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‘‘A circle, for instance, 
 is defined as a plane figure  

composed of a series of points,  
all of which are equidistant  

from a given point.  
No one has ever actually seen  

such a figure, however’’ 
Plato, 427-347 BC 
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Introduction 
 

The term ‘‘pattern’’, currently, encompasses the notion of a variety of data-forms the machines have to 

tackle with. Despite the fact that in early days it was used mostly for pictorial information, i.e. 2D-signals, now 

the same term stands almost for any output from a data-source.  For instance, any digital-signal can be considered 

as an 1D-pattern, a grey-scale image as a 2D-patterm, a video-sequence as a (temporal) multi-dimensional pattern 

etc. 
 

Here we will present a general purpose framework for dealing with patterns and discuss simple algorithms 

with a wide-range of applications (from novelty-detection and prototyping in databases to the full organization of 

a library of patterns). The main characteristic of the framework and simultaneously its great benefit is its 

Geometrical character. This enables the direct conceptualization of the employed ideas and promotes the easy 

understanding of the described algorithmic steps.         

 

             

Given an ensemble of N (general character) patterns, a  p-dimensional vector xi , i=1,2,…N 

                                     xi  = [ xi(1)  xi(2) …..  xi(p)  ] 
 

is extracted from each one. With this step, which is known  as the  feature-extraction step, the set of patterns is 

represented by a set of row-vectors.  

 

The N vectors are gathered in the so-called Data-Matrix  Xdata 
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Two simple transformations of the above matrix are usually employed: 

 

(i) standardization  of each one of the p variates (after subtraction of its mean) is performed via a normalization 

step in which the variate is divided with its standard deviation (std). This is useful when the variates have 

different scales: e.g. one variate is amplitude and the other is time. 

   

- Whitening based on PCA is a more advanced standardization procedure that aims, also, at decorrelating the 

variates simultaneously. 

 

(ii) normalization   of each one of the N vectors, by dividing with its norm, 

i.e. replacement of xi  with X i= xi / xi  

                                           where   xi = [ xi(1)2 + xi(2)2+….. xi(p)2  ]
1/2         

This transformation is useful in order to highlight shape similarities during  the subsequent computation of 

Euclidean distances between patterns (see below).  

 

 

 The geometrical consideration, according to which the patterns are represented by 

points (i.e. the end-tails of the corresponding vectors) in a multidimensional space, is very 

useful in order to conceptualize morphological relationships between patterns, to search for 

natural groupings inside the sample of patterns, etc.  The key idea is that similar patterns 

are mapped onto nearby points.  

     

 

 

 

Distance matrix 

 The very first thing, that one can do is to measure the geometrical distance between two  vectors in order 

to quantify (inversely) the similarity between the corresponding two patterns. A small distance means great 

similarity between the two patterns and this can be interpreted as common signal/information content. 

 

The most common (but not always the most efficient) way to measure dissimilarity is through the 

Euclidean distance: 

d(x1,x2) =x1 - x2 = [ ( x1(1)- x2(1) ) 2 + ( x1(2) – x2(2) )2+…..+ ( x1(p)-x2(p) )2  ]
1/2 
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For computational considerations, usually its squared form is utilized, i.e. 

d(x1,x2) =x1 - x2 
2 

 

For an ensemble of  N patterns {xi} i=1:N , all the pairwise distances are gathered in the  

so-called (NxN) distance matrix  D[NxN]  

 

 

 

 

 

 

 

A  fast computation of this (symmetric) matrix, enabling e.g. optical implementation, is given via the following 

matrix operations: 

        D = diag(A) E + E diag(A) – 2A        (1)    

where                                                                                                                               

 

 

Notice 

If the normalized versions (Xi) of the patterns xi has been used in the Data matrix,  

then the corresponding pairwise Euclidean distances becomes  

d(Xi,Xj) = 2 ( 1- ρ(xi , xj) )        

where    ρ(xi , xj) is the correlation coefficient between the two vectors, which is defined as: 

ρ(xi , xj) =   xi • xj   /  (x1 
2  x2 

2) =   X i • X j      

where • defines inner product, i.e. in form of matrix operations : xi xj
T   ( with the superscript  ‘‘T” denoting the 

transpose operation ). 

 

Remark: 

The Correlation coefficient between time series-waveforms (when considering 1-D signals as patterns), usually referred to as a 

“shape similarity”, is known to expresses the synchronization between them.  
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An insight to the structural information contained by the Distance-matrix can be obtained via a simple 

visualization-scheme. The entries of matrix D are treated as grey-valued pixels and the layout produced this way 

is indicative of the presence of any structure in the data. This procedure is an easily-implemented technique for 

unmasking possible outliers (the corresponding rows/columns are white stripes in the produced layout).  An 

example of a point-sample and the  corresponding distance-matrix can be seen below (taken from actual protein-

sequence data).   

 

 

 

 

 

 

 

 

 

 

 

 

Relating topological descriptors of point sets with the data. 
 

The description of a set of patterns, through the topology of their representing points can lead to simple 

descriptors that have a ready geometric interpretation without loosing the connection with conventional approach 

for studying the data (e.g. statistical analysis). Geometrical concepts like the ‘local point-density’ or the 

outline/skeleton of a point-swarm can be utilized in building tools for understanding and handling the 

multidimensional data. 

In the sequel, we are –first– considering the interpoint distances and the gravitational centre of a point set.  
 

A simple geometrical descriptor of a point set is its dispersion J, which expresses the compactness of the 

point set as the average distance from the geometrical mean.  

 
 
 
 
note: it is the p-dimensional analogous of the standard deviation of a set of scalars  (a set with unidimensional members, i.e. numbers).  
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d(i,N).)2d(i,)1d(i,)x(distx ii +…++=a

It can be shown that dispersion can be expressed as a summation of pairwise distances ( a trick that will be 

justified later) : 

  

 

and therefore estimated via the following simple matrix operation: 

 

 

 

The following “rules” are motivated by the geometrical interpretation of the computed quantities: 
 

(i) Between two sets of patterns, and assuming common underlying signal-source, the more reliable set is the one 

of smallest  dispersion. In other words, the dispersion is a measure of ‘noise’ in the data. 

 

(ii) The contribution of the i-th vector to the total dispersion (and correspondingly to the ‘noise’ of the data) is the 

sum of its distance to the rest of the points: 

  

This can serve as a simple gauge for unmasking outlying points, i.e points that lie far away from the majority of 

them and therefore correspond to unusual patterns.  

 

(iii) Conversely, the notion of Vector Median can be introduced. This is the vector with the shortest aggregate 

distance (from the rest vectors in the point-sample).      

 
 

Unmasking Outliers 

Using simple functionals with arguments the pairwise distances, we can built mappings that are informative about 

the ‘‘distinctiveness’’ of the corresponding patterns. The idea inherent in many vector-ordering schemes is to 

map each vector to a scalar, to locate the vectors with images lying at the extremes of the obtained scalar 

distributions,  to identify the corresponding vectors and make a final judgment about the corresponding patters.              

The simplest mapping can be built using the aggregate distance, i.e. using the elements from the corresponding 

row of the distance matrix   
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This can serve as a simple gauge for unmasking outlying points, i.e points that can correspond to extremely noisy 

patterns or extremely interesting patterns. In the latter case the task is known as novelty detection and used in 

many quality-control tasks.   

Usually, the estimated scalars are ordered  

[[[[ ]]]] [[[[ ]]]]dist dist dist dist dist dist dist distN
ordering

N1 2 3 1 2 3.... ....[ ] [ ] [ ] [ ] →→→→   

and this ordering defines the ordering of the corresponding vectors (and consequently of the patterns they are 

associated with) 

[ ] [ ][N][3][2][1]
orderingReduced

N321 x....xxxx....xxx  →  

In this way, a ranked list of patterns has been identified in which the elements that deserves further consideration 

(due to their non-typicality) lie at one of the two ends.   

 

- As an alternative for unmasking outlying points, the following measure, can be utilized: 

 

While the above described ordering procedure can easily spot non-typical patterns, the identification of the 

most typical ones require more delicate procedures, the majority of which fall in the mainstream of Clustering 

literature.        

 

 

Cluster Analysis  
Cluster Analysis (CA) deals with the identification of natural groupings in an ensemble of objects. In the 

case of a point set, CA searches for homogeneous subsets. The most common categorization of CA algorithms 

classifies them into  partition, hierarchical and graph-theoretic ones. In the following, we discuss a few 

prototypical algorithms which are belonging to the first two categories and postpone the discussion of graph-

theoretic approaches for a later part of these notes in which exploratory-data analysis is treated in some details.      

 

Hierarchical Clustering  

 The main characteristics of these algorithms are that they work with a dissimilarity matrix without using 

the patterns themselves and that they have a deterministic character (in the sense that they produce always the 

same output, in contrast to the partition algorithm that the resulting grouping depends on their initialization). In 

the sequel, we outline the most common among them, known as the Single-linkage algorithm : 

 

{ } ))j,i(d(min)x(dist ij,N:1jj
i ≠==
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Given the dissimilarity matrix (here, the matrix D), the process begin by pairing the two points k and l 

with the smallest distance. The rows and columns in D corresponding to k and l points are deleted. A new row 

(and the corresponding column) is inserted. It contains the distances of the first cluster (k,l) to the remaining N-2 

points.  

 

These distances are found from the rule: 

                                           D(kl)i  =  min ( Dki , Dli ), i≠k,l  

 

Using the new [N-1 x  N-1] dissimilarity matrix, we identify the next two points with the smallest pairwise 

distance. During this procedure the pair (k,l) is treated a single point and can be paired with one of the N-2 points. 

Next, a new [N-2 x N-2]  distance matrix is derived and the procedure continues until all points have been 

grouped into a hierarchy of clusters. This hierarchy is a sequence of nested point sets and is represented as a 

function of the pairing distance. The visualization of this hierarchy through dendrograms enables the final user-

depended grouping.   

  

 

 

 

 

 

 

 

Partitioning Clustering Algorithms  

The search for clusters -in the case of partitioning algorithms- includes some algorithmic steps that are 

directed to the minimization (maximization) of an objective (cost) function that expresses the separability 

(compactness) of the produced groups. 

       The partition matrix U is used to tabulate the results of the CA. It’s a [CxN] matrix, with each row devoted 

to one of the C produced clusters.  
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The indicator function uji takes the value 1 if the point xi belongs to the j-th cluster; otherwise is set to 0 (crisp 

clustering; in fuzzy counterpart uji simply takes a value in the range [0,1] ).  

In the case of C-means algorithm, the objective function that is minimized is the total intra-cluster dispersion: 

 

The cores of the C clusters are the corresponding geometrical centers (means); this explains the name of the 

algorithm. 

It easy to see that, since this objective is the sum of the individual subset dispersions,  the algorithm “works” at a 

splitting direction so at to reduce the initially estimated noise power of the overall set. 

In matrix operation, the above cost function reads: 

 

 

where D is the ensemble interpoint distance and popj is the population of each cluster. 

This equation can be written in an even more compact form, after proper scaling of the uj with the corresponding 

population :  E= trace( UDUT ) 

 

Note:  Which calls for a “physical interpretation” of the off diagonal elements of the matrices  product inside the trace operation: 

 the summation of the off-diagonal elements of this product expresses the average inter-cluster separability. 

  

 Remarks: 

i) Since CA algorithms always result to grouped data, a critical issue that always arises is if their function really 

contributes to the understanding of the true point distribution. A way to justify this is the comparison of 

measure E with the corresponding dispersion for the overall point set dispersion.  

ii)  To alleviate the problem of initialization and not sufficient convergence, usually the iterative algorithms (like 

the C-means) are applied a few times and the best partition matrix is the final outcome.  

iii)  An intriguing aspect is  “how many clusters there are” in the point set. A simple strategy for estimating the 

number of clusters C, is to apply the algorithm for increasing value of C, and by plotting the corresponding 

values of E as function of C to  decide the critical number C0. Notice that E is by default a monotonically 

decreasing function of C, with absolute minimum C=N, i.e each point to its one cluster. 

iv) Outlying points tend to obscure the convergence and the accuracy of the resulting  partition. It is suggested to 

be isolated from the beginning.  

v) The objective function has been modified many times in the Pattern Recognition literature, e.g. so as to bias the 

creation of  highly populated clusters.     
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Subtractive Clustering 

An efficient technique known as mountain-clustering has been introduced recently [Yager, 1994] for 

delineating cores in a multimodal point distribution. It is an iterative scheme that employs detection of the most 

significant mode and subtraction of the subset of points that are coming from the certain mode.  

 

In our case this technique has been modified as follows: 

(i) For the detection of the dominant mode the technique of Potential Function is used so as to construct a 

mountain, the height of which is proportional to the local point density. An estimate of the local point density is 

assigned to each point xi , through the relation 

  

where ro, known as radius of influence, shapes the influence of each point on the rest and has to be estimated from 

“noisy conditions”. 

Remark:  *Notice that the PD- quantity can be estimated, in a straightforward manner, using  the elements of distance matrix. 
 

The point of the set that lies closer to the dominant mode is identified as the point xmax of maximum local point 

density. 

   

(ii)  For the refinement of the dominant-mode estimation, the points in the vicinity of xmax are averaged. To this 

end, each point xi in the point-set is ordered according to its distance d(xi, xmax ), i.e. the closer to the xmax the 

point is, the lower its rank [i] will be. A portion of the lower ranked points will be averaged  

 

The definition of the number jo  can be adaptive and provides the optimal number of nearest neighbours of xmax 

that have to be subtracted. This subset is removed and the procedure is repeated from the detection step.   
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Multidimesional Scaling 

    Many questions that arise during the execution of an CA algorithm, like “how many  clusters ?” or “are 

there any outliers in the sample”, have -by far-  an easy answer in the case of  univariate / bivariate  observations, 

i.e. points on the real line/plane.  It is remarkable the human gift for pattern recognition-tasks like determining 

modes in a point distribution and recognizing trends (e.g. attractors, abrupt changes) in the data when these are 

presented in the form of point-diagrams. 

 Motivated by this gift, many dimensionality reduction techniques have been introduced as a preprocessing 

step to (or crude-approximation of) Cluster Analysis. These techniques aim at “projecting” the original p-

dimensional point-sample onto a low dimensional space (e.g. PCA, projection pursuit algorithms etc). These 

techniques work with the original set of variates, trying to extract linear/nonlinear combinations of them that the 

further analysis could focus on. This turns to be the main disadvantage of them, since in many cases (e.g. data 

from psychophysics behavioral experiments) the only available information comes in the form of a similarity 

matrix (i.e. the inverse of a distance matrix), that describes the mutual relationships between the patterns we want 

to analyze. This led to the development of an important branch of Multivariate Analysis, known as Multi-

Dimensional Scaling  (MDS).  

 

 The definition of MDS is –currently– any procedure that, given a dissimilarity matrix corresponding to a 

set of patterns, configures points in a low dimensional space (usually 2-D) as images of the patterns in a way that 

the interpoint distances approximate as much as possible the original pairwise dissimilarities. This results in a 2-D 

“projection” of the objects, where neighboring relationships/clustering trends are prominent.  

 

An early categorization of MDS algorithms used to classify them into two categories: metric and 

nonmetric MDS. As a metric MDS algorithm is referred one that is akin to PCA, i.e. it is applied via eigenvectors 

analysis and has analytical expression. On the contrary the nonmetric MDS algorithms are iterative in nature and 

computational demanding, but usually (slightly to moderately) superior to the metric ones. 

 

 In the following the classic metric algorithm [Torgerson; 1952,1958 (see [Morrison,1990]) ] is presented. 

The output of this algorithm has been proposed as a very good initialization for the nonmetric ones.  

The algorithm starts with a transformation of the original dissimilarity matrix; in our case this matrix is the 

interpoint distance matrix D computed for a set of N p-dimensional points.   

(i) A[NxN] = - D[NxN]    

(ii)  the elements of A are doubly centered about their row and column means resulting to matrix B[NxN]  with 

elements: 

Bij  = Aij - Ai. - A.j + A..  

(iii)    The first r characteristic roots l1, l2, … lr  and their associated vectors  v1 [Nx1] , v2 ,…., vr 
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          are extracted from B.  

(iv)    The vectors are normalized so that  vi
T vi = li  and gathered in a [N x r] matrix 

V[Nxr]=[ v1  v2 ….. vr ] 

 

(v) The i-th row of this matrix contains the coordinates of the i-th point in the new  

           r-dimensional space  (r is usually, but not necessary, 2) : 

 

 

  

 

 

 

  

(vi) A measure of map credibility, regarding its ability to reflect the original structure is given by the normalised 

total discrepancy  

 

where  ∆∆∆∆ is the matrix of interpoint distances  ∆ij =χχχχi - χχχχj 
2   in the new space (computed from  eq.(1) using  as 

data matrix the matrix V[Nxr]  ) 

 

Remarks: 

Possible outliers in the set tend to “dominate” the projection. A refined image can be obtained after their isolation 

and removal.  
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A classical example: 

With standard psychophysical experimental procedures, the perceptual similarity (PS) between colors was 

estimated and tabulated as follows. The 14 entries correspond to 14 different ‘hues’ with wavelengths : 

Wavelength = [ 434   445   465   472   490   504   537   555   584   600  610   628   651   674 ] 

Grossly speaking a reddish hue corresponds to the wavelength of 674, while a bluish hue to 472, etc… 

 

         0    0.8600     0.4200    0.4200     0.1800     0.0600    0.0700    0.0400    0.0200    0.0700    0.0900    0.1200    0.1300    0.1600 

    0.8600         0     0.5000    0.4400     0.2200     0.0900    0.0700    0.0700    0.0200    0.0400    0.0700    0.1100    0.1300    0.1400 

    0.4200    0.5000         0     0.8100     0.4700     0.1700    0.1000    0.0800    0.0200    0.0100    0.0200    0.0100    0.0500    0.0300 

    0.4200    0.4400    0.8100         0      0.5400     0.2500    0.1000    0.0900    0.0200    0.0100         0        0.0100    0.0200    0.0400 

    0.1800    0.2200    0.4700    0.5400         0       0.6100    0.3100    0.2600    0.0700    0.0200    0.0200    0.0100    0.0200         0 

    0.0600    0.0900    0.1700    0.2500    0.6100           0     0.6200    0.4500    0.1400    0.0800    0.0200    0.0200    0.0200    0.0100 

    0.0700    0.0700    0.1000    0.1000    0.3100    0.6200           0     0.7300    0.2200    0.1400    0.0500    0.0200    0.0200         0 

    0.0400    0.0700    0.0800    0.0900    0.2600    0.4500    0.7300         0     0.3300    0.1900    0.0400    0.0300    0.0200    0.0200 

    0.0200    0.0200    0.0200    0.0200    0.0700    0.1400    0.2200    0.3300         0     0.5800    0.3700    0.2700    0.2000    0.2300 

    0.0700    0.0400    0.0100    0.0100    0.0200    0.0800    0.1400    0.1900    0.5800         0    0.7400    0.5000    0.4100    0.2800 

    0.0900    0.0700    0.0200            0     0.0200    0.0200    0.0500    0.0400    0.3700    0.7400         0        0.7600    0.6200    0.5500 

    0.1200    0.1100    0.0100    0.0100    0.0100    0.0200    0.0200    0.0300    0.2700    0.5000    0.7600         0    0.8500    0.6800 

    0.1300    0.1300    0.0500    0.0200    0.0200    0.0200    0.0200    0.0200    0.2000    0.4100    0.6200    0.8500         0    0.7600 

    0.1600    0.1400    0.0300    0.0400         0        0.0100         0        0.0200    0.2300    0.2800    0.5500    0.6800    0.7600         0 

 

 

 

 

 

 

 

 

 

 

 

 

The above point diagram was produced by applying the classical-MDS algorithm to the distance matrix with 

entries d(i,j)=1-PS(i,j), i,j=1:14. The ‘homeomorphism’ of this plot with the well-known color-disk shown on the 

right is remarkable.       
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(Data) Manifold Learning  
The last three years -and especially after the appearance of two publications (listed below) in the same issue 

of Science magazine in Dec,2000-  the interest about manifolds has been renewed and extended well beyond the 

mathematicians’ community (e.g. Riemannian manifold ). Nowadays, Manifold-Learning has become an 

individual scientific branch in which data-analysts, from different research directions, contribute and interact.  

A well-informed  Web-site is :     http://www.cse.msu.edu/~lawhiu/manifold/ 

where the two Science-paper can be found and downloaded.  

(1) J.B. Tenenbaum, V. de Silva and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction . Science, vol. 290, pp. 2319--2323, 2000  
(2) S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding . Science, vol. 290, pp. 2323--2326, 2000 

 
 

A simple definition  of a manifold  –well aligned with the spirit of these notes-  is this of  ‘a constrained 

(multidimensional) surface’. This implies the existence of an ambient (vector) space in which the available data lie 

in a restricted way. The following figure shows the famous ‘Swiss-Roll’’ which is 2D-surface in a 3D-space (the 

ambient space).  

 

 

 

 

 

 

 

 

In the most usual case, the available data are multivariate observations from a high dimensional space (for 

instance: individual video-frames can be considered as points in a space of num_of_pixels^2  dimensions). This 

high-dimensionality usually obscures the useful information in the data, and constitutes one of the major component 

of the ‘curse of dimensionality’.  ‘‘Less is Better’’ is a popular motto within Data-Analysts, who are currently 

interested in efficient techniques for handling high-dimensional data and the development of  methods for data-

abstraction  and summarization. Visualization-schemes are the most popular, since some insight into the data can be 

gained, immediately, by the user through low-dimensional plots and graphs.      

 

 To underline further the need for Manifold-Learning we are including the two ‘classical’-examples 

(borrowed from the above mentioned web-site). This of  searching in ‘a pair of moon-datasets’ and retrieval from a 

database containing hand-written digits.     
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These figures show the results 

of our ranking algorithm on the 

toy "two moons" data set. In 

each case the query point is 

marked by the red triangle. The 

size of the other points indicates 

their ranking score, and the 

connecting lines join the points 

in the order of their ranking 

score. Intuitively the ideal 

solution is to rank all the points 

in the same "moon" as the 

query point higher than the 

points in the other moon.  
 

 

 

Below are the results on a subset of the USPS data set. In each case the top left-hand image is the query, 

and the unlabelled data set consisted of 5424 exemplars of the digits 1-6. The 99 top ranked images are 

shown for (a) data-manifold ranking algorithm and (b) Euclidean distance ranking. Note that (b) contains a 

larger number of 3's and 2's with knots, subjectively somewhat dissimilar to the query.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the sequel, some representative techniques will be presented starting from the Minimal-Spanning-Tree- 

Graph  related tools for data handling, continuing with the ISOMAP for visualization of the data and ending with 

the Neural-Qas Vector Quantization algorithm for data-abstraction and prototyping. 
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Minimal Spanning Tree  
Graph theory sketches the MST structure with the following definitions. A graph is a set of nodes and a set 

of node pairs called edges. An edge weighted graph is a graph with a real number, called weight, assigned to each 

edge. A connected graph  has a path between any two distinct nodes. A Spanning Tree  is a connected graph that 

includes all the nodes without loops. The MST is the spanning tree of minimum total weight.  

When the previous concepts  are applied  to a set of  N points,  a node is dedicated to each point and the 

corresponding pairwise distances (or generalised dissimilarities) are assigned as weights to  the formed edges. The 

MST is the connected graph, emerged from the collection of exactly  (N-1) edges, having minimum total length.   

 In order to demonstrate how the previous abstract graph-theoretic concepts are used to handle the available 

data, temporal patterns from a real experiment (time-waveforms from magnetic brain-response signals) are used in a 

simplified 2-dimensional example (see figure, below). With each one of the 10 patterns shown in panel a), a point in 

R2 is associated. The 2-dimensional configuration of this point sample is given in panel b). Each of the two axes 

spanning this reduced space expresses the strength of the Magnetic Field at a time instant in the post-stimulus range. 

The first (horizontal) axis was selected, by visual inspection, so as to correspond approximately to a time instant 

where the majority of waveforms present a positive deflection.  The second (vertical) axis corresponds to a time 

instant chosen at random. In this graph the 10 points appear as nodes indexed from 1 to 10. These indices reflect the 

physical time order of the corresponding waveforms. The MST appears as a collection of 9 line segments, the edges, 

with sample points as endpoints. The weight associated with each edge is also indicated. It is the pairwise Euclidean 

distance between the corresponding points. A scaling has been applied on these distances such that the smallest of 

them (2.991 10-14 T) appears on the graph as 10. With such a graph, it is easy to conceptualise the notion of 

centrical/prototypical points and outliers. The term degree of a node is used to denote the number of edges incident 

on it. Centrical points (e.g.1) differ from outliers (e.g. 10) in terms of degree and weights of the associated edges.  
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2.2. Applying Graph theory in the ambient space - Isomap  

The intrinsic geometry that governs the geodesic manifold of the point distribution can be emphasized by the 

incorporation of Graph-theoretic steps prior to the application of multidimensional scaling (MDS). The emerged 

dimensionality reduction technique, named Isomap, comprises simple algorithmic steps, that transform the original matrix 

D to GD which contains the geodesic interpoint distances [Tenenbaum et al.,2000]. In brief, Graph theory is engaged 

directly in the multidimensional space (the ambient space) by building the nearest-neighbor graph over the given point 

sample. Each point is treated as a node of this graph, while each straight-line segment connecting two of these points being 

closer than ε is treated as an edge of it (see panel d) in the figure below). Using this graph, the geodesic interpoint distances 

are computed as the shortest paths between each pair of points. The MDS is then applied, Y = MDS( GDε ), to produce the 

image of the original point-cloud in a Reduced Space (panel e). Isomap can be thought of as a computationally efficient 

graph-flattening technique that can learn a broad class of nonlinear manifolds 

 

 

 

Fig.1  (a) Feature extraction step for a sample of temporal patterns (from 10 M100 auditory responses): the ensemble average waveform has been computed 

(black curve at the bottom) and a triplet of latencies around its peak has been selected; the signal-values at these latencies denoted by the vertical lines 

constitute the features for each pattern. (b) Feature Space construction: the ST-sample is represented as a point sample in a 3-dimensional space.  (c) Reduced 

Feature Space computation: an image of the point sample in a space of 2 dimensions is derived via classical MDS. (d) Nearest neighbor graph formation: by 

connecting with straight-line segments these points which are closer than ε (selected as the average interpoint distance).  (e) Unfolding the graph on a plane, 

using the ISOMAP algorithm. (adopted from [Laskaris, Clin. Neurophysiol.; 2002.])   
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The  Isomap algorithm 

Isomap is an extension of classical MDS that includes a transformation of the original distance matrix D[NxN] to the matrix GD=G(D) that 

contains the shortest path distance between all pair of points:  

step_I. A weighted graph G is defined over all N points by connecting points Pi & Pj  if  (as measured by D(i,j)) they are closer than ε. 

The corresponding edge weights are initialized to GD(i,j)= D(i,j) if Pi , Pj are linked by an edge; GD(i,j)=∞ otherwise.  

step_II. For each k=1,2,…N in turn, all entries GD(i,j) are replaced by min{ GD(i,j), GD(i,k)+GD(j,k)}. The fraction of points not 

connected to the main component of the resulting graph is detected and deleted from further analysis. As ε is reduced more points are 

deleted. 

step_III. The images Yi of points Pi in a space of reduced dimensions r are derived via the application of classical MDS,  

                                                          Y[N’xr]= MDSr(GD)   

 

While Isomap is a very competent procedure for learning nonlinear manifolds (see below, for a very 

interesting example with many potential applications in computer vision, like morphing ), it is restricted by the 

computational demands of the geodesic-distance estimations. The handling of more than a few thousands 

multidimensional points (i.e. patterns) is becoming problematic. A remedy to this can be provided via the 

marriage of Isomap with unsupervised learning techniques. As a preprocessing-step, efficient techniques can be, 

first,  applied in order to reform the ensemble of patterns as data-chunks, that will be then summarized  via  

prototypes that will then be fed to the ISOMAP-routine. (The implicit assumption is that locally the Euclidean 

distance is a good approximation to the geodesic distance; something that holds only for relatively smooth 

manifolds)                

  

 

 

 

 

 

 

 

 

The Neural-Gas network algorithm was found in practice a very convenient method for prototyping, i.e. 

preparing the data for the application of ISOMAP-algorithm, and its use is suggested in the case of very large  

pattern-databases.    
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Fig. Graphical Representation of temporal patterns using Vector Quantization as abstraction step .a) 
Extracting features. b) Embedding the patterns in a 2D feature space. c) Applying Vector Quantization in the feature 
space.  d) Constructing the Minimal Spanning Tree of the code vectors. 

Vector Quantization (VQ) based on  Neural-Gas Network  

 VQ encodes the data manifold in the ambient (usually high-dimensional) space by utilizing only a finite set of 

reference vectors, the code vectors. It actually performs a parcellation of the ambient space known as Voronoi Tessellation, 

in which a Voronoi-region is defined around each code vector. This is a section in the original space comprised of all the 

points closer to a specific code vector than to any other. The vectorial observations falling within a Voronoi-region are 

represented by the corresponding code vector. The number of code vectors controls the resolution of the representation, i.e. 

the level of information abstraction. The following figure shows the Voronoi Tesselation when 15 code vectors are used in a 

simplified 2D-example from real data. The code vectors, denoted as red circles in panel-c), have been computed using a 

clustering algorithm so as to achieve the minimum coding error in the representation of the point swarm given in panel b).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The codebook design is the most critical part in VQ. For this step the “neural-gas” algorithm is 

employed. This algorithm is an artificial neural network model, which converges efficiently to a small, user-

defined number C<N of codebook vectors, using a stochastic gradient descent procedure with a ‘‘soft-max’’ 

adaptation rule that minimizes the average distortion error. This network is an extension of the Kohonen’s self-

organizing maps that shares some characteristics with the Fuzzy C-means algorithm. Its name stems from the 

physics of the underlying optimization scheme, since the reference vectors tend to cover all the space of the input 

data, while mutual repulsion forces are emerging.      
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dmatrix 

 

function y = dmatrix(X) 

% d=dmatrix(data =[N x p]),  

%  data=[#vectors x dimensionality of the vector-space] 

 

[N,p]=size(X); 

A=X*X'; 

E=ones(N,N) ; 

D=diag(diag(A))*E + E*diag(diag(A))-2*A ; 

y=D; 

 

*************************************************** ************** 

------------------------------------------------------------------------------------------------------------------ 

X = 

     1     2 

     3     4 

     5     6 

     7     8 

     9    10 

 

>> A=X*X' 

    5    11    17    23    29 

    11    25    39    53    67 

    17    39    61    83   105 

    23    53    83   113   143 

    29    67   105   143   181 

 

 

>> E=ones(5,5) 

     1     1     1     1     1 

     1     1     1     1     1 

     1     1     1     1     1 

     1     1     1     1     1 

     1     1     1     1     1 

 

>> diagA=diag(diag(A)) 

5     0     0     0     0 

0    25     0     0     0 

0     0    61     0     0 

0     0     0   113     0 

0     0     0     0   181 

 

 

 

 

>> diagA*E+E*diagA-2*A 

                                                    D= 

         0      8      32    72   128 

         8       0      8     32    72 

        32      8      0     8     32 

        72     32     8      0      8 

       128    72    32     8      0 
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dmatrix based on normalized vectors 

X= 

     1     2 

     3     4 

     5     6 

     7     8 

     9    10 

 

>> Xn=normalize_vectors(X)   ;  %  this should be a small subroutine that divides each row of the Data matrix  

                                                         %with the norm of the row, i.e. the length of the vector. SEE BELOW 

 

Xn = 

        0.4472    0.8944 

        0.6000    0.8000 

        0.6402    0.7682 

        0.6585    0.7526 

        0.6690    0.7433 

 

>> Dn=dmatrix(Xn) 

              Dn = 

                0    0.0323    0.0532    0.0648    0.0720 

                                   0.0323         0     0.0026       0.0057    0.0080 

                                                    0.0532    0.0026         0       0.0006    0.0014 

                                                   0.0648    0.0057    0.0006         0        0.0002 

                                                    0.0720    0.0080    0.0014    0.0002         0 

 

%_______________________________________________________________________________________ 
function   [normalized_X, RMS_values ] = normalize_vectors(X) 
 
%   the array  normalized_X  contains  the  vectors Xi divided by the corresponding length  ||Xi||  
%  
%  the column-array RMS_values contains scalars that are related with the length of the vectors  
%  and  correspond to RMS (root-mean-square) values in the case that the vectors are temporal-patterns/wavelets 
 
[N,p]=size(X); 
 
for i=1:N; 
 normalized_X(i,:)= X(i,:)/norm(X(i,:)); 
 RMS_values(i)=norm(X(i,:)) *(1/sqrt(p)) ; 
end 
__________________________________________________________________________________________ 
 
>>  X = 
                   1     2 
                   1     3 
                   2     4 

5 6 
 
normalized_X = 
                        0.4472    0.8944 
                        0.3162    0.9487 
                        0.4472    0.8944 
                        0.6402    0.7682 
 
RMS_values ‘= 1.5811    2.2361    3.1623    5.5227 
______________________________________________________________________________ 
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Outlier Detection I 

 

function  [Y, sel_list]=Reduced_ordering(X) 
% 
%   [Y,sel_list]=Reduced_ordering(X) 
% 
%              detecting outliers using the hypothesis that the vector-points  
%             should form a spherical cluster. 
%            while a small portion of them can appear as spurious points  
% 
%   Y is the artifact-free subset of  vectors 
%   sel_list is the original indexing of the corresponding patterns 
% 
 
[N,p]=size(X); 
d=dmatrix(X); sum_dist=sum(d); % correspond to each point its total distance  
                                                      %  from the rest points (aggregate-distance) 
 
[sd,list]=sort(sum_dist); % order the aggregate-distances 
 
diffsd=sd(2:N)-sd(1:N-1); [mm,index]=max(diffsd);  
                                %  detect where the aggregate-distance increase abruptly; the classical trick of  ‘plateau’-detection   
                                                                     
list=list(1:index);  %  keep those points that correspond to small aggregate distances 
sel_list=sort(list);  % bring them to the original "time-order"/indexing  
 
Y=X(sel_list,:);  
*************************************************** ************************** 
 

X = 
     1 
     2 
    11 
     1 
   110 
     3 
   110 

>> [N,p]=size(X) 
                            
      N =7  
       p =1 
 

>>  d=dmatrix(X); 
        

   0            1         100          0       11881        4        11881 
          1             0          81           1       11664        1       11664 
         100          81          0         100        9801      64        9801 
           0             1         100           0       11881       4       11881 
       11881    11664     9801     11881       0         11449       0 
           4             1            64           4      11449       0        11449 
       11881    11664      9801     11881       0       11449        0

 

 

 

>> sum_dist=sum(d) 
                                               sum_dist =   23867      23412       19947     23867       56676       22971     56676 
 
>> [sd,list]=sort(sum_dist) 
                                                         sd =  19947       22971       23412       23867       23867       56676     56676 
                                                          list =   3                6                2               1              4                5             7 
 
 
>> diffsd=sd(2:N)-sd(1:N-1);   [ mm, index] =max(diffsd) 
                                                                                         mm = 32809      index = 5 
 
>> list=list(1:index) 
                                     list =  3     6     2     1     4 
 
>> sel_list=sort(list) 
                                    sel_list = 1     2     3     4     6 
 
>> Y=X(sel_list,:);   >>  Y’ = 1  2  11   1   3 
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Outlier Detection II  
 
function  [Y, sel_list] = radial_ordering( X , X_prot, k ) 
% 
%    [Y, sel_list] = radial_ordering(X, X_prot, k) 
% 
%         detecting outliers using a reference-prototype   
%  
%    if the k is given, the k-nearest neighbors around the prototype are kept 
%    otherwise (if k=[]) a simple automated-algorithm is utilized to estimate this k first  
% 
%    Y is the artifact-free subset of vectors 
%    sel_list the original indexing of the corresponding patterns 
% 
 
[N,p]=size(X); 
d=d_sample_to_vector(X,X_prot); % correspond to each point its distance to the reference point 
                                                         %  see the m-file below 
[sd,list]=sort(d); % order these distances 
 
 
if isempty(k) 
  diffsd=sd(2:N)-sd(1:N-1); [mm,index]=max(diffsd); % detect where the distance increase abruptly 
                                                                                      % i.e. estimate the k (==index)  
      list=list(1:index); % keep those points that correspond to small distances 
 
else 
      list=list(1:k); 
end 
 
 
 
sel_list=sort(list);  % bring them to the original "time-order"/indexing  
 
 
Y=X(sel_list,:); 
 
 
 
%_____________________________________________    
function  y=d_sample_to_vector(X,Y) 
%   distances =d_sample_to_vector (X, Y) 
%                     X contains a set of row-vectors, Y is a row-vector;  
%    distances contains the squarred Euclidean distances  
%                                        with respect to the reference-vector Y 
%                   X and Y should have the same number of columns 
 
[N,p]=size(X);   y= diag([X-ones(N,1)*Y]*[X-ones(N,1)*Y]'); 
%______________________________________________
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X = 
     1 
     2 
    11 
     1 
   110 
     3 
   110 

>> X_prot = 2.5000 
>> k=3 
 
 
 
>> [N,p]=size(X) 
                            
      N =7  
       p =1 
 

>> d=d_sample_to_vector(X,X_prot) 
 
 d = 1.0e+04 *  
         [ 0.0002  0.0000 0.0072  0.0002  1.1556  0.0000   1.1556 
 

 
>> [sd,list]=sort(d) 
 
sd = 1.0e+04 *  
       [ 0.0000  0.0000  0.0002  0.0002  0.0072  1.1556  1.1556 ] 
 
 list =    2  6  1 4 3 5 7 
 

 
 
>> if isempty(k), diffsd=sd(2:N)-sd(1:N-1); [mm,index]=max(diffsd);   list=list(1:index); else list=list(1:k); end 
             
>> list=list(1:k) 
 
list = 
       2 
       6 
       1 
 
>>  sel_list = 
 
     1 
     2 
     6 
 
 
 
>> Y=X(sel_list,:) 
 
 
Y = 
     1 
     2 
     3 
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Outlier Detection III  

 

function   [Y,sel_list]=NN_ordering(X,k) 
 
%  [Y,sel_list]=NN_ordering(X,k) 
% 
%  detecting outliers using the distance to the nearest-neighbor   
%   k controls the number of pattern/points to be kept 
% 
%  Y is the artifact-free subset of  vectors 
%   sel_list is the original indexing of the corresponding  patterns 
 
 
[N,p]=size(X); 
 
d=dmatrix(X); [dd]=sort(d);   % for each point, its distances to the rest of  points are ordered  
 
                               
nnd=dd(2,:); % its nearest neighbor is easily identified  
                         %  and the corresponding distance is attached to the point serving as a ‘non-typicality’-measure 
 
 
[sd,list]=sort(nnd); % order these distances 
 
 
if isempty(k)  
 
  diffsd=sd(2:N)-sd(1:N-1);  
  [mm,index]=max(diffsd);    % detect where the nn-distance increase abruptly 
  
   list=list(1:index);  % keep those points that correspond to small nn-distances 
 
else 
    list=list(1:k); 
 
end 
 
 
 
 
sel_list=sort(list);  % bring them to the original "time-order"/indexing  
 
 
Y=X(sel_list,:); 
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                k=3  
X = 
     1 
     3 
   110 
     3 
     2 
                        

>> d=dmatrix(X); 
 
           0           4          11881       4              1 
           4           0          11449        0             1 
       11881   11449           0       11449     11664 
           4           0          11449        0             1 
           1           1          11664        1             0 
 

>> [dd]=sort(d) 
 
           0             0             0            0            0 
           1             0          11449       0            1 
           4             1          11449       1            1 
           4             4          11664       4            1 
       11881       11449    11881    11449    11664 

 
  
 
 
>> nnd=dd(2,:) 
                           [ 1           0       11449           0           1] 
 
 
 
>> [sd,list]=sort(nnd) 
                            sd=    [ 0     0    1     1   11449] 
                            list =  [ 2     4    1     5     3  ] 
 
 
 
        
>> if isempty(k); diffsd=sd(2:N)-sd(1:N-1); [mm,index]=max(diffsd);  list=list(1:index); else list=list(1:k); end 
 
 
 
>> list=list(1:k)  =  2     4     1 
 
 
>> sel_list=sort(list)  
                                sel_list = 1     2     4 
 
 
>> Y=X(sel_list,:) 
 
                                 Y = 
        1 
        3 
        3 
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Subtractive_clustering 
 
function [y1,snrave_max,y2] = subtractive_clustering(x) 
%                                            x=[N x p], is the data_matrix 
%                                             y1 is the extracted subset ,  
%                                             y2 includes the remaining (sub)set(s)    
% 
%      see also the  SUBCLUST routine in fuzzy-logic toolbox of MATLAB   
% 
 
[N,p]=size(x); 
d=dmatrix(x )  % building the matrix of interpoint-distances  
 
r0=mean(mean(d)); % an estimate of the radius of influence: this is a crude approximation;  
                                   % it has to be estimated from noisy conditions 
 
pot=exp(-d./(0.1*r0))  %  transforming the distance-matrix    
 
PD=sum(pot)   % a row-vector with each entry being propotional  
                          % to the local–density around the corresponding point 
 
[PDmax,imax]=max(PD); % identifying the point of highest local density 
 
d_to_imax=d(imax,:);  % distances for ximax from the rest of points 
 
[ss,nearest_neighbors]=sort(d_to_imax) % radial-ordering of points with respect to the ximax 
 
% then we need to define how many of the ordered points should be selected    
% since the algorithm was meant to be applied to pattern of time-waveforms, originally an Signal-to-Ratio 
% estimator had been employed in the decision-making process.    
 
 
ordered_x=x(nearest_neighbors ,:) % the input sample is reordered with respect the  ximax 
w=zeros(1,N) 
 
for  i=2:N, 
[sp,np]=SNR(ordered_x(1:i,:)); % an ‘external’ descriptor quantifying the ‘grouping’ is employed: 
                            % specifically, an estimator of the SNR - the SNR_for_a_sample of time-waveformes-  
                                                % was applied or the nested sequence of subsets 
w(i)=sp/np; 
end 
 
[snrave_max,jo]=max(w.*[1:N]) % find which subset provides the maximum SNR-measure 
                                                                           % i.e. identify the optimal rank jo                           
 if jo ~= N  
 y1=ordered_x(1:jo,:); y2=ordered_x(jo+1:N,:); 
 else 
 y1=ordered_x; y2=[]; 
 end         
 % actual outputs: indices of points belonging to dominant  mode  
 % i.e. list of nearest_neighbors  and the threshold jo     
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x = 
     1     2 
     3     5 
    22    33 
    23    36 
    21    45 
     1     1 
     2     1 
 
 

 
 
 
>> [N,p]=size(x); 
  
              N =7 p =2 
 
 
 
 
 
 
 

 

>>  d=dmatrix(x) 
 
d= 
        0       13        1402     1640     2249       1       2 
      13         0        1145     1361     1924      20      17 
     1402   1145        0          10        145     1465   1424 
      1640   1361      10          0          85      1709    1666 
     2249    1924      145       85           0      2336    2297 
           1      20        1465    1709      2336      0         1 
           2      17       1424     1666     2297      1         0 

 

 
 
>> r0=mean(mean(d)) 
 

r0 = 853.5510 
 

 
 
 
 
>> pot=exp(-d./(0.1*r0)) 
 
pot = 
     1.0000    0.8587    0.0000    0.0000    0.0000    0.9884    0.9768 
     0.8587    1.0000    0.0000    0.0000    0.0000    0.7911    0.8194 
     0.0000    0.0000    1.0000    0.8894    0.1829    0.0000    0.0000 
     0.0000    0.0000    0.8894    1.0000    0.3694    0.0000    0.0000 
     0.0000    0.0000    0.1829    0.3694    1.0000    0.0000    0.0000 
     0.9884    0.7911    0.0000    0.0000    0.0000    1.0000    0.9884 
     0.9768    0.8194    0.0000    0.0000    0.0000    0.9884    1.0000 
 
>> PD= sum(pot) 
 
  PD =  3.8239    3.4693    2.0724    2.2589    1.5523    3.7678    3.7846 
 
>> [PDmax,imax]=max(PD)  
                                               PDmax =3.8239  imax =1 
 
>> d_to_imax=d(imax,:) 
                                      d_to_imax =  0    13      1402      1640     2249    1   2 
 
 
>> [ss, nearest_neighbors]=sort(d_to_imax) 
                                               ss =  0    1     2    13   1402   1640   2249 
                      nearest_neighbors = 1     6     7     2      3        4           5 
 
>> ordered_x=x(nearest_neighbors ,:) 
ordered_x = 
   1     2 
       1     1 
       2     1 
       3     5 
      22    33 
      23    36 
      21    45 
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W=zeros(1,N) 
w = 0   0     0     0     0     0     0 

>> for  i=2:N, 
 
[sp,np]=SNR(ordered_x(1:i,:));  
   % SNRsample for the nested sequence  
 
w(i)=sp/np; 
end 

w’= 
         0    
    6.0000     
    5.0000     
   1.5556     
   0.1796    
    0.4500    
   0.6957 
 

>>[snrave_max , jo]= max(w.*[1:N]) 
 
   snrave_max = 15  ,    jo = 3 
 

 
 
 
>> if jo ~= N  
     y1=ordered_x(1:jo,:);   
y2=ordered_x(jo+1:N,:); 
    else 
     y1=ordered_x; y2=[]; 
    end         
 

>> y1= 
           1     2 
           1     1 
           2     1 
 

>> y2 = 
            3     5 
           22    33 
           23    36 
           21    45 
 

 

 
 
>> snrave_max 
                         snrave_max = 15 
 
>> [sp,np]=mine_snr(x);  overall_snrave= (sp/np)*7 
 
     ans = 4.8697 
 
 
%   snrave_max >   overall_snrave …….to  check for cluster validity 
 
%  the procedure will be repeated for the remaining points subset y2 
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Multidimensional Scaling 
function y = mscaling(D,r) 
% 
%  y=mscaling(dmatrix,r);  
%  dmatrix is the array of pairwise distances  
%  r is the dimensionality of the new space  (usually 1,2 or 3) 
%  Torgeson’s algorithm for Classic Multidimensional scaling   

 
 
[n,n] = size(D); 
 
A=-(1/2)*D; 
 
Ac=mean(A); Al=mean(A'); Acl=mean(mean(A)); 
 
     for i=1:n; 
          for j=1:n; 
             B(i,j)=A(i,j)-Ac(i)-Al(j)+Acl; 
             end 
       end 
 
  [v,d]=eig(b); % eigenvector is a column in v 
 
 evalues=diag(d);  
 [h,hh]=sort(evalues); % sorting from smaller to larger  
 
  for i=1:r;  
       c(:,i)= v(:,hh(n+1-i))* ((evalues(hh(n+1-i)))^(1/2));  
  end 
  
y=c;      
 

************************************************ 

 

[n,n] = size(D)  
                         n = 5 

 

>> A=-(1/2)*D        
0    -4   -16   -36   -64 
-4     0    -4   -16   -36 
-16    -4     0    -4   -16 
-36   -16    -4     0    -4 
-64   -36   -16    -4     0 

>> Ac=mean(A);  
>>  Al=mean(A');  
    
>>Acl=mean(mean(A)); 
 

>> Ac =-24   -12    -8   -12   -24 
>> Al=   -24   -12    -8   -12   -24 
>> Acl =-16 
 

 

 

>> for i=1:n; 
         for j=1:n; 
 B(i,j)=A(i,j)-Ac(i)-Al(j)+Acl; 
         end 
   end 
 

>> B 
    32    16     0   -16   -32 
    16     8      0    -8   -16 
     0     0       0     0     0 
   -16    -8     0     8    16 
   -32   -16     0   16    32 
 

 

>> [v,d]=eig(B) 
 
v = 
    0.45    0.0    -0.27    0.57  -0.63 
   -0.89   -0.0   -0.13     0.29   -0.32 
     0         1.0     0.0       0.0         0 
   -0.00     0.0   -0.94   -0.09    0.32 
     0        -0.0    0.14    0.76     0.63 
 

d = 

0         0            0           0         0  
0        0             0           0         0   
0         0             0.         0         0

 

0         0             0           0.        0 
0         0             0          0         80 
 

 

>> evalues=diag(d)  
        evalues = 0 0 0 0 80 

>> [h,hh]=sort(evalues)  
          h =  0 0 0 0 80 
          hh = 3 1 2  4  5  

% for i=1:r;   c(:,i)= v(:,hh(n+1-i))* ((evalues(hh(n+1-i)))^(1/2));  end 
 
% *Defining   the dimensionality of the reduced space as   r==2. 
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>> for I=1:2; 
c(:,I)= v(:,hh(n+1-I))* ((evalues(hh(n+1-I)))^(1/2)); 
end 

y=c 
 

 y = 
      -5.6569    0.0000 
       -2.8284    0.0000 
              0            0 
         2.8284   -0.0000 
         5.6569    0.0000 

 

 

%  If we compute the matrix of pairwise distances in the reduced space, i.e.  dmatrix(y) 
         0        8.0000    32.0000   72.0000  128.0000 

     8.0000         0         8.0000   32.0000   72.0000 
    32.0000    8.0000         0        8.0000    32.0000 
    72.0000   32.0000    8.0000         0        8.0000 
   128.0000   72.0000   32.0000   8.0000       0 
 
% we can compare with the matrix in the original space  dmatrix(X) 
%  to  “measure ” the distortion induced by the projection 
%  through the residual distance matrix  :  dmatrix(X)-dmatrix(Y)  
 

 

An overall example 
 

% Data matrix: 
 

X = 
     1     5     1 
     3     5     2 
     5     2    65 
    21     4     2 
    65     3     5 

 
 
 
 
 
         % Normalized_version:    

 

 
 >> Xn=normalize_vectors(X)                   

 
Xn = 

0.1925    0.9623    0.1925 
0.4867    0.8111    0.3244 
0.0767    0.0307    0.9966 
0.9781    0.1863    0.0931 
0.9960    0.0460    0.0766 

 
 
 
% Computation of the two corresponding distance-matrices 

 
>> D=dmatrix(X)                             
 
D = 
          0           5         4121         402       4116 
           5           0         3982         325       3857 
        4121      3982           0        4229      7201 
         402       325        4229           0        1946 
        4116      3857       7201      1946           0 

 
 
 
 
 

 
>> Dn=dmatrix(Xn)                           
 
Dn = 
         0    0.1268    1.5279    1.2292     1.4987 
    0.1268         0       1.2290    0.6854     0.9063 
    1.5279    1.2290         0       1.6530     1.6918 
    1.2292    0.6854    1.6530         0         0.0203 
    1.4987    0.9063    1.6918    0.0203         0 

 
 
% *  producing  the  reduced space for both the normalized and the non-normalized version 
 

>> Y=mscaling(D,2) 
                           Y = 

                   -0.9386  -22.8157 
                   -0.4085  -20.6457 
                 -47.2180   21.6726 
                 11.2125   -6.8717 
                 37.3525   28.6605 

 
 
 
 
 

>> Yn=mscaling(Dn,2) 
                              Yn = 

                                   -0.3999   -0.5344 
                                   -0.1836   -0.3448 
                                   -0.5711    0.6866 
                                    0.5411    0.0419 
                                    0.6134    0.1506 
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Minimal Spanning Tree 
 

-A Graph theoretic Exploratory Data Analysis tool- 
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Function       [ links, weights ] = minimal_spanning_tree( d ) 
% 

%   [ links, weights ]=minimal_spanning_tree( distance_matrix/weights ) 
%   Prim's algorithm for constructing the Minimal-Spanning Tree (MST) 
%   from a given symmetric distance/similarity matrix  
%   links contains the edges, i.e. pairs of nodes, which constitute the MST 
%   weights contains the corresponding weights 
% 
%    The basic philosophy of the algorithm is to identify the N-1 edges  
%   -among the N(N-1) available- by sequentially selecting among the remainders  V-VT nodes 
%    the node that is closer to the selected ones VT  and update the distances of the rest of nodes (V-VT) so as   
 %   the weight-array to tabulate for each un-selected node  its distance to the nearest node among the selected VT          
 
[N,N]=size(d),  
V=[1:N]  % ensemble of nodes  
r=1; VT=r;  % start by first selecting the node 1; any other r could have been used   
 
weights=zeros(1,N); links=zeros(1,N);  % initialization 
  
V_VT=setdiff(V,VT);   % remove the selected node from the available set 
 
weights(V_VT)=d(r,V_VT);  % the distances of the available nodes to the selected ones , i.e. the node r=1   
links(V_VT)=r;         % the available nodes will compete for entering in the selected set VT ,  
                                   % based on the weight (i.e. distance)  of  the edge they share with node r=1  
  
for i=1:N-2     % since N-1 edges/links need to be selected, the loop will be repeated N-2 times 
  
  [edge_weight,u]=min(weights(V_VT)); % search in the set of unselected node for the one closer to  
                                                                          %-anyone from-  the selected ones  
  node=V_VT(u);               % refer to the original indexing of the nodes             
  VT=union(VT,node);      % augment the set of selected nodes  
  V_VT=setdiff(V,VT)      % remove the -just selected- node from the search space 
  
                  for j=1:N-1-i,    % for the available nodes (V-VT) the nearest distance to the selected nodes VT 
                                                     % might have changes after moving the latest node  
                                                    % so we need to update the corresponding entries in the weights - array 
                                                     % actually, this update is necessary only if the latest node  
                                                      %  is nearest neighbor with any of the remainders  
  
                 [weights(V_VT(j)),index]=min( [weights(V_VT(j)),d(node,V_VT(j))] );, 
                           
                          if index == 2,          %  if  d(node,V_VT(j))  <  weights(V_VT(j)) 
                          links(V_VT(j))=node;, % the nearest link for any of the available nodes is this that corresponds 
                                                                     % to the last selected node     
                          else, 
                          end 
                 end 
end 
 
links=[2:N; links(2:N)]';  weights=weights(2:N)';  % do not care for the first selected node, r=1, 
 
[ignore,list]=sort(weights); % present the links according to the length of the corresponding edges 
links=links(list,:);   weights=weights(list); 
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>> X = 
             1     1 
             1     2 
             3     1 
             2     2 
             4     5 
             1     5 
             3     2 
 

>> d=sqrt(dmatrix(X)) = 
 
         0      1.0000     2.0000    1.4142    5.0000    4.0000    2.2361 
    1.0000         0        2.2361    1.0000    4.2426    3.0000    2.0000 
    2.0000    2.2361         0        1.4142    4.1231    4.4721    1.0000 
    1.4142    1.0000    1.4142         0        3.6056    3.1623    1.0000 
    5.0000    4.2426    4.1231    3.6056         0         3.0000    3.1623 
    4.0000    3.0000    4.4721    3.1623    3.0000           0       3.6056 
    2.2361    2.0000    1.0000    1.0000    3.1623        3.6056         0 
 

>>[links,weights]=minimal_spanning_tree(d) 
 
 
 links =    2     1               weights = 1 
                3     7                                1 
                4     2                                1 
                7     4                                1 
                5     6                                3 
                6     2                                3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The steps of the above example follow________________________________________________________ 
 
>> [N,N]=size(d), V=[1:N] 
                                               N =7     V = [1     2     3     4     5     6     7 ] 
 
>> r=1;, VT=r  
                                 VT =1 
>> weights=zeros(1,N); links=zeros(1,N); 
 
>> V_VT=setdiff(V,VT) 
                                       V_VT = [ 2     3     4     5     6     7 ] 
 
>> weights(V_VT)=d(r,V_VT) 
                                                weights = 0    1.0000    2.0000    1.4142    5.0000    4.0000    2.2361 
 
>> links(V_VT)= r 
                             links = [0     1     1     1     1     1     1] 
 
>> MAIN LOOP , for  i=1 
 
   >> [edge_weight,u]=min(weights(V_VT)) 
                                                                     edge_weight = 1       u = 1 
>>  node=V_VT(u)  
                                    node = 2 
>> VT=union(VT,node) 
                                       VT = 1     2 
>> V_VT=setdiff(V,VT) 
                                         V_VT =  3     4     5     6     7 
 
>> Second Loop, for j=1 
 
              >> [weights(V_VT(j)),index]=min( [weights(V_VT(j)),d(node,V_VT(j))] ) 
            weights =  [0    1.0000    2.0000    1.4142    5.0000    4.0000    2.2361]    ,    index = 1 
 
              >> if index == 2,  links(V_VT(j))=node;, else,end 
 
                  for  j=2 
            >> [weights(V_VT(j)),index]=min( [weights(V_VT(j)),d(node,V_VT(j))] ) 
 
           weights =  [0    1.0000    2.0000    1.0000    5.0000    4.0000    2.2361] ,      index = 2        
 >> if index == 2,  links(V_VT(j))=node;, else,end  
 >>  links =  0     1     1     2     1     1     1 
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The figure aside, shows the MST 

of 120 Single-Trial Signals from  

Auditory M100 responses  

after the “planing” procedure has been 

applied (see [Laskaris et 

al.,Clin.Neurophysiol. 20001]). 

The superposed indices  indicate the 

time-order of the corresponding ST-

signals. 

 

After selecting the 17-th  ST 

as the root of the tree, 

MST-ordering was performed. 

 

 

The new labels -ranks 

from this vectorial procedure 

have been superposed in the 

next figure   

 

 

  The Ordered Point-Sample : 
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Isomap 
 

          A coupling of Graph theory 
                                                   with  

                          Multidimensional Scaling  
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function  [x,new_list,outliers,dg_new]=isomap_e(X,r,e) 
 
%   function  [x, new_list, outliers, dg_new] = isomap_e_mscaling(vectors,r,e) 
%  x:[N x r] projections of  vectors:[N x p] 
%   r=reduced dimensionality  
%   e=distance defining a typical neighborhood-size  
 
[N,p]=size(X); 
d=sqrt(dmatrix(X)); 
 
%%%%%%%% if no typical radius e is given %%%%%%%%%%%%%% 
if nargin==2 
sd=sort(d); e=1.1*max(sd(2,:)); % alternatively e=mean(mean(d)); 
else 
e=e; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%% %%computation of graphical distances  %%%%%%%%%%%% 
%%%%%%%%%%%% FLOYD'S algorithm %%%%%%%%%%%%%%%% 
 
dg=Inf*ones(size(d)); 
c=d<e; 
dg(c)=d(c); 
 
for k=1:N; 
    for i=1:N; 
       for j=1:N; 
          
       dg(i,j)=min(dg(i,j), dg(i,k)+dg(k,j)); 
       end 
     end      
 end 
   %------------------------------------------------------- 
 
%%%%%   detecting outliers based on the graph distances  %%%%%%%%  
sdg=sort(dg); 
for i=1:N,s(i)=length(find(sdg(:,i)==inf));,end 
list= find(s>min(s)); 
%---------------------------------------------------------------------------- 
 
%%    OUTPUT DEFINITION   %%%%%%%%%%%%%%%%%%5 
 
 new_list=setdiff([1:N],list);  outliers=list; 
 dg_new=dg(new_list,new_list); 
 x=mscaling(dg_new.^2,r);      
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% Inputs: 
                          r=1, e=2 
X = 
    1 
     2 
     3 
     4 
    11 
     5 
     6 

>> [N,p]=size(X) 
                             N =7, p = 1 
 

% Construct the MATRIX of  
%  PAIRWISE EUCLIDEAN DISTANCES  

 
 
>> d=sqrt(dmatrix(X)) 
 
       0     1     2     3    10     4     5 
         1     0     1     2     9     3     4 
         2     1     0     1     8     2     3 
         3     2     1     0     7     1     2 
        10     9     8     7     0     6     5 
          4     3     2     1     6     0     1 
          5     4     3     2     5     1     0 

%  CREATE THE MATRIX  of  
 % PAIRWISE  GRAPHICAL  DISTANCES 

 
 
>> dg=Inf*ones(size(d)) 
 
   Inf   Inf   Inf   Inf   Inf   Inf   Inf 
   Inf   Inf   Inf   Inf   Inf   Inf   Inf 
   Inf   Inf   Inf   Inf   Inf   Inf   Inf 
   Inf   Inf   Inf   Inf   Inf   Inf   Inf 
   Inf   Inf   Inf   Inf   Inf   Inf   Inf 
   Inf   Inf   Inf   Inf   Inf   Inf   Inf 
   Inf   Inf   Inf   Inf   Inf   Inf   Inf 
 

 
% FIND IN THE  MATRIX  of  EUCLIDEAN DISTANCES  those smaller than e  
%  and  create  the corresponding mask 

  
>> c=d<e 
      1     1     0     0     0     0     0 
      1     1     1     0     0     0     0 
      0     1     1     1     0     0     0 
      0     0     1     1     0     1     0 
      0     0     0     0     1     0     0 
      0     0     0     1     0     1     1 
      0     0     0     0     0     1     1 
 
 
% Use the mask to initialize the MATRIX of  GRAPHICAL  DISTANCES  
 
>> dg(c)=d(c) 
   0     1   Inf   Inf   Inf   Inf   Inf 
       1     0     1   Inf   Inf   Inf   Inf 
                Inf     1     0     1   Inf   Inf   Inf 
                Inf   Inf     1     0   Inf     1   Inf 
                Inf   Inf   Inf   Inf     0   Inf   Inf 
                Inf   Inf   Inf     1   Inf     0     1 
                Inf   Inf   Inf   Inf   Inf     1     0 
 
 
% RUN FLOYD’S algorithm  to define the Graphical Distances   
 >> for k=1:N;for i=1:N;for j=1:N; dg(i,j)=min(dg(i,j), dg(i,k)+dg(k,j));end, end, end 
 
% The computed Graphical Distances (after the previous step) are 
 
       >>  dg 
             0     1     2     3   Inf     4     5 
       1     0     1     2   Inf     3     4 
       2     1     0     1   Inf     2     3 
       3     2     1     0   Inf     1     2 
                       Inf   Inf   Inf  Inf   0   Inf   Inf 
       4     3     2     1   Inf     0     1 
                   5     4     3     2   Inf     1     0 
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% In order to identify possible Outliers, we order the Graphical Distances  across columns 
  
>> sdg=sort(dg) 
       0     0     0     0      0     0     0 
       1     1     1     1     Inf     1     1 
       2     1     1     1     Inf     1     2 
       3     2     2     2     Inf     2     3 
       4     3     2     2     Inf     3     4 
       5     4     3     3     Inf     4     5 
                 Inf   Inf   Inf   Inf   Inf   Inf   Inf 
 
% We then “count” the Inf entries 
>> for i=1:N, s(i)=length(find(sdg(:,i)==inf)); ,end 
 
 
% For each vector we assign the  number of vectors “sensed” as outliers by the certain vector 
>> s 
           1     1     1     1     6     1     1 
 
% We finally locate the Graphical Outliers 
>> list= find(s>min(s)) 
                                          list = 5 
 
 
% We keep the rest of the vectors 
>>  new_list=setdiff([1:N],list) 
                                                        1     2     3     4     6     7 
 
 
% We then extract the corresponding Matrix of  Graphical Distances  
>> dg_new=dg(new_list, new_list) 
         0     1     2     3     4     5 
          1     0     1     2     3     4 
          2     1     0     1     2     3 
          3     2     1     0     1     2 
          4     3     2     1     0     1 
          5     4     3     2     1     0 
 
 
% Finally, we apply multidimensional scaling…… 
 >> x=mscaling(dg_new.^2,r) 
       2.5000 
         1.5000 
          0.5000 
        -0.5000 
        -1.5000 
        -2.5000 
 
%The output consist of the coordinates x in the reduced space the list of vectors included  
% in the graph  new_list   and the  detected outliers     
 >>  outliers=list     
                                               5 
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Vector Quantization 

Based on the 
Neural Gas Network  
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Function  [prototypes, class_indicators, Average_Error, Convergence_Index]  

                                                                      =  Vector_Quantization(X, k, iteration_factor) 

  

%  Neural-Gas Vector Quantization Algorithm  

%  X is the input set of patterns, k the size of the code-book   

%                                                   (i.e. the number of prototypes / centroids/ codevectors) 

%  the iteration_factor controls the number of iterations : = = (iteration_factor) x (size of the input sample) 

% 

%  prototypes: tabulates the k code-vectors 

%  class_indicators: tabulates the labels that assign each vector Xi to the nearest prototype 

%  Average_Error is an index of performance: it is the average Distortion induced by the adopted coding scheme 

%  Convergence_Index indicates the improvement, with respect to the initial/random selection of prototypes , 

%  achieved with the iterative-execution of the basic adaptation-step  

 
[N,p]=size(X); 
______________________________________________________________ 
%______________________ initialization ____________________________ 
%  select randomly k prototypes.  
% case-(i) If  k>N/2 create these prototypes by averaging  randomly selected subsets of X 
% case-(ii) If  k<N/2 select randomly k vectors from  the sample X  
 
rindex=permut(N);    %  this simple function is listed below  
 
fl=floor(N/k);    % floor-function returns the smaller integer closer to the argument  
 
      if fl>=2    % case (i)  
         for i=1:k 
         rr=rindex((i-1)*fl+1:(i)*fl);      % split the random permutation e.g. [1 4 11 ……] into k groups of indexes 
         prot(i,:)=mean(X(rr,:));              % use the corresponding indexes to split the curves into k groups  
                                                              % and average within each group to produce the prototypes  
         end 
 
      else   % case (ii) 
         prot=X(rindex(1:k),:);           % select randomly k curves from X to be used as prototypes  
      end 
 
 
%_________ initial coding error  _________ 
 
for i=1:N 
d=d_sample_to_vector(prot,X(i,:));  % since V.Q. assigns each vector  Xi to the closest of the prototypes 
[error(i)]=min(d);  % a measure of the initial coding-error  (i.e. when codevectors are randomly selected) 
end                        % can be computed. 
initial_Average_Error=mean(error);  
%______________________________________ 
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%________________________Basic adaptation Rule ________________________ 
 
tmax=iteration_factor*N;    %  number of iterations, i.e. how many times the adaptation-rule is going to be applied   
 
rr=[];                          % create an 1-d array containing a random-sequence of numbers pointing to the vectors Xi  
                                    %  of the  input data-matrix X ; the length of this array is equal to the total number of iterations   
for i=1:iteration_factor, 
rr=[rr;permut(N)'];  
end 
 
li=0.3*k; lf=0.01; ei=0.5; ef=0.005; % i stand for initial and f for final value of the two parameters l(t) and e(t)       
                                                           % that are adapting at each iteration: e(t) modulates the strength of the     
                                                            % correction , while l(t) controls how many prototypes are modified    
lt=li; et=ei;              % initialize these two parameters  
 
  
for i=1:tmax;                          % Back-bone of the V.Q. procedure, i.e. the training of  the prototypes 
 
      u=X(rr(i),:);                                             % pick at random a vector Xi from the input set  
     du=d_sample_to_vector( prot,u);                 % compute its distance from the prototypes 
     
     [sdu,ordering_list]=sort(du);         % order the prototypes according to their closeness to the certain vector Xi  
     [ignore,order]=sort(ordering_list);    % assign to each prototype its rank 
     order=order-1;                            % so as the nearest prototype has rank ‘0’, the second nearest rank ‘1’, etc…. 
      
     hl=exp(-order/lt); % based on their order a parameter of influence is defined for each prototype 
 
       % a (vectorial) correction is estimated for each prototype, according to the parameter of influence and the  
       %  “error” of each prototype, i.e. its vectorial-difference from the certain Xi 
       %  this correction is finally modulated by the current value of e(t) 
   
       % the corrections to the set of prototypes are computed with the following loop 
       % or, more efficiently,  with the subsequent matrix-operations 
       % for i=1:k; dprot(i,:)=et * hl(i) * (u-prot(i,:)); end 
     
      dprot= et*repmat(hl,1,p).* (repmat(u,k,1)-prot); 
      prot=prot+dprot;              % the vectorial-corrections are applied to the current-prototypes 
 
     lt=li*(lf/li)^(i/tmax); % the parameter l(t) is adapted so as to converge at its final-value lf  at the end    
    et=ei*(ef/ei)^(i/tmax);  % >>    >>       e(t)    >>           >>             >> 
 
end 
 
prototypes=prot;            % the final estimation of the code-book 
 
% using a simple nearest-classification rule each input Xi is assigned to one of the estimated code-vectors 
%  in this way a grouping of the vectors Xi is also carried out. 
 
for i=1:N 
d=d_sample_to_vector(prototypes,X(i,:));  % compute the (squared) distance of Xi to each prototype 
                                                                      % -this is also the so called quantization-error-  
[error(i),indicator(i)]=min(d);  % assign the Xi to the prototype that results to the smallest quantization-error 
end 
class_indicators=indicator;  %  for each Xi, keep as a label the index of its nearest-prototype  
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Average_Error=mean(error); % estimate the average quantization-error after the nearest-prototype assignment  
Convergence_Index = abs(Average_Error-initial_Average_Error)/initial_Average_Error;  
                                                % an index of  convergence: can serve as a diagnostic that the number of iteration should                             
                                                 % be increased (if it is not smaller than 1 ).  
 
 
%________________________________ 
function   y=permut(N) 
% in Matlab there is the corresponding  “built-in” function randperm  
%  random permutation of the numbers [1,2,….,N ]  
 
r=randn(1,N); % generate N random numbers and  
[ignore, ordering_list ]=sort(r); % order them 
 
y=ordering_list;  % their order is a random permutation of the numbers [1:N] 
 
 
>> X=[1 2; 1 3; 3 4; 4 5; 5 1; 2 3; 5 6]  
 
X = 
     1     2 
     1     3 
     3     4 
     4     5 
     5     1 
     2     3 
     5     6 
 

>> k=3, iteration_factor=2 
 
>> [N,p]=size(X) ; N = 7  p = 2 
 
>> rindex=permut(N) 
 
rindex =      4     5     3     1     6     2     7 
 

 
>> fl=floor(N/k) ;   fl = 2 
 
>> if fl>=2 
         for i=1:k 
         rr=rindex((i-1)*fl+1:(i)*fl); 
         prot(i,:)=mean(X(rr,:)); 
         end 
 
      else 
         prot=X(rindex(1:k),:); 
      end 
 

 
>> prot = 
    4.5000    3.0000 
    2.0000    3.0000 
    1.5000    3.0000 
 

 
 
 
 
 >> for i=1:N 
d=d_sample_to_vector(prot,X(i,:)); 
[error(i)]=min(d); 
end 
>>  error = 1.2500    0.2500    2.0000    4.2500    4.2500         0    9.2500 
 

 
>> initial_Average_Error= mean(error) 
      initial_Average_Error = 3.0357 
 
>> tmax= iteration_factor*N;    tmax 
=14 
 
>> rr=[]; for i=1:iteration_factor, 
rr=[rr;permut(N)']; end 
 

>> rr = 6 
     1 
     3 
     5 
     7 
     2 
     4 
     2 
     7 
     6 
     1 
     3 
     5 
     4 
 

 
>> li=0.3*k;  li=0.9000  >> lf=0.01; ei=0.5; ef=0.005;  >> lt=li; et=ei; 
 
 
 
%___Basic Loop_________ 
>> for  i= =1 
 
>> u=X(rr(i),:);     u = 2     3 
 
>> du=d_sample_to_vector( prot,u) 
 
du = 6.2500    0    0.2500 
 
>> [sdu,ordering_list]=sort(du) 
 
sdu = 0  0.2500   6.2500 
ordering_list =  2 3  1 
 
>> [ignore,order]=sort(ordering_list) 
                order =  3 1  2 
>> order=order-1 
                          order = 2 0  1 

 
 
>> hl=exp(-order/lt) 
hl = 0.1084  1.0000   0.3292 
 
>> dprot=  et*repmat(hl,1,p).* 
(repmat(u,k,1)-prot) 
dprot = 
   -0.1355          0 
         0             0 
    0.0823         0 
 
>> prot=prot+dprot 
prot = 
    4.3645    3.0000 
    2.0000    3.0000 
    1.5823    3.0000 
 
 

 
 
 
 
 
>> lt=li*(lf/li)^(i/tmax) 
;   
        lt = 0.6526 
 
>> 
et=ei*(ef/ei)^(i/tmax) ;   
          et = 0.3598 
 

 
%___continuation of the Basic Loop _________  
>> for i=2:tmax; 
    u=X(rr(i),:); 
    du=d_sample_to_vector( prot,u); 
   [sdu,ordering_list]=sort(du); 
   [ignore,order]=sort(ordering_list); order=order-1; 
    hl=exp(-order/lt); 
 
 
   % for i=1:k; dprot(i,:)=et * hl(i) * (u-prot(i,:)); end 
    
   dprot= et*repmat(hl,1,p).* (repmat(u,k,1)-prot); 
   prot=prot+dprot; 
 
   lt=li*(lf/li)^(i/tmax); et=ei*(ef/ei)^(i/tmax); 
end 
%______________End________________ 
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>> prototypes=prot; 
prototypes = 
    4.4717    3.3122 
    2.2402    3.1921 
    1.3210    2.6820 
 
>> for i=1:N 
d=d_sample_to_vector(prototypes,X(i,:)); 
[error(i),indicator(i)]=min(d); 
end 
 
>> error = 0.5681    0.2042    1.2301    3.0711    5.6255    0.0946    7.5032 
 
>> indicator =  3     3     2     1     1     2     1 
 
>> class_indicators=indicator 
 
class_indicators = 3     3     2     1     1     2     1 
 
>> Average_Error=mean(error) 
Average_Error = 2.6138 
 
>> Convergence_Index = abs(Average_Error-initial_Average_Error)/initial_Average_Error 
 
Convergence_Index =  0.1390 
 
 
% A simple 2-D example 
%Points in the 4 corners: >>  p1 =[1  0] ;   p2= [0  0] ;   p3= [0 1];   p4 = [1  1] 
%Construct a sample X, by taking 11 from the 1st, 5 from the 2nd , 7 from the 3rd  and  5 from the last    
% points=[repmat(p1,11,1);repmat(p2,5,1);repmat(p3,7,1);repmat(p4,5,1)];                     
% Add noise >> X=points+0.2*randn(size(points));                                                          
>>[prototypes,]=Vector_Quantization(X,4,30); 
    0.9987    0.7567 
   -0.0552   -0.0187         
   -0.0798    0.9969 
    0.9784   -0.0329 
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