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o The problem

Visualizing the variability of MEG responses

understanding the single-trial variability

Describe the single-trial (EEG) variability in the presence of artifacts

make single-trial analysis robust, robust prototyping
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Our approach

criteria - CONDITIONAL - grades

content constraints

FUZZY - [0, 1]

partial membership

CLUSTERING

creating clusters
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® Fuzzy C Means
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Conditional Fuzzy Clustering

The presence of Condition(s)

mark

Pattern Condition(s)
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Conditional Fuzzy C Means

— = F=[f,fnf]

scaled to [0, 1]

<Xdata, F> =2 CFCM = <U, Centroids>

F affects the computations of U matrix and consequently the centroids.
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FCM VS CFCM
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Graph-theoretic

Visualization Techniques
Topology Representing Graphs

Build a graph G [C x C] == Topological relations between prototypes

G;; corresponding to the strength of connection between prototypes O; and O,

Computation of the graph G

- For each pattern find the nearest prototypes and increase the
corresponding values in G matrix

- Simple elementwise thresholding - Adjacency Matrix A

A: a link connects two nearby prototypes only when they are natural
neighbors over the manifold
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Graph-theoretic
Visualization Techniques

Compute the G graph via CFCM results

Apply CFCM algorithm: (O, U) = CFCM(X, F,, C)

Build U =[u; ], Suchthat u; =u;.0(u; —7)

Compute G = U'.U'T ===> FCG: Fuzzy Connectivity Graph
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Graph-theoretic
Visualization Techniques

Minimal Spanning Tree MST-ordering
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Minimal Spanning Tree with MST-ordering
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Graph-theoretic
Visualization Techniques

Locality Preserving Projections

Dimensionality Reduction techniqgue RP =2 R" r<p
Linear approach # MDS, LE, ISOMAP

- generalized eigenvector problem
- use of FCG matrix

- select the first r eigenvectors and tabulate them (A, matrix)
P = [pij]er = OA

Alternative to PCA: different criteria, direct entrance of a new point into the
subspace
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® © = | The experiments

+ 197 single trials 110 single trials

+ control recording Online outlier rejection

18 Aristotle University of Thessaloniki



The datasets

Feature Extraction
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o Applications (MEG)

Exploit the background noise for better clustering

MEG single trials + Spontaneous activity as a auxiliary set of signals
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Elongate the possible outliers

from the clustering procedure

Find the distances from the
nearest neighbors and compute
the grades for every pattern
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Applications (EEG)

Robust Prototyping
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FCRM-Prototype #5
Clutlier #1: 0.5832
Clutlier #2: 0.9358
Cutlier #3: 0.45334
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(b)
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o Future Work

Knowledge-Based Clustering Algorithms

 conditional fuzzy clustering
wavelet transform

Scale 1
,1.
« horizontal collaborative clustering ¥** |-
wavelet transform |
Scale 3 —-J\Jlulﬂ.,—

Multiresolution analysis

Approximation Detail
I
- &t each seale a sighal is
Detd filtered into a cours: and a
detailed cormgp.

Wavelet coeficients
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e Conclusions

Through the proposed methodology

 exploit the presence of noisy data

 elongate the outliers from the clustering procedure

Graph-Theoretic Visualization Techniques

* study the variability of brain signals

o study the relationships between clustering results

Paper submitted

“Using Conditional FCM to mine event-related dynamics”
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