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Appllcatlon to Audltory I\/IlOO responses
to detect the influence of attention :




“ Introductory comments

Graph theoryis the study ofjraphs:
mathematical structures used to model pairwisé¢ioais
between objects from a certain collection.

A "graph" is collection of vertices (or 'nodes®) ./. """" ~@
and a collection of edges that connect pairs dfces. ‘
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Graphs in Brain Research :

network analysis sfnall-world networl
systems-approach (MIl-maps)

structural connectivity functional connectivity effective connectivity




Graphs forSingle-Trial Analysis
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Future-trends (mining information from multisite recordings)”



“ |. Outline of our methodologicabpproach

A synopsis of response dynamics and its variability
by means ofSemantic Geodesic Maps

Graphs play an instrumental role in :
computing neighborhood relations
deriving faithfull visualizations of reduced dimensonality

describing and contrasting @~ -
the essence of response variability ian objective way

MST, WW-test , ISOMAP, Laplaceansgmmute timesetc

Brain dynamics can be compared a glance
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ISSH 13882457 @lin. Neurophysiol. Molume 113 Number &
113.(8) 11831272 (2002) Bl S EViTER AUGUST 2002

[ Laskaris & loannides,2001 & 2002]

A user-friendly framework for intelligent
single-trial analysis of multichannel
encephalographic recordings
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multichannel prototypes
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A non-parametric test
for comparing distributions

----------------------------------

{Xitize. nVS{Y i} =1
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Il. Applicationto MEG
Auditory (M100)responses

The Scope .

to understand the emergence of M100-response
(in averaged data)

characterize its variablility (at Single-Trial level)

and describe the influence (if any) ofattention
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The Motive : “ New BCI approaches based on

selective Attention to Auditory Stimulus Streams ”
N. Hill, C. Raths (mda_07)

Exogenous (i.e. stimulus-driven) BCI's rely
on the conscious direction of the user's attention.

For paralysed users, this meams/ert attention
Covert attention do affect auditory ERPs.
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MEG-data were recorded at RIKEN (BSI, Japan)

CTF-OMEGA (151-channels)
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Repeated stimulation ( ISI: 2sec)

binaural-stimuli [ 1kHz tones, 0.2s, 45 dB |,

passive listeningask (120 trials ) O
& attenting task (120 £ 5 trials )
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lla. Ensemblecharacterization

of (M100-related)brain waves [ 3. 20
/H»
lIb . Unsupervisectlassification
of (M100-related)brain waves
and Prototyping

lic . Empirical Mode Decomposition
for enhancing (M100-related) brain waves
mutiscale analysis

single-channel ICA for oscillatory components
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lla. Ensemblecharacterization
of (M100-related)brain waves
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time-aligned ST-segments are extracted

brought to common feature space
and subsequenlty transfromed ( viaMDS )

to point-diagrams representing brain-waves relative scdering

ol |
Ty
ol |
"y
uy
"y
ol ]
Ny
ny
Ny
L ]
......
g
g
Ny
ay
Ny
ay
Ny
ay
Ny
bl
Ny

L ]
-------
.......
.........
---------
........
---------
-------

23



Attentive-responsesshow significantlyreduced scattering:
smaller MST-length
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Clustering tendenciesre apparent irphase-representation space
and higher for thattentive responses



Similar observations can be made
for the other hemisphereof the same subject
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And for other subjects as well
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The variability of (snaphosts of) Brain-waves
IS smaller for the attentive task




The clustering of (snaphosts of) Brain-waves
IS higher within the phase-representation domain



lIb . Unsupervisectlassification
of (M100-related)brain waves

and Prototyping
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Discriminative Prototyping

Kokiopoulou & Saad, Pattern Recognition:

“Enhancedgraph-basedlimensionality reduction
with repulsion Laplaceans

By contrasting brain-waves frogontrol condition
against the M100-related brain waves

we deduce an abstract space

wherein Neural-Gas based Prototypings first carried out
and then prototypes are ranked based onSiWR-classification index”
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By embedding brain-waves fromcontrol condition,
we can the define high-SNR regions in the reduced-space

Exploiting the abundance ofspontaneous brain activitysnapshots,

we can accurately/preciselyank the differnt voronoi regions.
35






The derived ranks are utilized to order
the prototypical responses accordingly
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Taking a closer look at the high-SNR group of STs
a ‘highlighting’ of response dynamics is achieved
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that can be enhanced via“arial-Temporal” format

There is an apparent organization in the brain waves @ 100 s



And be enriched via contrast
with the ‘void-of-M100-response’ ST-group
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There is lack of any kind of organization in the brain waves
I




Discriminative Prototyping
for attentive (M100) responses
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Even for the attentive-task
there are ST-groups‘void-of-M100’




Thehigh-SNR groupof STs, clearly shows phase-reorganization
of prestimulus activity accompanied with an enhancemensoillations
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portrayed even better in theTrial-Temporal format
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shows no prominent stimulus-induced changes
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Similar observations can be made
for the other hemisphereof the same subject
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AND for this hemisphere (in theattentive-task !!l)
there is a ST-group‘void-of-M100’
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Phase-reorganization of brain wavess apparent in th@igh-SNR STs
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While stimulus-induced dilutionof brain waves
can be seen in théow-SNR ST-group
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void_trials_right void_trials_left
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We further pursue any kind of systematic-relationship
between the two hemispheres
In the formation of brain-waves groups

by resorting tdvariational-Information (VI) measure

(e.g.low-SNR STs in the left hemisphere
could coinside withhigh-SNRSTSs in the right hemisphere )

Right trials_group_index

Left_trials_group _index
VI =MI for partitions & an adjustment for being &rue-metric



Based on aandomization test(10000 permutations)

Left and Right hemisphere groups
of (M100-related) brain waves are formedidependently



lic. Empirical Mode Decomposition
for enhancing (M100-related) brain waves
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Intrinsic modefunctions (IMFs)

Huang et al, proc. R. Soc Lond. A, 454 (pp.903-995), 1998

“The EMD and thehilbert spectrum
for nonlinear andnon-stationarytime series analysis”

- An iterative (hierarchical ) sifting-procedure is applied

It considers the signals at their local oscilation scale
subtracts the faster oscilation
and iterates with the residual
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Two examples of EMD-analysis
applied to STs from S2 (passive-task)
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By enseble averaging of all ST-IMFs
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With anensemble characterization
based on a standaBNR-estimator
for all IMFs (individually)

Q S2left-hemisphere

®

v v

Some IMFs are information-rich, while others not



By (re)combining the more informative ones,
an enhanced M100-response can appear
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With a (raph-baseglensemble characterization
based o'WW-index
a similar picture emerges
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Stimulus-induced modulations of oscillatory
activity has now become prominent



Since Interactions between oscillatory systems are
(often) best described via phase coupling,

we measureteft-right inter-nemisphere coupling
usingPhase Coherence indexr.Tass)
for thewell discriminating IMF(S)

Left Instant.-Phase(t) ) -
Hilbert- trans> | Phase(t),
Right_Instant.-Phase(t)

Ph-COH



Ph-COH=0.9

Ph-COH=0.93

Ph-COH=0.13

Ph-COH=0.12
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Phase Coherence, for all conditions
as a function of trial-number

- In both tasks, the Coupling is higher than control

-- Attention increases the coupling



The same observations can be made for other subjects as well
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Conclusions

ST-Variability is lower In attentive task

Trials void of response do not appear
simultaneously in both hemispheres

Inter-hemispheric Phaselocking
IS higher for attentive responses
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Future work and Perspective

Bipartite-graphsechniques
for biclustering ( LOIs & ST-group)

Hypergraphgor analyzing multiple traces
at different scalegfrom wavelet or EMD analysjs

Mining Graph data
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LHBD site :
http://humanbraindynamics.com/
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