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Introduction

The term “pattern”, currently, encompasses théiomof a variety of data-forms the machines have t
tackle with. Despite the fact that in early daysvéts used mostly for pictorial information, i.e. -3ignals, now
the same term stands almost for any output fromta-slource. For instance, any digital-signal caednsidered
as an 1D-pattern, a grey-scale image as a 2D-pgttevideo-sequence as a (temporal) multi-dimeisipattern
etc.

Here we will present a general purpose frameworkléaling with patterns and discuss simple algorith
with a wide-range of applications (from novelty-@gtton and prototyping in databases to the fulbargation of
a library of patterns). The main characteristictio¢ framework and simultaneously its great benifits
Geometrical character. This enables the direct epoalization of the employed ideas and promotesetisy

understanding of the described algorithmic steps.

Given an ensemble of N (general character) pattarnsdimensional vector , i=1,2,...N
X =[xi(1) %(2) ..... %(p) |

is extracted from each one. With this step, wh&cknown as thefeature-extractionstep, the set of patterns is

represented by a set of row-vectors.

The N vectors are gathered in the so-called Dataia %@

X, [X,(D),X,(2)..... x,(P)] Xy Xgeeee-Xgp Xy15Xggee e Xy
X, [X,(D,X,(2).....X,(p)] X35 X0+ -+ Xap

data _ | - |[__ . —
X[NXD]_ - -
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x.N [xN(l),xN(é) ...... Xn(P)] le,xNzl ...... Xnp



Two simple transformations of the above matrixwseally employed:

(i) standardization of each one of the p variates (after subtractioitsanean) is performed via a normalization

step in which the variate is divided with i$andard deviation(std). This is useful when the variates have

different scales: e.g. one variate is amplitude thedther is time.

- Whitening based on PCA is a more advanced standardizatamegure that aims, also, at decorrelating the

variates simultaneously.

(i) normalization of each one of the N vectors, by dividing withntam,

i.e. replacement o with Xi= x;/ | [xil|

wherdx| | = [ (1) + x(2)%+..... x(p)* ]
This transformation is useful in order to highligihiape similarities during the subsequent comioutatf
Euclidean distances between patterns (see below).

The geometrical consideration, according to whichhte patterns are represented by
points (i.e. the end-tails of the corresponding véars) in a multidimensional space, is very
useful in order to conceptualize morphological relaonships between patterns, to search for
natural groupings inside the sample of patterns, et The key idea is that similar patterns

are mapped onto nearby points.

Distance matrix
The very first thing, that one can do is to meashesgeometrical distance between two vectorgdero
to quantify (inversely) the similarity between therresponding two patterns. A small distance megesat

similarity between the two patterns and this camberpreted as common signal/information content.

The most common (but not always the most efficiemly to measure dissimilarity is through the

Euclidean distance:

d(x,x2) =l bxa- xel | = [ (xa(1)-%(2) ) ? + (3a(2) =%(2) Y+.....+ (xa(p)xe(p) J* 112



For computational considerations, usually its sgddorm is utilized, i.e.

d(x1,%2) =1 Ix1 - xo| | 2

For an ensemble of N patterng}{-1.n, all the pairwise distances are gathered in the

so-called (NxN)istance matrix Djnxnj

Phemgg— BIE D0k

0 dx2) d@3 d(L, N) p 0 D, D, - Dy
d(2.1) 0 d23 - d2N) % D, O D, - D,
Dy = | d(BD) d(32) 0 d(3,N) = Igl D, D, O .+ Dy,
; : E E E i!rril N : . . .
d(N,) d(N,2) d(N,3) 0 b(D,; Dy, Dy 0
r

A fast computation of this (symmetric) matrix, enabling eaptical implementations given via the following
matrix operations:

D= diag@) E + E diagA) — 2A (2)
where

A XX (1.1 o= iy
- 1 E(NXN)_ 11 ’ X(pr)_ - [Xl'XZ' XN]

Notice
If the normalized versions (Xof the patternsiphas been used in the Data matrix,
then the corresponding pairwise Euclidean distaheesmes
d(Xi, X)) =2 (1-p(Xi, %))
where p(X; , %) is thecorrelation coefficientbetween the two vectors, which is defined as:
p(xi,x) = xiex [ (Ikall? lxall?) = XieX
wheree defines inner product, i.e. in form of matrix ogoNns :X; x,-T ('with the superscript “T” denoting the

transpose operation ).

Remark:
The Correlation coefficient between time series-waforms (when considering 1-D signals as patterng)sually referred to as a

“shape similarity”, is known to expresses the synalonization between them.



An insight to the structural information containkey the Distance-matrix can be obtained via a simple
visualization-scheme. The entries of maixare treated as grey-valued pixels and the laymdyzed this way
is indicative of the presence of any structureh@ data. This procedure is an easily-implementelnigue for
unmasking possible outliers (the corresponding fossmns are white stripes in the produced layoutn
example of a point-sample and the correspondis@ace-matrix can be seen below (taken from agicaéin-
sequence data).
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Relating topological descriptors of point sets withthe data.

The description of a set of patterns, through tpology of their representing points can lead topse
descriptors that have a ready geometric interpogtatithout loosing the connection with conventibapproach
for studying the data (e.g. statistical analysiSpometrical concepts like the ‘local point-density’ the
outline/skeleton of a point-swarm can be utilized building tools for understanding and handling the

multidimensional data.

In the sequel, we are —first— considering the pdert distances and the gravitational centre abiatgset.

A simple geometrical descriptor of a point setisgdispersion J which expresses the compactness of the

point set as the average distance from the gearakinean.

J({Xi }i=LN) = 1/(N _1) : Z”Xi _Xave||2 ’ Xave = }/N ’ in

note: it is the p-dimensional analogous of the standiandation of a set of scalars (a set with unidisiemal members, i.e. numbers).



It can be shown that dispersion can be expressed sasnmation of pairwise distances ( a trick thdk be
justified later) :
N N 2
IX fan) =T 2N(N=D) - D" [x; x|
i=1 j=1

and therefore estimated via the following simpldrmaperation:

1

Wxda) =5y

u-D-u" Uy = [11,.... 0]

The following “rules” are motivated by the geomedtiinterpretation of the computed quantities:

(i) Between two sets of patterns, and assuming comumderlying signal-source, the more reliableisée one
of smallest dispersion. In other words, the disjperis a measure of ‘noise’ in the data.

(i) The contribution of the i-th vector to the abdispersion (and correspondingly to the ‘noidehe data) is the

sum of its distance to the rest of the points:
dist(x,) = d(i1)+d(i,2) +....+d(i,N)

This can serve as a simple gauge for unmaskingingtpoints, i.e points that lie far away from timajority of

them and therefore correspond to unusual patterns.

(iif) Conversely, the notion dfector Median can be introduced. This is the vector with thert#sh aggregate

distance (from the rest vectors in the point-sajple

Unmasking Outliers

Using simple functionals with arguments the paiendsstances, we can built mappings that are infow@about
the “distinctiveness” of the corresponding patter The idea inherent in mamwgctor-orderingschemes is to
map each vector to a scalar, to locate the veatatts images lying at the extremes of the obtainedlss
distributions, to identify the corresponding vestand make a final judgment about the correspgnplatters.
The simplest mapping can be built using the aggeedjatance, i.e. using the elements from the spmeding

row of the distance matrix

x. > dist(x,) = d(i,D) + d(i,2) + ...+ d(i,N)



This can serve as a simple gauge for unmaskingiongtpoints, i.e points that can correspond toemgly noisy
patterns or extremely interesting patterns. Inléteer case the task is known ragvelty detectiorand used in
many quality-control tasks.

Usually, the estimated scalars are ordered
[ dist, dist, dist ... disfy ] —<05 [ digy disy digj ... disy ]

and this ordering defines the ordering of the gpomding vectors (and consequently of the pattdreg are

associated with)
Reducedrdering \[

1

In this way, a ranked list of patterns has beentified in which the elements that deserves furttwersideration

(due to their non-typicality) lie at one of the twnds.

- As an alternative for unmasking outlying poiritee following measure, can be utilized:

dist(x;) = min( (i, )} 1)

While the above described ordering procedure cailyespot non-typical patterns, the identificatiohthe
most typical ones require more delicate proceduresmajority of which fall in the mainstream ofuStering

literature.

Cluster Analysis

Cluster Analysis(CA) deals with the identification of natural groupsnip an ensemble of objects. In the
case of a point set, CA searches for homogenedisetss The most common categorization of CA algorgt
classifies them into partition, hierarchical and graph-theoreticones. In the following, we discuss a few
prototypical algorithms which are belonging to fivst two categories and postpone the discussiograph-
theoretic approaches for a later part of thesesnatevhichexploratory-dataanalysis is treated in some details.

Hierarchical Clustering

The main characteristics of these algorithms aaettiey work with a dissimilarity matrix withouting
the patterns themselves and that they have a detsticicharacter (in the sense that they prodiways the
same output, in contrast to the partition algoritiiat the resulting grouping depends on theiratigation). In

the sequel, we outline the most common among tkaown as th&ingle-linkage algorithm :



Given the dissimilarity matrix (here, the mati), the process begin by pairing the two points & An
with the smallest distance. The rows and columnB itorresponding to k and | points are deleted.eiv mow

(and the corresponding column) is inserted. It amstthe distances of the first cluster (k,l) te temaining N-2
points.

These distances are found from the rule:

Dy = min (Dq , Dy ), ik,

Using the new [N-1 x N-1] dissimilarity matrix, widentify the next two points with the smallest rpase
distance. During this procedure the pair (k,Iy&ated a single point and can be paired with orteeN-2 points.
Next, a new [N-2 x N-2] distance matrix is derivadd the procedure continues until all points hhegen
grouped into a hierarchy of clusters. This hiergrisha sequence of nested point sets and is raepessas a

function of the pairing distance. The visualizatminthis hierarchy througbendrogramsenables the final user-

depended grouping.
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Fig 3 Discovery of DLBCL subtypes by gene expression profiling.

Partitioning Clustering Algorithms

The search for clusters -in the cas@aiftitioning algorithms includes some algorithmic steps that are
directed to the minimization (maximization) of anj@ctive (cost) function that expresses the sefldayab
(compactness) of the produced groups.

Thepartition matrix U is used to tabulate the results of the CA. It'€&aN] matrix, with each row devoted
to one of the C produced clusters.

ul ull u12 ulN
u2 u21 u22 u21
Uean = = ; , du=1 >u =N
j=tc j=1C
i=LN
uC uCl uCZ uCN



Theindicator functionu; takes the valug if the pointx; belongs to the j-th cluster; otherwise is se {orisp
clustering; in fuzzy counterparj simply takes a value in the range [0,1] ).

In the case o€-meansalgorithm, the objective function that is minimikzis the total intra-cluster dispersion:

D ugx,

J|Il

i —of. o
j=1C I%”,. & J ZU
i=LN

The cores of the C clusters are the correspondemgnegtrical centers (means); this explains the nafmée
algorithm.

It easy to see that, since this objective is thm efithe individual subset dispersions, the athomi“works” at a
splitting direction so at to reduce the initiallstienated noise power of the overall set.

In matrix operation, the above cost function reads:

E=> S——u;-D-uj, pop =2y,

j=1C 2 pop] i=LN
whereD is the ensemble interpoint distance and; goie population of each cluster.

This equation can be written in an even more comjoae, after proper scaling of the with the corresponding
population : E= tracd¢DU" )

Note: Which calls for a “physical interpretation” of theff diagonal elements of the matrices produdtiashe trace operation:

the summation of the off-diagonal elements ofghisluct expresses the average inter-cluster sdpkira

Remarks

i) Since CA algorithms always result to grouped dateritical issue that always arises is if theirdiimn really
contributes to the understanding of the true pdistribution. A way to justify this is the compaois of
measure E with the corresponding dispersion footlegall point set dispersion.

i)  To alleviate the problem of initialization and matfficient convergence, usually the iterative aipons (like
the C-means) are applied a few times and the lagestipn matrix is the final outcome.

i) An intriguing aspect is “how many clusters there”an the point set. A simple strategy for estimgtthe
number of clusters C, is to apply the algorithm ifmreasing value of C, and by plotting the coroesjping
values of E as function of C to decide the critimamber G. Notice that E is by default a monotonically
decreasing function of C, with absolute minimum C+HB each point to its one cluster.

iv)  Outlying points tend to obscure the convergencethadiccuracy of the resulting partition. It iggested to

be isolated from the beginning.

V) The objective function has been modified many titngée Pattern Recognition literature, e.g. stodsias the

creation of highly populated clusters.



Subtractive Clustering

An efficient technique known asountain-clustering has been introduced recently [Yager, 1994] for
delineating cores in a multimodal point distributidt is an iterative scheme that emplalgtectionof the most
significant mode andubtractionof the subset of points that are coming from #rain mode.

In our case this technique has been modified &xwel
(i) For the detection of the dominant mode the mépe of Potential Functionis used so as to construct a
mountain, the height of which is proportional te flocal point density. An estimate of the localmalensity is

assigned to each poixt, through the relation

1
(27[)P/2 rOP N

s ) [
JZ;, exp[T’]

o

PD(Xi ) =

where p, known as radius of influence, shapes the inflaesfeeach point on the rest and has to be estinfistted
“noisy conditions”.

Remark: “Notice that the PD- quantity can be estimated, straightforward manner, using the elements ofadise matrix.

The point of the set that lies closer to the domimaode is identified as the poixta.x of maximum local point

density.

(i) For the refinement of the dominant-mode estimatiba, points in the vicinity okmax are averaged. To this
end, each point; in the point-set is ordereatcording to its distance>d( Xmax ), i.€. the closer to thenax the

point is, the lower its rank [i] will be. A portioof the lower ranked points will be averaged

X
Il
x

sel . i

The definition of the numbeg jcan be adaptive and provides the optimal numbereafest neighbours @fax

that have to be subtracted. This subset is remanddhe procedure is repeated from the detectegn st
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Multidimesional Scaling

Many gquestions that arise during the executionmoCa algorithm, like “how many clusters ?” or “are
there any outliers in the sample”, have -by fam-easy answer in the case of univariate / bivarialbservations,
i.e. points on the real line/plane. It is remaltkathe human gift for pattern recognition-taske ldtetermining
modes in a point distribution and recognizing tieelg. attractors, abrupt changes) in the datan\ilinese are
presented in the form of point-diagrams.

Motivated by this gift, many dimensionality redioct techniques have been introduced as a prepiogess
step to (or crude-approximation of) Cluster AnadysThese techniques aim at “projecting” the oribipa
dimensional point-sample onto a low dimensionalcepge.g. PCA, projection pursuit algorithms etche3e
techniques work with the original set of variateging to extract linear/nonlinear combinationstieém that the
further analysis could focus on. This turns to e main disadvantage of them, since in many casgs data
from psychophysics behavioral experiments) the @vgilable information comes in the form of a sanily
matrix (i.e. the inverse of a distance matrix) ttk@scribes the mutual relationships between thienpa we want
to analyze. This led to the development of an irtgrdr branch of Multivariate Analysis, known as Nult

Dimensional Scaling (MDS).

The definition of MDS is —currently— any procedtinat, given a dissimilarity matrix correspondimga
set of patterns, configures points in a low dimenai space (usually 2-D) as images of the patierasway that
the interpoint distances approximate as much asifleshe original pairwise dissimilarities. Thesults in a 2-D
“projection” of the objects, where neighboring telaships/clustering trends are prominent.

An early categorization of MDS algorithms used fassify them into two categoriesnetric and
nonmetric MDSAs a metric MDS algorithm is referred one thaaki to PCA, i.e. it is applied via eigenvectors
analysis and has analytical expression. On the-agnthe nonmetric MDS algorithms are iterativenature and

computational demanding, but usually (slightly toderately) superior to the metric ones.

In the following the classic metric algorithm [Darson; 1952,1958 (see [Morrison,1990]) | is presgkn
The output of this algorithm has been proposedwasyagood initialization for the nonmetric ones.
The algorithm starts with a transformation of thégioal dissimilarity matrix; in our case this miatris the
interpoint distance matri® computed for a set of N p-dimensional paints
(i) Apnxng = - Dinayg
(i) the elements of\ are doubly centered about their row and columnn®ieasulting to matriByyy Wwith

elements:
Bij =Aj-Ai-Aj+A.
(i) The first r characteristic rootg, 5, ... I, and their associated vectovgxaj, V2 ,...., Vr

11



are extracted froB
(iv) The vectors are normalized so thet v; = |; and gathered in a [N x r] matrix

V[er]:[ Vi Vo..... Vr]

(v) The i-th row of this matrix contains the coordirsatd the i-th point in the new

r-dimensional space (ris usually, toit necessary, 2) :

0OONT mET=0

X1 X Xiprreeee K1 Xz Xqgrerees K1

Xz Xo11Xopeernns K or :% Xo1sXoprreens X or
+
_ data __ . _ . . €
V[NXf] _X[er] - = = 2
11
B

. . % .
An ANpr AN A nr N1 X Ngeeeeee e

(vi) A measure of map credibility, regarding itsldp to reflect the original structure is given ltlye normalised

total discrepancy

YDy /3
Streess= '

2Dy

i<j

where A is the matrix of interpoint distances; = |l - x;|| > in the new space (computed from eq.(1) using as

data matrix the matri¥nxq )

Remarks:
Possible outliers in the set tend to “dominate” phgection. A refined image can be obtained dfteir isolation

and removal.

12



A classical example:

With standard psychophysical experimental procegutbe perceptual similarity (PS) between colors wa

estimated and tabulated as follows. The 14 entoe®spond to 14 different *hues’ with wavelengths
Wavelength=[434 445 465 472 490 504 537 5584 5600 610 628 651 674 ]

Grossly speaking a reddish hue corresponds to #ivelength of 674, while a bluish hue to 472, etc...

0 0.8600 0.4200 0.4200 0Q0L800.0600 0.0700 0.0400 0.0200 (070.0900 0.1200 0.1300 0.1600
0.8600 0 0.5000 0.4400 0(200.0900 0.0700 0.0700 0.0200 (0040.0700 0.1100 0.1300 0.1400
0.4200 0.5000 0 0.8100 0M®700.1700 0.1000 0.0800 0.0200 (0010.0200 0.0100 0.0500 0.0300
0.4200 0.4400 0.8100 0  00b400.2500 0.1000 0.0900 0.0200 @010 O 0.0100 0.0200 0.0400
0.1800 0.2200 0.4700 0.5400 00.6100 0.3100 0.2600 0.0700 00020.0200 0.0100 0.0200 0
0.0600 0.0900 0.1700 0.2500 0.6100 0 0.6200 0.4500 0.1400 0M8®W.0200 0.0200 0.0200 0.0100
0.0700 0.0700 0.1000 0.1000 0.310065200 0 0.7300 0.2200 04®.0500 0.0200 0.0200 0
0.0400 0.0700 0.0800 0.0900 0.26004500 0.7300 0 0.3300 0.19@0400 0.0300 0.0200 0.0200
0.0200 0.0200 0.0200 0.0200 0.07000400 0.2200 0.3300 0 0.58@3700 0.2700 0.2000 0.2300
0.0700 0.0400 0.0100 0.0100 0.0200800 0.1400 0.1900 0.5800 7400 0.5000 0.4100 0.2800
0.0900 0.0700 0.0200 0 20® 0.0200 0.0500 0.0400 0.3700 @74 O 0.7600 0.6200 0.5500
0.1200 0.1100 0.0100 0.0100 0.0100200 0.0200 0.0300 0.2700 0.50007600 0 0.8500 0.6800
0.1300 0.1300 0.0500 0.0200 0.0200200 0.0200 0.0200 0.2000 0.41006200 0.8500 0 0.7600
0.1600 0.1400 0.0300 0.0400 00.0100 0 0.0200 0.230m2800 0.5500 0.6800 0.7600 0

The above point diagram was produced by applyiegcthssical-MDS algorithm to the distance matrighwi
entries d(i,j)=1-PS(i,j), i,j=1:14. The ‘homeomorgim’ of this plot with the well-known color-disk stvn on the

right is remarkable.
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(Data) Manifold Learning

The last three years -and especially after theappee of two publications (listed below) in thengassue
of Science magazine in Dec,2000- the interest taaumifolds has been renewed and extended wellnakice
mathematicians’ community (e.g. Riemannian manifdpldNowadays,Manifold-Learning has become an
individual scientific branch in which data-analydtem different research directions, contribute ameract.

A well-informed Web-site is : http://www.cse.msu.edu/~lawhiu/manifold/

where the two Science-paper can be found and dewetb

(1) J.B. Tenenbaum, V. de Silva and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction . Science, vol. 290, pp. 2319--2323, 2000
(2) S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding . Science, vol. 290, pp. 2323--2326, 2000

A simple definition of a manifold —well alignedittv the spirit of these notes- is this of canstrained
(multidimensional) surfacé This implies the existence of @ambient(vector)spacein which the available data lie
in a restricted way. The following figure shows faenous ‘Swiss-Roll” which is 2D-surface in a 3paxe (the

ambient space).

In the most usual case, the available data aravauidite observations from a high dimensional sgéme
instance: individual video-frames can be consideregoints in a space of num_of_pixélstimensions). This
high-dimensionality usually obscures the usefubinfation in the data, and constitutes one of themtamponent
of the ‘curse of dimensionality’. “Less is Betteis a popular motto within Data-Analysts, who acarrently
interested in efficient techniques for handlinghadimensional data and the development of metlhaddata-
abstraction and summarization. Visualization-sabeare the most popular, since some insight it@é#ta can be

gained, immediately, by the user through low-dinmamal plots and graphs.
To underline further the need for Manifold-Leagninve are including the two ‘classical-examples

(borrowed from the above mentioned web-site). Bhisearching in ‘a pair of moon-datasets’ andee#t from a

database containing hand-written digits.
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These figures show the results
of our ranking algorithm on the
toy "two moons" data set. In
each case the query point is
marked by the red triangle. The
size of the other points indicates
their ranking score, and the
connecting lines join the points
in the order of their ranking
score. Intuitively the ideal
solution is to rank all the points
in the same "moon" as the
query point higher than the
points in the other moon.

Below are the results on a subset of the USPS data set. In each case the top left-hand image is the query,
and the unlabelled data set consisted of 5424 exemplars of the digits 1-6. The 99 top ranked images are
shown for (a) data-manifold ranking algorithm and (b) Euclidean distance ranking. Note that (b) contains a

—_

1 05

4 -05

larger number of 3's and 2's with knots, subjectively somewhat dissimilar to the query.

(a) Top 100 by data manifold ranking

i
e

i

In the sequel, some representative techniquesdwipfresented starting from thenimal-Spanning-Tree-

Graph related tools for data handling, continuing wtle ISOMAP for visualization of the data and ending with

mwm

(b) Top 100 by Euclidean distance

theNeural-Qas Vector Quantizatiomalgorithm for data-abstraction and prototyping.




Minimal Spanning Tree

Graph theory sketches the MST structure with tlleviang definitions. Agraphis a set of nodes and a set
of node pairs called edges. Adge weightedraph is a graph with a real number, called weigbksigned to each
edge. Aconnected graphhas a path between any two distinct nodeSpanning Treeis a connected graph that
includes all the nodes without loops. The MST esgpanning tree of minimum total weight.

When the previous concepts are applied to afsét points, a node is dedicated to each pointthed
corresponding pairwise distances (or generalisssirdilarities) are assigned as weights to the éormdges. The
MST is the connected graph, emerged from the daleof exactly (N-1) edges, having minimum tdeadgth.

In order to demonstrate how the previous abstregth-theoretic concepts are used to handle thiablea
data, temporal patterns from a real experimenefivaveforms from magnetic brain-response signatésyised in a
simplified 2-dimensional example (see figure, bglowith each one of the 10 patterns shown in pape point in
R? is associated. The 2-dimensional configuratiothi point sample is given in panel b). Each oftilie axes
spanning this reduced space expresses the sti@itb Magnetic Field at a time instant in the ggighulus range.
The first (horizontal) axis was selected, by vismapection, so as to correspond approximately timma instant
where the majority of waveforms present a positleélection. The second (vertical) axis correspaiada time
instant chosen at random. In this graph the 10tpaippear as nodes indexed frbto 10. These indices reflect the
physical time order of the corresponding waveforiiie MST appears as a collection of 9 line segmémedges
with sample points as endpoints. Maeightassociated with each edge is also indicatedhieigpairwise Euclidean
distance between the corresponding points. A sgalas been applied on these distances such thatniléest of
them (2.991 10-14 T) appears on the graph as 1th Sdich a graph, it is easy to conceptualise th®mof
centrical/prototypicalpoints andbutliers The termdegreeof a node is used to denote the number of edgeteimt

on it. Centrical points (e.dl) differ from outliers (e.gl0) in terms of degree and weights of the assocediges.
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2.2. Applying Graph theory in the ambient space {Ssomap

The intrinsic geometry that governs tgeodesic manifoldf the point distribution can be emphasized by the
incorporation of Graph-theoretic steps prior to the application of multidimensiorsdaling (MDS). The emerged
dimensionality reduction technique, namiedmap comprises simple algorithmic steps, that tramsftre original matrix
D to GD which contains the geodesic interpoint distandemnénbaum et al.,2000]. In briggraph theoryis engaged
directly in the multidimensional space (the ambispace) by building theearest-neighbor graplover the given point
sample. Each point is treated as a node of thighgrahile each straight-line segment connecting afvthese points being
closer thare is treated as an edge of it (see panel d) inigued below). Using this graph, tigeodesianterpoint distances
are computed as the shortest paths between eaabf paints. The MDS is then applied,= MDS(GD* ), to produce the
image of the original point-cloud in a Reduced $pfmanel e). Isomap can be thought of as a conipuddly efficient

graph-flattening technique that can learn a brdassoof nonlinear manifolds

a) e 8* _ ¢) x10 "
R I ab T
SR e 2
107»-‘/\ ) 0
94 R % *
Smﬁ -2 o 9
7 -4 32
6 5 0 1o:|e 5 x10 "
5
4#\ ) 2xw’l12
C f
S\K,\ Q
2 1 42 |
r : :
1 ’ *2 9, 4
; %
A %
o :
0!
Xyl A o 4 1 x10°

Fig.1 (a) Feature extraction step for a sample of temporal patterns (from 10 M100 auditory responses): the ensemble average waveform has been computed
(black curve at the bottom) and a triplet of latencies around its peak has been selected; the signal-values at these latencies denoted by the vertical lines
constitute the features for each pattern. (b) Feature Space construction: the ST-sample is represented as a point sample in a 3-dimensional space. (c) Reduced
Feature Space computation: an image of the point sample in a space of 2 dimensions is derived via classical MDS. (d) Neatest neighbor graph formation: by
connecting with straight-line segments these points which are closer than € (selected as the average interpoint distance). (e) Unfolding the graph on a plane,

using the ISOMAP algorithm. (adopted from [Laskaris, Clin. Neurophysiol.; 2002.])
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The Isomap algorithm

Isomap is an extension of classical MDS that includes a transformation of the original distance matrix Dy to the matrix GD=G(D) that

contains the shortest path distance between all pair of points:

step_I. A weighted graph G is defined over all N points by connecting points Pi & Pj if (as measured by D(,j)) they are closer than &.
The corresponding edge weights are initialized to GD(i,j)= D(,j) if Pi, Pj are linked by an edge; GD(,j)= otherwise.

step_II. For each k=1,2,...N in turn, all entries GD(i,j) are replaced by »in{ GD(\,j), GD(i,k)+GD(,k) }. The fraction of points not

connected to the main component of the resulting graph is detected and deleted from further analysis. As € is reduced more points are

deleted.

step_III. The images Y; of points P; in a space of reduced dimensions r are derived via the application of classical MDS,

Y= MDS,(GD)

While Isomap is a very competent procedure fornea nonlinear manifolds (see below, for a very
interesting example with many potential applicasiam computer vision, like morphing ), it is rested by the
computational demands of the geodesic-distancenattins. The handling of more than a few thousands
multidimensional points (i.e. patterns) is becompm@blematic. A remedy to this can be provided tha
marriage of Isomap with unsupervised learning tephes. As a preprocessing-step, efficient techraquas be,
first, applied in order to reform the ensemblepatterns as data-chunks, that will be then summarizia
prototypes that will then be fed to the ISOMAP-inat (The implicit assumption is that locally thedidean

distance is a good approximation to the geodesstanice; something that holds only for relativelyosth
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The Neural-Gas network algorithm was found in pcact very convenient method for prototyping, i.e.
preparing the data for the application of ISOMABeaithm, and its use is suggested in the casergflagye

pattern-databases.
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Vector Quantization (VQ) based on Neural-Gas Netlwo

VQ encodes the data manifold in the ambient (uguaithh-dimensional) space by utilizing only a feniset of
reference vectors, ttede vectorslt actually performs a parcellation of the ambigpace known as Voronoi Tessellation,
in which aVoronoi-regionis defined around each code vector. This is aaeat the original space comprised of all the
points closer to a specific code vector than to ather. The vectorial observations falling withinvaronoi-region are
represented by the corresponding code vector. Tihar of code vectors controls the resolution efrépresentation, i.e.
the level of information abstraction. The followifigure shows the Voronoi Tesselation when 15 ogsigors are used in a
simplified 2D-example from real data. The code vestdenoted as red circles in panel-c), have lbeerputed using a

clustering algorithm so as to achieve the minimwaireg error in the representation of the point savgiven in panel b).

a)

single trials

[ ] 0.1 sec * :‘ '.’,”L-':’ .:.
. y 0 ERE IR LAY ;
[] ' W P ";’.'5'
g L e 2
N2J\/H 02 f LR
N o y . : 1
N-1 .
\/ 0 o0z 04 pT
N X
average
O Xt Ty 02 0 0z x

Fig. Graphical Representation of temporal patternausing Vector Quantization as abstraction step .a)
Extracting featured) Embedding the patterns in a 2D feature spec@pplying Vector Quantization in the feature
space.d) Constructing the Minimal Spanning Tree of the cuodetors.

The codebook design is the most critical part in.\Wr this step théneural-gas” algorithm is
employed. This algorithm is an artificial neuraltwerk model, which converges efficiently to a smaiser-
defined number C<N of codebook vectors, using a&hststic gradient descent procedure with a “sofkina
adaptation rule that minimizes the average distorérror. This network is an extension of the Kadoa self-
organizing maps that shares some characteristits thee Fuzzy C-means algorithm. Its name stems filoen
physics of the underlying optimization scheme, sitie reference vectors tend to cover all the sphtige input

data, while mutual repulsion forces are emerging.
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dmatrix

function y = dmatrix(X)
% d=dmatrix(data =[N x p]),

% data=[#vectors x dimensionality of the vector-spce]

[N,p]=size(X);

A=X*X";

E=ones(N,N) ;

D=diag(diag(A))*E + E*diag(diag(A))-2*A ;

y=D;

kkkkkkkkkhkkkkkhkkhhkhkrkhhhdhhkhhhhhhhhrrhhhhxhirr *kkkkkkkkkkkkk

X= >> A=X*X' >> E=ones(5,5) >> diagA=diag(diag(A))

1 2 5 11 17 23 29 11 1 1 1 5 0 0 0 O

3 a4 11 25 39 53 67 11 1 1 1 0 25 0 0 O

5 6 17 39 61 83 105 111 1 1 0 0 61 0 O

7 g 23 53 83 113 143 111 11 0 0 0113 0
29 67 105 143 181 11111 0 0 0 0 181

9 10

>> diagA*E+E*diagA-2*A

128 72 32 8 O



dmatrix based on normalized vectors

X=

© N g W -
o o AN

>> Xn=normalize_vectors(X) ; % this should bgnaall subroutine that divides each row of the Daarix
%with the norm of the row, i.e. the lengthtteé vector. SEE BELOW

Xn =
0.4472 0.8944
0.6000 0.8000
0.6402 0.7682
0.6585 0.7526
0.6690 0.7433
>> Dn=dmatrix(Xn)
Dn =

0 0.0323 0.0532 0.06480720
0.0323 (0.0026 0.0057 0.0080
0.0532 0.0026 0 0.0006 0.0014
0.0648 0.0057 0.0006 0 0.0002
0.0720 0.0080 0.0014 0.0002 0

%
function [normalized_X, RMS_values ] = normalizevectors(X)

% the array normalized_X contains the vecxadivided by the corresponding length || Xi||

%

% the column-array RMS_values contains scalatsatearelated with the length of the vectors

% and correspond to RMS (root-mean-square) valude case that the vectors are temporal-patteavelets

[N,p]=size(X);
for i=1:N;

normalized_X(i,:)= X(i,:)/norm(X(i,:));
RMS_values(i)=norm(X(i,:)) *(1/sqrt(p)) ;

end
>> X =
1 2
1 3
2 4
5 6

normalized_X =
0.4472 0.8944
0.3162 0.9487
0.4472 0.8944
0.6402 0.7682

RMS_values '=1.5811 2.2361 3.1623 5.5227
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Outlier Detection |

function [Y, sel_list}=Reduced_ordering(X)

%

% [Y,sel_list}=Reduced_ordering(X)

%

% detecting outliers using the hypstbi¢hat the vector-points
% should form a spherical cluster.

% while a small portion of them can agp&s spurious points
%

% Y is the artifact-free subset of vectors
% sel_list is the original indexing of the copending patterns
%

[N,p]=size(X);
d=dmatrix(X); sum_dist=sum(d¥p correspond to each point its total distance
% from the rest points (aggregate-distance)

[sd,list]=sort(sum_distf% order the aggregate-distances

diffsd=sd(2:N)-sd(1:N-1); [mm,index]=max(diffsd);
% detect where délggregate-distance increase abruptly; the cldgsidaof ‘plateau’-detection

list=list(1:index); % keep those points that correspond to small ggéeedistances
sel_list=sort(list); % bring them to the original "time-order"/indexing

Y=X(sel_list,:);

*kkkkkkkkkkkkhkkhkhkkhkhkkhkkkkhkkhkkhkhhkhkhkkhkhkkhkkhkkhkkhkkkhkkk *kkkkkkkkkkhkkkkkkkhkkkhkkkhkkkkix

X = >> [N,p]=size(X) >> d=dmatrix(X);
1 0 1 100 0 11881 4 11881
2 N =7 1 0 81 111664 1 11664
11 -1 100 81 0 100 9801 64 9801
1 P= 0 1 100 011881 4 11881
110 11881 11664 9801 11881 0 11449 O
3 4 1 64 4 11449 O 11449
110 11881 11664 9801 11881 011449 0

>> sum_dist=sum(d)
sulist = 23867 23412 19947 2386756676 22971 56676

>> [sd,list]=sort(sum_dist)

sd = 19947 22971 23412 6238 23867 56676 56676
list= 3 6 2 1 4 5 7

>> diffsd=sd(2:N)-sd(1:N-1); [ mm, index] =max{idid)
mm = 32809index =5

>> |ist=list(1:index)
list=36 2 1 4

>> sel_list=sort(list)
sel list=12 3 4 6

>>Y=X(sel_list;:); >>Y' =12 11 1 3
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Outlier Detection |l

function [Y, sel_list] = radial_ordering( X , X_prot, k)

%

% [V, sel_list] = radial_ordering(X, X_prot, k)
%

% detecting outliers using a reference-qiygte
%

% if the k is given, the k-nearest neighborsiatbthe prototype are kept

% otherwise (if k=[]) a simple automated-algonit is utilized to estimate this k first
%

% Y is the artifact-free subset of vectors

% sel_list the original indexing of the corresding patterns

%

[N,p]=size(X);

d=d_sample_to_vector(X,X_pro#b correspond to each point its distance to theeafs point
% see the m-file below

[sd,list]=sort(d);% order these distances

if isempty(k)
diffsd=sd(2:N)-sd(1:N-1); [mm,index]=max(diffsd) detect where the distance increase abruptly
% i.e. estim#te k (==index)
list=list(1:index) % keep those points that correspond to small dis&n

else

list=list(1:k);
end

sel_list=sort(list); % bring them to the original "time-order"/indexing

Y=X(sel_list,:);

%
function y=d_sample_to_vector(X,Y)
% distances =d_sample_to_vector (X, Y)

% X contains a set of row-vestdy is a row-vector;
% distances contains the squarred Euclideaardies

% with resp® the reference-vector Y
% X and Y should have the sammalmer of columns

[N,p]=size(X); y=diag([X-ones(N,1)*Y]*[X-ones(N,)*Y]);
%
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>> X_prot =2.5000 >> d=d_sample_to_vector(X,X_prot)
>> k=3
d =1.0e+04 *
[ 0.0002 0.0000 0.0072 0.0002 1.1558000 1.1556

>> [N, p]=size(X) >> [sd, list]=sort(d)

N =7 sd = 1.0e+04 *
p=1 [0.0000 0.0000 0.0002 0.0002 0.007P586 1.1556 ]

list= 26 14357

>> if isempty(K), diffsd=sd(2:N)-sd(1:N-1); [mm,ied]=max(diffsd); list=list(1:index); else listsli(1:k); end

>> list=list(1:k)
list =

2

6

1
>> sel list=

1
2
6

>> Y=X(sel_list,:)

WN -
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Outlier Detection 1l

function [Y,sel_list}=NN_ordering(X,k)

% [Y,sel_list}=NN_ordering(X,k)

%

% detecting outliers using the distance to theestaneighbor
% k controls the number of pattern/points to bptk

%

% Y is the artifact-free subset of vectors

% sel_list is the original indexing of the coperding patterns

[N, p]=size(X);

d=dmatrix(X); [dd]=sort(d); % for each point, its distances to the rest ofnfsoare ordered

nnd=dd(2,:)% its nearest neighbor is easily identified

% and the correspondirsgathce is attached to the point serving as a tgpitality’-measure

[sd,list]=sort(nnd)% order these distances

if isempty(k)

diffsd=sd(2:N)-sd(1:N-1);
[mm,index]=max(diffsd); % detect where the nn-distance increase abruptly

list=list(1:index); % keep those points that correspond to small niawies

else
list=list(1:Kk);

end

sel_list=sort(list); % bring them to the original "time-order"/indexing

Y=X(sel_list,:);
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k=3 >> d=dmatrix(X); >> [dd]=sort(d)

X =
1 0 4 11881 4 1 0 0 0 0 0
3 4 0 11449 0 1 1 0 11449 0 1
110 11881 11449 0 11449 664 4 1 11449 1 1
3 4 0 11449 0 1 4 4 11664 4 1
2 1 1 11664 1 0 11881 11449 11881 11449 11664

>> nnd=dd(2,:)
[1 0 44D 0 1]

>> [sd,list]=sort(nnd)
sd= [0
list=[2

0 11 11449]
4 15 3]

>> if isempty(K); diffsd=sd(2:N)-sd(1:N-1); [mm,ied]=max(diffsd); list=list(1:index); else list=t{d.:k); end

>> list=list(1:)k) =2 4 1

>> sel_list=sort(list)
sel list=1 24

>> Y=X(sel_list,:)

W wEr <
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Subtractive_clustering

function [yl,snrave_max,y2] = subtractive_clusterig(x)

% x=[Np{, is the data_matrix
% yltlse extracted subset ,
% y2cimdes the remaining (sub)set(s)

%
%  see alsothe SUBCLUST routine in fuzzy-logitoolbox of MATLAB
%

[N,p]=size(x);
d=dmatrix(x ) % buildingthematrix of interpoint-distances

rO=mean(mean(d));% an estimate of the radius of influence: this ¢swale approximation;
% it has to stimated from noisy conditions

pot=exp(-d./(0.1*r0)) % transforming the distance-matrix

PD=sum(pot) % a row-vector with each entry being propotional
% to the local-densitguard the corresponding point

[PDmax,imax]=max(PD); % identifying the point of highest local density
d_to_imax=d(imax,:); % distances foximax from the rest of points
[ss,nearest_neighbors]=sort(d_to_imax%o radial-ordering of points with respect to tRgax

% then we need to define how many of the ordered jpts should be selected
% since the algorithm was meant to be applied to ggern of time-waveforms, originally an Signal-to-Rdio
% estimator had been employed in the decision-mak@process.

ordered_x=x(nearest_neighbors ,:% the input sample is reordered with respectxtigx
w=zeros(1,N)

for i=2:N,
[sp,np]=SNR(ordered_x(1:i,:)); % an ‘external’ descriptor quantifying the ‘grougins employed:
% specifically, an estitor of the SNR - the SNR_for_a_sample of timeefarmes-
%asvapplied or the nested sequence of subsets
w(i)=sp/np;
end

[snrave_max,jo]=max(w.*[1:N]) % find which subset provides the maximum SNR-measur
% i.e. identify the optinrahk jo

if jo~=N

yl=ordered_x(1:jo,:); y2=ordered_x(jo+1:N,:);

else

yl=ordered_x; y2=[];

end

% actual outputs: indices of points belonging tonittant mode

% i.e. list of nearest_neighbors and the threghol
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1 2
3 5
22 33
23 36
21 45
1 1
2 1

>> pot=exp(-d.

pot =
1.0000
0.8587
0.0000
0.0000
0.0000
0.9884
0.9768

>> [N,p]=size(x);

/(0.1*r0))

0.8587
1.0000
0.0000
0.0000
0.0000
0.7911
0.8194

>> PD= sum(pot)

N=7p=2

0.0000
0.0000
1.0000
0.8894
0.1829
0.0000
0.0000

PD = 3.8239 3.4693 2.0724

>> [PDmax,imax]=max(PD)

>>d_to_imax=d(imax,:)

>> [ss, nearest_neighbors]=sort(d_to_imax)
sO= 1

>> d=dmatrix(x)

d=

0
13

13 1402
0 1145

1402 1145 0
1640 1361 10
2249 1924 145
20 1465 1709 23360 1

0.0000
0.0000
0.8894
1.0000
0.3694
0.0000
0.0000

17 1424

0.0000884
0.00007911
0.18P0D000
0.36940000
1.00000000
0.00000000
0.0000884

2.2589 5243 3.7678

PDnB.8239 imax =1

d to_imaxC= 13

nearest_neighbors=1 %

>> ordered_x=x(nearest_neighbors ,:)

ordered_x =

2
1
1

WN R P

5

22 33
23 36
21 45

1402

3 4

1640

1640 22491 2
1361 1924820 17
10 143465 1424
0 851709 1666
85 2336 2297

1666 22971 0

0.9768
0.8194
0.0000
0.0000
0.0000
0.9884
1.0000

3.7846

2249 1 2

2 13 1402 1640 2249

5

>> r0=mean(mean(d))

ro = 853.5510
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W=zeros(1,N) >>for i=2:N, w'= >>[snrave_max , jo]= max(w.*[1:N])

w=00 0 0 0 0 O SNRordered x(Li 0
Sp,np|= oraerea_x(1:,:)); .
[ E/o ga\leam(ple for tﬁe(nest)gd sequence 28888 snrave_max =15, jo=3
1.5556
w(i)=sp/np; 0.1796
end 0.4500
0.6957
>>ifjo~=N >>yl= >>y2 =
yl=ordered_x(1:jo,:) 1 2 3 5
y2=ordered_x(jo+1:N,:); 1 1 22 33
else 2 1 23 36
yl=ordered_x; y2=[]; 21 45
end

>> snrave_max
snrave_max = 15

>> [sp,np]=mine_snr(x); overall_snrave= (sp/np)*7

ans = 4.8697

% snrave_max > overall_snrave ....... to checlchoster validity

% the procedure will be repeated for the remaipioigts subset y2
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Multidimensional Scaling
function y = mscaling(D,r)
%

% y=mscaling(dmatrix,r);

% dmatrix is the array of pairwise distances

% ris the dimensionality of the new space (UgugP or 3)
% Torgeson’s algorithm for Classic Multidimensibsealing

[n,n] = size(D);
A=-(1/2)*D;

Ac=mean(A); Al=mean(A'); Acl=mean(mean(A));

for i=1:n;
for j=1:n;
B(i,))=A(,))-Ac(i)-Al(j)+Acl;
end
end

[v,d]=eig(b);% eigenvector is a column in v

evalues=diag(d);
[h,hh]=sort(evalues}b sorting from smaller to larger

fori=1:r;
c(:,))= v(:,hh(n+1-i))* ((evalues(hh(n+1-¥)Y1/2));
end
y=C;
[n,n] = size(D) >> A=-(1/2)*D >> Ac=mean(A); >>Ac=-24 -12 -8 -12 -24
n=5 0O -4 -16 -36 -64 >> Al=mean(A"); >>Al= -24 -12 -8 -12 -24
-4 0 -4 -16 -36 >> Acl =-16
-16 -4 0 -4 -16 >>Acl=mean(mean(A));
-36 -16 -4 0 -4
64 -36 -16 -4 O
>> for i=1:n; >> B >> [v,d]=eig(B) ‘*
for j=1:n; 32 16 0 -16 -32 0 0 0 0 0
B(3i)=A(i])-Ac(i)-Al) +Ac; 16 8 0 -8 -16 v= o o o 0 0
end 0 0 0. 0 0
q 0 O 0O 0 O 0.45 0.0 -0.27 0.57 -0.63 0 0 0. 0
en 16 -8 0 8 16 -0.89 -00 -0.13 029 -0320 o o o0 80
-32 -16 0 16 32 0 1.0 0.0 0.0 0
-0.00 0.0 -0.94 -0.09 0.32
0 -0.0 0.14 0.76 0.63
>> evalues=diag(d) >> [h,hh]=sort(evalues) % for i=1:r; c(:,i)= v(:,hh(n+1-i))* ((evalues(iih+1-i)))*(1/2)); end
evalues=0000 80 h=000080
hh=312 45

% *Defining the dimensionality of the reduced spas r==2.



y=c y=

>> for 1=1:2; -5.6569 0.0000
C(:;]:)= v(:,hh(n+1-1))* ((evalues(hh(n+1-1)))*(1/R) -2.8284 0.0000
en 0 0

2.8284 -0.0000
5.6569 0.0000

% If we compute the matrix of pairwise distangethie reduced space, i.e. dmatrix(y)
0  8.0000 32.0000 72.0000 Q@80
8.0000 0 8.0000 32.0000.0820
32.0000 8.0000 0  8.0000 .0820
72.0000 32.0000 8.0000 0 0080
128.0000 72.0000 32.0000 8.0000 0

% we can compare with the matrix in the originaa® dmatrix(X)
% to “measure ” the distortion induced by thej@cbon
% through the residual distance matrix : dméXj>dmatrix(Y)

An overall example

% Data matrix:
>> Xn=normalize_vectors(X)

Xn =
0.1925 0.9623 0.1925
% Normalized_version: 0.4867 0.8111 0.3244
0.0767 0.0307 0.9966
0.9781 0.1863 0.0931
0.9960 0.0460 0.0766

w N oo
o
anabF

1

3

5
21
65

% Computation of the two corresponding distancericed

>> D=dmatrix(X) >> Dn=dmatrix(Xn)
D= Dn =
0 5 4121 402 4116 0 0.1268 1.5279 1.2292 1.4987
5 0 3982 325 3857 0.1268 0 1.2290 0.6854 083
4121 3082 0 42297201 1.5279 1.2290 0 1.6530 91%
402 325 4229 0 1946 1.2292 0.6854 1.6530 0 0203

4116 3857 7201 1946 0 1.4987 0.9063 1.6918 0.0203 0

% * producing the reduced space for both thenatized and the non-normalized version

>> Y=mscaling(D,2) >> Yn=mscaling(Dn,2)
Y= Yn =

-0.9386 -22.8157 -0.3999 -0.834

-0.4085 -20.6457 -0.1836 -0.844

-47.2180 21.6726 -0.5711 0.686

11.2125 -6.8717 0.5411 0.041

37.3525 28.6605 0.6134 0.650
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Minimal Spanning Tree

-A Graph theoretic Exploratory Data Analysis tool-
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Function [ links, weights ] = minimal_spanning_tree( d)

%

% [ links, weights ]=minimal_spanning_tree( dista_matrix/weights )

% Prim's algorithm for constructing the Minimgbe&ning Tree (MST)

% from a given symmetric distance/similarity npatr

% links contains the edges, i.e. pairs of nod#ésch constitute the MST

% weights contains the corresponding weights

%

% The basic philosophy of the algorithm is teritify the N-1 edges

% -among the N(N-1) available- by sequentiallgsing among the remainders V-VT nodes

% the node that is closer to the selected odesaMd update the distances of the rest of nodegT(\Vso as
% the weight-array to tabulate for each un-detbaode its distance to the nearest node amensgelected VT

(=)

[N,N]=size(d),
V=[1:N] % ensemble of nodes
r=1; VT=r; % start by first selecting the node 1; any othesuld have been used

weights=zeros(1,N); links=zeros(1,N% initialization
V_VT=setdiff(V,VT); % remove the selected node from the available set

weights(V_VT)=d(r,V_VT); % the distances of the available nodes to the teelemes , i.e. the node r=1
links(V_VT)=r, % the available nodes will compete for enterinthim selected set VT
% based on the weight (i.e. distance) of the ¢ldgge share with node r=1

for i=1:N-2 % since N-1 edges/links need to be selected, thewall be repeated N-2 times

[edge_weight,u]=min(weights(V_VT)} search in the set of unselected node for theclmser to
%-anyone from- the selected ones

node=V_VT(u); % refer to the original indexing of the nodes

VT=union(VT,node); % augment the set of selected nodes

V_VT=setdiff(V,VT) % remove the -just selected- node from the seqrabes

for j=1:N-1-i, % for the available nodes (V-VT) the nearest distato the selected nodes VT
% might have changes after moving the latest node
% so we need to update the corresponding enirigeiweights - array
% actually, this update is necessary only ifl#test node
% is nearest neighbor with any of the remaisder

[weights(V_VT(j)),index]=min( [wehts(V_VT(j)),d(node,V_VT())] );,

if index ==2, % if d(node,V_VT(j)) < weights(V_VT())
links(V_VT(j))=node% the nearest link for any of the available nodaiis that corresponds
% to the last selected node
else,
end
end
end

links=[2:N; links(2:N)]'; weights=weights(2:N)% do not care for the first selected node, r=1,
[ignore,list]=sort(weights)% present the links according to the length ofdtreesponding edges

links=links(list,:); weights=weights(lixt
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>> X = >> d=sqrt(dmatrix(X)) = >>[links,weights]=minimal_spanning_tree(d)

1 1

1 2 0 1.0000 2.0000 1.4142 B@M04.0000 2.2361

3 1 1.0000 0 2.2361 1.0000 422 3.0000 2.0000 links= 2 1 weights = 1

2 2 2.0000 2.2361 0 1.4142 231 4.4721 1.0000 3 7 1

4 5 1.4142 1.0000 1.4142 0 086 3.1623 1.0000 4 2 1

1 5 5.0000 4.2426 4.1231 3.6056 0 3.0000 3.1623 7 4 1

3 2 4.0000 3.0000 4.4721 3.1623 3.0000 O 3.6056 5 6 3
2.2361 2.0000 1.0000 1.0000 3.16233.6056 0 6 2 3

L I L L L L I L
=i 1} 1 2 3 4 5 B

The steps of the above example follow

>> [N,N]=size(d), V=[1:N]
N=7v=[1 2 3 4 5 6 7]

>>r=1;, VT=r
VT =1
>> weights=zeros(1,N); links=zeros(1,N);

>> V_VT=setdiff(V,VT)
V.VT=[23 4 5 6 7]

>> weights(V_VT)=d(r,V_VT)
whis=0 1.0000 2.0000 1.4142 5.00400000 2.2361

>> links(V_VT)=r
links=[0 1 11 1 1 1]

>> MAIN LOOP , for i=1

>> [edge_weight,u]=min(weights(V_VT))
edge_weight =1 u=1
>> node=V_VT(u)
node = 2
>> VT=union(VT,node)
VT=1 2
>>V_VT=setdiff(V,VT)
VVT=34 5 6 7

>> Second Loop, for j=1

>> [weights(V_VT(j)),index]=min( [wghts(V_VT(j)),d(node,V_VT())] )
weights = [0 1.0000 2.00004142 5.0000 4.0000 2.2361] , indek=

>> if index == 2, links(V_VT(j))=ne&d, else,end

for j=2
>> [weights(V_VT(j)),index]=min( [weidg(V_VT(j)),d(node,V_VT())] )

weights = [0 1.0000 2.0000 0DO 5.0000 4.0000 2.2361], index=2

>> if index == 2, links(V_VT(j))=node;, else,end
>>lnks=0 1 1 2 1 1 1

34



The figure asideshows the MST

of 120 Single-Trial Signals from _ _ : : "
Auditory M100 responses as? _
after the “planing” procedure has been A v BV
applied (s [Laskaris et [t N S T S SO S SHS ES S
al.,Clin.Neurophysiol. 20001]). o y

The superposed indices indicate the , g P 4 |
time-order of the corresponding ST-
signals.

After selecting the 17-th ST e M )
as the root of the tree, 2 : : : :

MST-ordering was performed. 14_igh T

The new labels -ranks
from this vectorial procedure B ............... ............... .............. ................ 52 ......... ST .............. .............. .

have been superposed in the

next figure : : : f : L

The Ordered Point-Sample : ¢+




Isomap

A coupling of Graph theory
with
Multidimensional Scaling
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function [x,new_list,outliers,dg_new]=isomap_e(X,e)

% function [x, new_list, outliers, dg_new] =map_e_mscaling(vectors,r,e)
% Xx:[N x r] projections of vectors:[N x p]

% r=reduced dimensionality

% e=distance defining a typical neighborhood-size

[N,p]=size(X);
d=sqrt(dmatrix(X));

%%%%%%%% if no typical radius e is given %% % %% % %Y %

if nargin==2

sd=sort(d); e=1.1*max(sd(2,:)); % alternatively esan(mean(d));
else

e=e;

end

%%%0%%%0%6%%0%%%%0%%% %% %% %% %% %% %% %% %% %% %% %%

%%%%% %%computation of graphical distances %%%%%8%8%6%%
%%%%%%%%%%%% FLOYD'S algorithm %%%%%%%%%%%%%%%%

dg=Inf*ones(size(d));
c=d<e;
dg(c)=d(c);

for k=1:N;
for i=1:N;
for j=1:N;

dg(i,j)=min(dg(i,j), dg(i,k)+dg(k}));
end
end
end
S

%%%%% detecting outliers based on the graphrdista %%%%%%%%
sdg=sort(dg);

for i=1:N,s(i)=length(find(sdg(:,i)==inf));,end

list= find(s>min(s));

%% OUTPUT DEFINITION %%%%%%%%%%%%%%%%%%5
new_list=setdiff([1:N],list); outliers=list;

dg_new=dg(new_list,new_list);
x=mscaling(dg_new."2,r);
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% |nputs: % Construct the MATRIX of % CREATE THE MATRIX of
=1 e=2 % PAIRWISE EUCLIDEAN DISTANCES % PAIRWISE GRAPHICAL DISTANCES
=1, e=

>> d=sqrt(dmatrix(X)) >> dg=Inf*ones(size(d))
1 2 5 Inf Inf Inf Inf Inf Inf Inf
4 Inf Inf Inf Inf Inf Inf Inf
3 Inf Inf Inf Inf Inf Inf Inf
2 Inf Inf Inf Inf Inf Inf Inf
5
1
0

ool hrwNE ]

>> [N,p]=size(X)

Inf Inf Inf Inf Inf Inf Inf
N=7,p=1

Inf Inf Inf Inf Inf Inf Inf
Inf Inf Inf Inf Inf Inf Inf

wle—‘oH

e worRn?
oo Nwoo
Rroo P Nw

0
1
2
9
3
4

N o
nABwNE

% FIND IN THE MATRIX of EUCLIDEAN DISTANCES thse smaller than e
% and create the corresponding mask

>> c=d<e
1

cNeoNeNoNell

cNoNeNoN il
cNeoNeN N W il o]
OrORFrRFrROO
cNeol HoNoNoNo]
PRPOFRPOOO
PR OOOOO

% Use the mask to initialize the MATRIX of GRAPHICAL DISTANCES

>> dg(c)=d(c)
O 1 Inf Inf Inf Inf Inf
1 0 1 Inf Inf Inf Inf
InNf 1 0 1 Inf Infnf
Inf Inf 1 O Inf nf
Inf Inf Inf Inf O InfInf
Inf Inf Inf 1 Inf 01
Inf Inf Inf Inf Inf 1 O

% RUN FLOYD'S algorithm to define the Graphical Biances
>> for k=1:N;for i=1:N;for j=1:N; dg(i,j)=min(dg(j), dg(i,k)+dg(k,j));end, end, end

% The computed Graphical Distances (after the prewaus step) are

>> dg
0O 1 2 3 Inf 4 5
1 0 1 2 Inf 3 4
2 1 0 1 Inf 2 3
3 2 1 O Inf 1 2
Inf Inf Inf Inf Onf Inf
4 3 2 1 Inf 0 1
5 4 3 2 Inf 10



% In order to identify possible Outliers, we orderthe Graphical Distances across columns

>> sdg=sort(dg)

0O 0 0 O 0 O O
1 1 1 1 Inf 1 1
2 1 1 1 Inf 1 2
3 2 2 2 Inf 2 3
4 3 2 2 Inf 3 4
5 4 3 3 Inf 4 5
Inf Inf Inf Inf Inf Inflinf

% We then “count” the Inf entries
>> for i=1:N, s(i)=length(find(sdg(:,i)==inf)); ,end

% For each vector we assign the number of vectofsensed” as outliers by the certain vector
>> s

1 1 1 1 6 1 1

% We finally locate the Graphical Outliers
>> |ist= find(s>min(s))
list=5

% We keep the rest of the vectors
>> new_list=setdiff([1:N],list)
1 2 3 4 6 7

% We then extract the corresponding Matrix of Graphical Distances
>> dg_new=dg(new_list, new_list)

arwNR O
AwNEROPR
WNRFRORLDN
NFRORN®
RORNwWP
ORrRr NWAMOU

% Finally, we apply multidimensional scaling
>> x=mscaling(dg_new."2,r)

2.5000
1.5000
0.5000

-0.5000

-1.5000

-2.5000

%The output consist of the coordinates x in the vegd space the list of vectors included
% in the graph new_list and the detected outie
>> outliers=list
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Vector Quantization
Based on the

Neural Gas Network
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Function [prototypes, class_indicators, Average Error, Convgence_Index]

%
%
%
%
%
%
%
%
%
%

= Vector_Quantization, k, iteration_factor)

Neural-Gas Vector Quantization Algorithm
X is the input set of patterns, k the size eft¢bde-book
(i.e. the number of prototypes / centroids/ codews)

the iteration_factor controls the number ofatems : = = (iteration_factor) x (size of the ingample)

prototypes: tabulates the k code-vectors

class_indicators: tabulates the labels thagassach vector Xi to the nearest prototype

Average_Error is an index of performance: this average Distortion induced by the adopted apsladneme

Convergence_Index indicates the improvemenh mspect to the initial/random selection of prgpets ,

achieved with the iterative-execution of theibaslaptation-step

[N,p]=size(X);

%

initialization

% select randomly k prototypes.
% case-(i) If k>N/2 create these prototypes byagieag randomly selected subsets of X
% case-(ii) If k<N/2 select randomly k vectorsrirathe sample X

rindex=permut(N); % this simple function is listed below

fl=floor(N/K); % floor-function returns the smaller integer closethe argument

%

if fI>=2 % case (i)

for i=1:k
rr=rindex((i-1)*fl+1:(i)*fl); % split the random permutation e.g. [1 4 11 ...... biktgroups of indexes
prot(i,-)=mean(X(rr,:)); % use the corresponding indexes to split the cuntesk groups
% and average within each group to produce theymes
end

else % case (ii)
prot=X(rindex(1:k),:); % select randomly k curves from X to be used atopypes
end

initial coding error

for i=1:N

d=d_sample_to_vector(prot,X(i,:)¥o since V.Q. assigns each vector Xi to the closkste prototypes
[error(i)]=min(d); % a measure of the initial coding-error (i.e. wisedevectors are randomly selected)
end % can be computed.

initial_Average_Error=mean(error);

%
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% Basic adaptation Rule

tmax=iteration_factor*N; % number of iterations, i.e. how many times thepaation-rule is going to be applied

re=[]; % create an 1-d array containing a random-sequanu@mbers pointing to the vectors Xi

% of the input data-matrix X ; the length of thisay is equal to the total number of iterations
for i=1:iteration_factor,

rr=[rr;permut(N);
end

[i=0.3*k; If=0.01; ei=0.5; ef=0.005% i stand for initial and f for final value of tlt@o parameters I(t) and e(t)
% that are adapting at each iteration:raijlulates the strength of the
% correction , while I(t) controls how nygorototypes are modified

It=li; et=ei; % initialize these two parameters

for i=1:tmax; % Back-bone of the V.Q. procedure, i.e. the tragjroh the prototypes
u=X(rr(i),:); % pick at random a vector Xi from the input set
du=d_sample_to_vector( prot,u); % compute its distance from the prototypes

[sdu,ordering_list]=sort(du); % order the prototypes according to their closetetse certain vector Xi
[ignore,order]=sort(ordering_list);% assign to each prototype its rank

order=order-1, % so as the nearest prototype has rank ‘0’, thergknearest rank ‘1’, etc....
hl=exp(-order/It)% based on their order a parameter of influendefimed for each prototype

% a (vectorial) correction is estimated for eaabtqtype, according to the parameter of influence: thie
% “error” of each prototype, i.e. its vetdd-difference from the certain Xi
% this correction is finally modulated Ihetcurrent value of e(t)

% the corrections to the set of prototypesc@mputed with the following loop
% or, more efficiently, with the subsequerdtrix-operations

% for i=1:k; dprot(i,:)=et * hl(i) * (u-prdt,:)); end

dprot= et*repmat(hl,1,p).* (repmat(u,k,1)-pro
prot=prot+dprot; % the vectorial-corrections are applied to the entrprototypes

[t=li*(If/l))(i/tmax); % the parameter I(t) is adapted so as to converige fanal-value If at the end
et=ei*(eflei)M(itmax);% >> >>  e(t) >> >> >>

end

prototypes=prot; % the final estimation of the code-book

% using a simple nearest-classification rule eaphti Xi is assigned to one of the estimated coa¢eve
% in this way a grouping of the vectors Xi is atswried out.

for i=1:N

d=d_sample_to_vector(prototypes,X(i,:}) compute the (squared) distance of Xi to eachopype

% -this is also the so calledmfization-error-

[error(i),indicator(i)]=min(d); % assign the Xi to the prototype that results toshallest quantization-error
end

class_indicators=indicators for each Xi, keep as a label the index of itarast-prototype
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Average_Error=mean(error estimate the average quantization-error aftenéa@est-prototype assignment
Convergence_Index = abs(Average_Error-initial_AgergError)/initial_Average_Error;
% iadex of convergence: can serve as a diagnibstiche number of iteratiotsuld
& increased (if it is not smaller than 1).

%

function y=permut(N)

% in Matlab there is the corresponding “built-in’hizction randperm
% random permutation of the numbers [1,2,....,N ]

r=randn(1,N)% generate N random numbers and
[ignore, ordering_list ]=sort(rf% order them

y=ordering_list; % their order is a random permutation of the numpemlN]

>>X=[12;13;34;45;51;23;56] >>k=3, iteration_factor=2

>> fl=floor(N/k) ; fl=2 >> prot =
X= >> [N,p]=size(X) ;N=7 p=2 4.5000 3.0000
>> jf fl>=2 2.0000 3.0000
>> rindex=permut(N) for i=1:k 1.5000 3.0000

rr=rindex((i-1)*fl+1:(i)*fl);
rindex= 4 5 3 1 6 2 7 prot(i,:)=mean(X(rr,:));

aNOaObhwWERE
OWRrRr O bhWN

end
else
prot=X(rindex(1:k),:);
end
>>r=6
>> for i=1:N >> initial_Average_Error= mean(error) 1
d=d_sample_to_vector(prot,X(i,:)); initial_Average_Error = 3.0357 3
[error(i)]=min(d); 5
end >> tmax= iteration_factor*N; tmax 7
>> error =1.2500 0.2500 2.0000 4.25@02500 0 9.2500 =14 2
4
>> rr=[]; for i=1:iteration_factor, 2
rr=[rr;permut(N)']; end 7
6
1
3
5
4

>> 1i=0.3*k; 1i=0.9000 >> If=0.01; ei=0.5; ef=008; >> It=Ii; et=ei;

%____continuation of the Basic Loop

%___ Basic Loop >> hl=exp(-order/It) >> for i=2:tmax;
>> for i==1 hl =0.1084 1.0000 0.3292 u=X(rr(i),:);
du=d_sample_to_vector( prot,u);
>>u=X(rr(i),)); u=2 3 >> dprot= et*repmat(hl,1,p).*  >> It=Ili*(If/li)"(i/tmax) [sdu,ordering_list]=sort(du);
(repmat(u,k,1)-prot) ; [ignore,order]=sort(ordering_list); order=order-
>> du=d_sample_to_vector( prot,u)  dprot= It = 0.6526 hl=exp(-order/lt);
-0.1355 0
du=6.2500 0 0.2500 0 0 >>
0.0823 0 et=ei*(ef/ei)\(i/tmax) ; % for i=1:k; dprot(i,:)=et * hl(i) * (u-prot(i)); end
>> [sdu,ordering_list]=sort(du) et =0.3598
>> prot=prot+dprot dprot= et*repmat(hl,1,p).* (repmat(u,k,1)-prot);
sdu =0 0.2500 6.2500 prot = prot=prot+dprot;
ordering_list= 23 1 4.3645 3.0000
2.0000 3.0000 [t=1i*(If/li)"(i/tmax); et=ei*(ef/ei)(i/tmax);
>> [ignore,order]=sort(ordering_list) 1.5823 3.0000 end
order= 31 2 % End
>> order=order-1
order=20 1
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>> prototypes=prot;

prototypes =
44717 3.3122
2.2402 3.1921
1.3210 2.6820

>> for i=1:N
d=d_sample_to_vector(prototypes,X(i,:));
[error(i),indicator(i)]=min(d);

end

>>error =0.5681 0.2042 1.2301 3.07Bl6255 0.0946 7.5032
>>indicator=3 3 2 1 1 2

>> class_indicators=indicator

class_indicators=3 3 2 1 1 2

>> Average_Error=mean(error)
Average_Error = 2.6138

>> Convergence_Index = abs(Average_Error-initialerage_Error)/initial_Average_Error

Convergence_Index = 0.1390

% A simple 2-D example
%Points in the 4 corners: >> pl =[1 0]; p2=QP; p3=[01]; p4=[1 1]
%Construct a sample X, by taking 11 from teSlfrom the 2, 7 from the 3 and 5 from the last
% points=[repmat(pl,11,1);repmat(p2,5,1);repmai{{d3;repmat(p4,5,1)];
% Add noise >> X=points+0.2*randn(size(points));
>>[prototypes,]=Vector_Quantization(X,4,30);

0.9987 0.7567

-0.0552 -0.0187

-0.0798 0.9969

0.9784 -0.0329
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