the possible outliers 

from the clustering procedure

Find the distances from the 
nearest neighbors and compute 
the grades for every pattern
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FCM
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CFCM
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Future Work

Knowledge-Based Clustering Algorithms

• horizontal collaborative clustering

wavelet transform
• conditional fuzzy clustering

wavelet transform
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Conclusions

Through the proposed methodology

• exploit the presence of noisy data

• elongate the outliers from the clustering procedure

Graph-Theoretic Visualization Techniques

• study the variability of brain signals

• study the relationships between clustering results

Paper submitted

“Using Conditional FCM to mine event-related dynamics”


