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An ANN-based model for the prediction of internal lighting conditions and user actions in
non-residential buildings
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This paper presents an Artificial Neural Network (ANN) based approach able to predict the internal lighting conditions in a
working environment, taking into account the daylight entering the respective space as well as the special requirements of
each user. The model training procedure is based both on real illuminance and occupancy data (measurements throughout
a year) and on simulations, in order to integrate all possible conditions. User preferences in respect to lighting and blinds
are expressed through probability curves. Illuminance due to the external daylight is calculated and predicted throughout the
whole year, depending on the weather conditions, the time of the day, the location and the office orientation. The work plane
distance from the window and the usage of blinds are also considered. The proposed model is further implemented for the
prediction and evaluation of energy consumption for lighting in a working space based on the user preferences.
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1. Introduction

There has been a constant attempt over the last decades
to reduce the global human ecological footprint so as to
ensure the sustainability of human existence. With respect
to the utilization of electrical energy, this attempt has
been largely correlated to the transformation of the human
behaviour towards energy efficiency. Yet, there are aspects
of the electrical energy related human behaviour that are
difficult to confront in an individual manner, usually due to
their collective nature. Such aspects are strongly associated
with the electrical energy consumption in non-residential
environments. In this context, the electrical energy demand
for lighting usually stands out as an issue, as it repre-
sents a significant amount of the global electrical energy
consumption.

This work aims to address this challenge in the field
of office lighting. The obvious aim in this respect is to
decrease the energy consumption needed for office light-
ing, preserving at the same time the user visual comfort.
The contemporary lighting control systems attempt to reg-
ulate energy consumption through the combined control of
artificial lighting and daylight entering a working space.
Thus, a need arises for decision making algorithms that
will achieve this goal, taking also into account the needs of
the respective users. Today, the users tend to be addressed
not individually, but rather in a collective manner, through
design standards and established practices. This tendency
however comes in contrast with the different perception

of utility and comfort among different people, character-
istics that also reflect on the use of lighting. In this context,
studies have shown that automated lighting control sys-
tems aiming towards energy efficiency may not achieve
the desired results when the user preferences are ignored
(Dounis and Caraiscos 2009; Yang and Wang 2012).
Furthermore, the recent outspread of the demand side
management paradigm, as a means to further rationalize
energy consumption, requires the estimation of a build-
ing’s electrical load profiles. Thus, the necessity becomes
evident regarding models that will reliably predict the
energy consumption according to the actual utilization of a
building (Popoola 2018). Reliable estimation is of utmost
importance due to the inconsistence of the results regard-
ing the potential savings in a building through behavioural
change. More specifically these savings have been reported
to reach 20%, yet values differ up to 100% between vari-
ous studies (Page, Robinson, and Scartezzini 2007). The
issue of reliable estimation regarding the energy consump-
tion becomes even trickier in lighting systems. In this case,
it requires the comprehension of the connection between
the user needs and desires (related to space occupancy, tol-
erable light levels, utilization of blinds, etc.) and external
parameters (such as office orientation, weather conditions,
etc.). This connection needs to be introduced in software
tools that will be used to extract conclusions regard-
ing energy consumption focusing on the user and com-
bining his preferences with different external conditions.
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Relevant methodologies have been proposed in the liter-
ature (Acosta, Campano, and Molina 2016; Goia 2016;
Mangkuto, Rohmah, and Asri 2016), however, they do not
take user preferences directly into account.

The scope of this paper is to take into consideration
the substantial respective work in the literature, and take
it one step further. The basic objective is the develop-
ment of an ANN-based model that will predict the internal
lighting conditions in a working environment, taking into
account the daylight entering the respective space and the
special requirements of each user. The illuminance due to
the external daylight is predicted for each day of the year,
depending on the sky type (clear-overcast), the time of the
day, the office location and orientation. The prediction also
takes into account the distance from the windows and the
usage of blinds. The user behaviour is illustrated with prob-
ability curves of using the lights or the blinds in respect to
the illuminance levels on the work plane. Thus, the desired
prediction does not merely correspond to the internal light-
ing conditions, but rather encompasses the user activities
based on his behaviour. It is worth mentioning that the
behaviour models examined correspond to both single-user
and multi-user offices, aiming to also study the concept of
consensus lighting.

The proposed model can be used to predict the energy
consumption for lighting in a studied working space based
on the user preferences and the investigation of possible
energy savings through behavioural change. The model
training procedure was based both on real data (measure-
ments throughout a year) and on simulations, in order to
integrate all possible cases, e.g. different office orienta-
tions, distances from window, weather conditions, etc. The
basic advantages of the proposed model are its simplified
nature (as it only takes into account the essential inputs,
thus minimizing the need for input data) and its adapt-
ability (as it can be implemented in different locations, for
users with different preferences, and in offices with differ-
ent lighting sources). The authors essentially strive to offer
a generic model that can be easily adapted and tested under
different conditions, comprising a readily available tool for
the estimation of the lighting usage in a working environ-
ment even at early stage design, taking into account the
user preferences.

The rest of the paper is structured so as to present
all the different aspects that are taken into account in
the proposed model. More specifically, in Section 2 a
detailed analysis of the theoretical background is pro-
vided, in order to explain the different areas of interest that
have been combined in this work. After that, in Section
3 the daylight measurements are described for the build-
ing under study, and subsequently the daylight simulation
methodology is analyzed. In Section 4 the methodology
is presented for the extraction of user behaviour patterns
based on measurements. In Section 5 analytical expres-
sions are provided concerning the calculation of solar
radiation components. In Section 6, an ANN-based model

that predicts illuminance and user actions is developed and
evaluated. The model is further implemented to estimate
lighting energy consumption for a variety of cases and to
depict the impact of user preferences, office orientation and
season. Finally, in Section 7 the main conclusions of this
paper are summarized.

2. Theoretical background

The first step towards the implementation of the required
tools is the understanding of the user perception and
preferences regarding the daylight. Daylight comprises a
factor that can contribute to substantial energy savings,
as shown in several studies in literature. For example,
using behavioural models by Lightswitch (Reinhart 2004),
Bourgeois, Reinhart, and Macdonald (2006) showed that
building occupants that actively seek day lighting rather
than systematically relying on artificial lighting can reduce
the respective primary energy consumption by more than
40%, as compared to occupants who rely on constant arti-
ficial lighting. However, even though it makes more sense
in terms of energy efficiency, it is still not always possible
to utilize the daylight in an internal space, due to unwanted
factors such as daylight glare or temperature rise.

Regarding the utilization of daylight in internal spaces,
there are two main issues to be addressed:

(1) There are difficulties in the prediction of day-
light in an internal space, due to its non-linear
nature. The respective prediction models have to
manage a number of parameters, such as the cli-
mate conditions, the daylight transmission through
fenestration systems, the user’s position (related
to the windows), etc. All these parameters need
to be carefully determined and correlated with
the possible resulting energy savings (Li 2010)
and with the different daylight distribution within
each space (Li et al. 2017). In any case, the
respective user preferences should be thoroughly
considered.

(2) Tt is rather difficult to introduce clear discom-
fort limits for all users. The concept of visual
discomfort comprises a number of subjective char-
acteristics. It is common practice to monitor the
users and their actions along with the respective
lighting conditions (external and internal) aim-
ing to comprehend their needs (da Silva, Leal,
and Andersen 2013). Among the conclusions in
da Silva, Leal, and Andersen (2013), it is stated
that there is a large degree of variability between
occupants and/or offices. Other researchers have
developed stochastic models for the simulation of
the nature of occupant behaviour, based on the
existence of probabilistic relationship between a
user and a respective lighting system, or between
environmental conditions and the usage of blinds
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(Inkarojrit 2008; Gunay et al. 2014; Wang et al.
2016; Sadeghi et al. 2017; Stazi, Naspi, and
D’Orazio 2017; Gilani and O’Brien 2018; Naspi
et al. 2018).

Lighting in working spaces is subject to different
requirements than lighting for other purposes, and it is
strongly related to the respective type of work. There are
many benefits for the user in a lighting system designed in
such a way that he will be able to manage both the artifi-
cial lights and the blinds (Yao 2014). However, the manual
lights can be combined with an automatic lighting control
system (user adjusted) so as to achieve both desired and
efficient lighting conditions. The potential energy savings
and the respective user acceptance are closely interlinked
with the control strategy they follow (Konstantoglou and
Tsangrassoulis 2016). In the work of Iwata, Taniguchi,
and Sakuma (2017), a system is proposed for the manage-
ment of blinds and dimmable artificial lighting in office
spaces utilizing an algorithm for glare prevention. More-
over, Xiong and Tzempelikos (2016) have proposed a
model-based control for shading and lighting operation,
aiming to reduce the energy consumption, preserving at the
same time the visual comfort. However, this algorithm has
not been implemented yet in occupied offices so as to be
evaluated.

In order to consider the user preferences in a light-
ing system, these must initially be extracted and compre-
hended. For each individual user, the personal behavioural
information has to be utilized, while for multi-user offices
an apparent user behaviour curve is required. Gunay et al.
(2017) have proposed a system that combines automated
management of artificial lighting with information regard-
ing the user behaviour. However, in the offices used to test
and evaluate the model, the windows were not within the
visual field of the occupants.

The ultimate objective of all this work is the balance
between the user satisfaction and the estimation of the
potential energy savings. In this respect, Sun and Hong
(2017) have proposed a framework to quantify the impact
of occupant behaviour on energy savings, showing that
savings can vary up to 20% due to occupant behaviour. The
effect of working hours and user habits on the energy con-
sumption in an office is further studied by Delgoshaei et al.
(2017). However, no clear metrics exist as yet to determine
an occupant-centric building performance (O’Brien et al.
2017). The achievement of potential energy savings, while
respecting the limits of user comfort in terms of lighting,
needs to be further investigated.

As shown above, many factors have to be combined in
the development of predictive algorithms for smart light-
ing systems (user oriented or occupancy based), or for
the respective estimation of user activity and energy con-
sumption. Intelligent systems, especially Artificial Neural
Networks (ANNSs), have been successfully used to sim-
ulate specific aspects of the problem as it is defined in

the following analysis. These systems tend to present
satisfactory results, mainly due to their ability to solve
non-linear problems.

Several studies use ANNSs for the prediction of the over-
all energy consumption in a building (Neto and Fiorelli
2008; Wong, Wan, and Lam 2010; Li et al. 2015; Chae
et al. 2016; Safa et al. 2017). In the work of Wong, Wan,
and Lam (2010) it is reported that the best energy predic-
tions and minimum errors were achieved in the study of
lighting comparing to cooling or heating. However, there
is no mention of the user habits and preferences or of the
usage of blinds for the mitigation of daylight. da Fonseca,
Didoné, and Pereira (2013) have studied the effects of day-
light on the overall building consumption. In this work,
user comfort is taken into account through constant values
proposed by regulations, rather than determined for each
different user.

ANN s have been used for the prediction of solar radia-
tion, be it in terms of global radiation or as solar irradiance
on the building surface, and its correlation with different
sky types (Janjai and Plaon 2011; Li, Chau, and Wan 2013;
Loutfi et al. 2017). Moreover, ANNs have been utilized
to calculate the natural and artificial illuminance distribu-
tion in an office using daylight simulations and a limited
number of sensors (Si et al. 2014). However, there is no
mention in the work regarding the usage of blinds, nor are
the individual preferences of each user taken into account.
Wang and Tan (2013) and Tran and Tan (2014) have devel-
oped predictive algorithms for the efficient control of LED
lighting systems aiming to achieve energy savings, with-
out however considering daylight. Finally, Kazanasmaz,
Giinaydin, and Binol (2009) have utilized an ANN for the
prediction of daylight illuminance in office spaces, utiliz-
ing limited field measurements for 3 months. However, the
usage of blinds and the user preferences are also not taken
into account.

The user decision making process regarding the possi-
ble utilization of artificial lighting in an office is studied by
Cilasun Kunduract and Kazanasmaz (2017), through the
development of a fuzzy logic algorithm that uses interior
layout and daylight illuminance as inputs. Three single-
user offices are investigated, and the user activities are
monitored. However, even though the daylight entering
the office is taken into account, the respective observa-
tions are conducted during winter months with limited
daylight. Moreover, the usage of blinds is not monitored,
and the user was asked not to interfere with them during
the research.

3. Illuminance measurement and daylight simulation

The proposed model requires data (measurements and sim-
ulations) of illuminance within the working space under
study. In this Section, the illuminance measurement set
up that was implemented in the context of this work will
be presented, along with details concerning the daylight
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Figure 1. Floor plan schematic drawing for the examined offices.

simulations. Both will be showcased on a study involving
three offices located in the same university building.

3.1. Description of the building under study

The case study of this paper is conducted in three dif-
ferent working environments (offices) in the building of
the School of Electrical and Computer Engineering of
Aristotle University of Thessaloniki, in Northern Greece
(40°37°N 22°57’E). The examined offices are located on
the 4th floor of the building and have unobstructed pene-
tration of daylight. The three offices are almost identical
in area size and they have the same size of windows (they
present the same window to wall ratio, equal to 39%, while
the window to floor ratio is between 18% and 24%). Offices
1 and 2 share the same orientation (South- West), while the
Office 3 has a different orientation (North- East). Moreover,
Office 1 is a multi-user office while the other two are single
user offices. The offices are not equipped with automated
lighting system and the users control both their artificial
lighting and the blinds manually. In Figure 1, a schematic
drawing of the floor plan of the examined offices is pro-
vided. The geometrical characteristics of the offices, the
measurement points and the number of users can also be
seen.

3.2. Measurement setup

For the purposes of this work, the horizontal illuminance
(E) inside these offices has been monitored over a year,
along with the occupancy and the usage of the manual
blinds, using three data loggers.

The first logger is a light data logger (ONSET —HOBO
Temperature/Light 64K Data Logger). This logger was
placed on the working plane in order to record the respec-
tive horizontal illuminance (both artificial lighting and
daylight). Its measurement range is 0—320 klux, and the

respective sampling rate was set to one measurement per
5 min. In the single user offices, the loggers were placed on
the users work plane. In the multi-user office the logger was
placed on the desk closest to the windows, as the respec-
tive user is the first who feels the daylight discomfort. The
position of the monitored desks is close to the windows
in all the offices under study; this is a deliberate choice,
but at the same time it creates a significant challenge, as it
results to an extraordinary range of measured illuminance
levels. However, this case is often encountered and has
to be analyzed as it is missing currently in the respective
literature.

The second logger is an Occupancy/ Light Data Logger
(ONSET—-HOBO UX90-006 Occupancy/ Light Data Log-
ger). This logger was mounted on the ceiling of the offices
under study, near a centrally located luminaire. This logger
can monitor both room occupancy and changes regard-
ing on and off switching of the lights, providing useful
information about the lighting behaviour of the users.

In addition to these sensors, a third logger was mounted
on the building exterior, outside the examined offices. This
was a Data Logging Wireless Weather Station (ProWeather
Station, Tycon systems) and it was used in order to mon-
itor the weather on site for the testing period. External
illuminance, outside the windows of the first monitored
office, was recorded. In addition to these data, horizontal
irradiance data for the duration of the measurements were
collected from an urban photovoltaic station in the region.

Finally, the usage of blinds was monitored manually by
the users, as they were kindly asked to note their daily
actions (opening/closing the blinds and respective time
of action). Also, the users were asked not to rotate the
blinds, but only to use them as fully open or fully closed.
This decision inserts a limitation in our modelling. How-
ever, it was taken after asking the users about their habits
concerning the usage of blinds. All the users answered
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that they seldom rotate the blinds as they prefer to close
them fully when the daylight becomes annoying. The
fact that the users prefer to generally keep their blinds
either fully open or fully lowered is also stated in other
works (Foster and Oreszczyn 2001; Sutter, Dumortier, and
Fontoynont 2006). Using the measurement based method-
ology described in Katsanou, Bouhouras, and Labridis
(2017) the lighting preferences of the users were derived,
and this will be analyzed in Section 4.

3.3. Daylight simulations

The development of a model that predicts the internal light-
ing conditions has to take into account the daylight entering
the respective space and thus requires the ability to sim-
ulate all the possible cases regarding the actual daylight.
For the offices under study this was achieved, additionally
to measurements, through simulations. More specifically,
hourly daylight penetration simulations were carried out,
covering all possible orientations of the building, sky con-
ditions (clear, overcast and mixed sky, as described in CIE
110) over 12 months, and different locations of the work
plane inside the office (with the respective distance from
the window set to be 0.5, 1.0, 3.3 and 5.5m). The effect
of the blinds usage in the internal illuminance was also
simulated.

The daylight simulations were conducted using Dialux
Evo software. This software has been used also by other
researchers in order to simulate daylight penetration or
internal illuminance (Parise and Martirano 2013; van de
Meugheuvel et al. 2014; Mavromatidis, Marsault, and
Lequay 2014). Dialux Evo implements the photon map-
ping algorithm (Jensen 2001) in its calculation method, in
contrast to the previous versions (Dialux), where radiosity
method was used instead. A comparative testing between
these two versions had indicated that the photon mapping
algorithm may predict more accurate illuminance values
under area light sources compared to radiosity algorithm
(Mangkuto 2016). The monitored offices were accurately
designed in the software, and the reflectance factors of the
surfaces were set equal to 0.7 for ceiling, 0.5 for walls and
0.2 for the floor. In addition, the Maintenance Factor was
set to 0.8 and the task area was considered at 0.8 m above
the floor.

A sensitivity analysis was conducted as well (Katsanou
et al. 2018), to provide understanding regarding the dif-
ferent cases of daylight penetration in an office and the
effect of each parameter. In the above work, a compari-
son between measured data and respective simulations had
been also conducted to verify simulation results and to
ensure that these simulations can be used to handle missing
data in the model building process.

4. Modelling of user discomfort

The scope of the proposed model is to predict the per-
sonalized lighting levels in a working space based on the

daylight penetration and the usage of lights and blinds,
therefore it needs to incorporate the user preferences. The
model results in a targeted prediction of the actions made
by the users in order to restore comfort and in a subsequent
estimation of energy consumption. To achieve this, the
respective user actions must be monitored and correlated
to the lighting conditions.

Several mathematical models have been proposed in
the literature, describing the relationship between the user
behaviour and different environmental conditions. These
behavioural models are mainly divided into “threshold
models” and “regression formulas models”. In the first type
of models, the user will definitely perform an action if
a parameter (e.g. internal illuminance) exceeds a certain
value, while in the second type of models the user’s action
is expressed as a function of the aforementioned parame-
ter. Stazi, Naspi, and D’Orazio (2017) have reviewed the
driving factors that trigger user actions, including work
plane illuminance and room illuminance for lights, as well
as illuminance, solar radiation, glare and indoor/outdoor
temperature for blinds. It is concluded that work plane
illuminance is the major trigger variable, while the other
aforementioned variables are either difficult to record or
are in fact related to the illuminance.

In general, the lighting behaviour of each user is
expected to be stochastic; the actions of different users
in identical offices are found to differ significantly. Yet,
the actions of each individual may be considered consis-
tent and thus predictable. That is the main reason of using
personalized probability curves based on the actual mea-
surements in this work, instead of generalized behaviour
models (Hunt 1980; Reinhart 2004; Haldi and Robin-
son 2010). An example underlining differences in moni-
tored use of lights and blinds in the two adjacent offices
(Office 1 and 2) was presented in Katsanou, Bouhouras,
and Labridis (2017).

4.1. Description and evaluation of methodology

In this work, data driven probability functions connect-
ing the user actions (regarding artificial lights or manual
blinds) to the internal illuminance were formulated. To this
end, our study is restricted to the intervals of office occu-
pancy and focuses on the “intermediate” user actions. This
means that actions on arrival or before departure were not
considered, as they do not represent the discomfort thresh-
olds. In fact, only the intermediate actions of switching the
lights on (in a dark environment) and the actions of clos-
ing the blinds (in a very bright environment) were taken
into account. On the contrary, intermediate events of turn-
ing the lights off or opening the blinds are rarely spotted;
when this occurs, the specific action is not directly related
to the comfort lighting levels, as it is affected by several
circumstantial factors. Users may delay to act because of
laziness, concentration to work, other non-physical stim-
uli, etc. (Reinhart 2004; Boyce et al. 2006; Haldi and
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Robinson 2010; O’Brien, Kapsis, and Athienitis 2013). In
addition, the probability functions that will be formulated
are based solely on the monitoring of the action events,
without taking into consideration the possible cases of non-
action in the same illuminance values. This decision was
taken in order to accurately assess the actions caused due
to lighting discomfort, and accordingly to implement these
actions in the ANN Model that is described in Section 6.
As reviewed by D’Oca et al. (2019), there are numerous
methodologies proposed in the literature that aim to repre-
sent the adaptive behaviour of a user, taking into account
both cases of action and non-action in a certain illumi-
nance level, averaged for a fixed time-step. However, for
the scopes of this work, the following methodology was
found to be more appropriate.

Two probability distributions are used to capture the
preferences of each user. They model the probability of
the user to act (to turn on the light or to close the blinds),
when he feels discomfort, as a function of the overall illu-
minance on the work plane. In this work, these probability
distributions were estimated using measurements of inter-
nal illuminance and data on the use of blinds, based on
the set up of Section 3. It is assumed that there is a range
of illuminance values within which each user feels comfort
and consequently he takes no action. Also, there are critical
values (thresholds), beyond which the user begins to feel
discomfort and decides to act. Therefore, this behaviour
needs to be parameterized.

Regarding the intermediate events under consideration,
the following process was implemented. The illuminance
value (E) at the timestamp of the event was sampled and
two sets of M; and V; illuminance values (one for light
switch and one for blinds) were formed for each user i.

Each set contains all the illuminance values that caused
discomfort to the user, so that the minimum and maxi-
mum values determine the limits of the discomfort zone.
The values of each set present a certain distribution; the
Probability Density Functions (PDFs) peak at different illu-
minance values and have a different width, revealing the
differences among the three users (Figures 2 and 3).

The respective Cumulative Distribution Functions
(CDFs) were derived for each user using the previous
datasets (one for the use of lights and one for the use
of blinds). These CDFs can be simulated using the logis-
tic function, since the associated PDFs present a shape
resembling the logistic distribution. The logistic function
is a well-known S-shaped function and consists of two
parameters a and b, describing the growth rate of the curve
(parameter a) and the midpoint of the curve (parameter b).

For each user, p(L = 1|E) is the probability that he
switches on the light (L = 1) at an illuminance level higher
than £ and it is given by Equation (1):

p(L=1E) = (1

1 + e—4E-D)
in which the parameters ¢ and b are different for each
user. Likewise, p(BL = 1|E) is the probability that the user
closes the blinds (BL = 1) for an illuminance level lower
than £ and is derived by Equation (2):

pBL=1|E) = == 2)
where parameters ¢ and d differ again for each user.
Finally, there’s a case of turning on the lights with the
blinds closed. When the blinds close, the internal illumi-
nance E turns to a much lower value Ep;. Equation (1) is
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still considered valid, meaning that the user reacts in the
same way concerning the illuminance of his environment
regardless the state of the blinds. As a result, for this case,
Equation (3) is implemented having the same parameters a
and b and Ep; instead of E:

1

P =1Ep) = =@

3)

The combination of Equations (1) to (3) can lead to the
calculation of the total probability of switching the light on
(with or without blinds). This probability is directly cou-
pled to the energy consumption for lighting in a room and

is derived by the following Equation:
p(L=1E,Ep) = (1 —pBL=1|E)) - p(L = 1|E)
+pBL=1E) - p(L = 1|Ep;) (4)

In Figures 4 and 5, the modelled probability curves (Equa-
tions 1 and 2) and the real CDFs of the user actions in the
three monitored offices are provided. It should be noted that
the User IDs refer to the monitored offices IDs.

In Table 1, the parameters a, b, ¢ and d along with the
fitting errors for all cases are presented. In order to examine
the goodness of fit, the Kolmogorov—Smirnov two-sample
test was implemented. The two-sample K—S test is one of
the most useful and general nonparametric methods for
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Table 1. Parameters and fitting errors for user actions
probabilities of Equations (1) to (3).

Parameters and goodness of fit for p(L = 1|E)

User ID a b K-S,Z p-value RMSE
1 —0.02045 209.8 0.363  0.998 0.01878
2 —0.02528 165.5 0.495 0967 0.02203
3 —0.03151 390.8 0.424 0994 0.02242

Parameters and goodness of fit for p(BL = 1|E)

UserID ¢ d K-S,Z p-value RMSE
1 0.002153 2198.8 0.435 0.991 0.02978

0.00512  1500.2 0.636  0.813 0.03193
3 0.001656 40354 0.657 0.782 0.01844

comparing two samples, as it is sensitive to differences
in both location and shape of the empirical cumulative
distribution functions of the two samples. Kolmogorov—
Smirnov Z, the p- value at the level of significance of
0.05 and the Root Mean Square Error (RMSE) between
the observed and the estimated curves are provided.

4.2. Comparison of users’ behaviour

The resulting probability curves for the offices under
study exhibit clear differences among the respective users.
Offices 1 and 2 share the same orientation and windows
configuration. The user of Office 2 generally exhibits much
less tolerance to external lighting conditions; thus, he tends
to close the blinds starting from an illuminance value (£)
of 750 lux, with the respective probability reaching 0.9 at
the value of 2200 lux. At the same time, he also requires
less utilization of the artificial lighting, with a 0.5 proba-
bility to turn the lights on when the respective work plane
illuminance is lower than 150 lux.

The users of Office 1 are more tolerant to the daylight,
and start closing the blinds when the work plane illumi-
nance exceeds 1000 lux, whereas the respective probability
becomes 0.5 for illuminance values over 2300 lux. In addi-
tion, they require more artificial lighting, as they tend to
use it with a probability of 0.9 for illuminance below 120
lux and with a probability of 0.5 for values below 200 lux.

The user of Office 3 exhibits different behaviour. More
specifically, Office 3 has a northeast orientation, mean-
ing that the highest daylight values occur during the early
morning hours and last for a short interval. Due to this fact,
the user seldom closes the blinds and presents higher toler-
ance to external light. He also tends to utilize the artificial
lights more, presenting a probability equal to 0.9 to turn
the lights on for illuminance lower than 330 lux, which
is significantly higher than the other users. However, this
value is still lower than 500 lux, which is the minimum
work plane illuminance value proposed by (ECS 2011),
indicating that energy efficiency can be obtained by all
users.

The analysis of the measured data also shows that the
three examined offices have different working schedules.
That was within the intentions of the original case plan-
ning, as it offers the ability to monitor the user actions at
different times and different lighting conditions. Figure 6
depicts the mean annual occupancy schedules (with the
respective variations) for the offices under study.

All the previously mentioned behavioural data will be
used in the proposed predictive model in order to accu-
rately describe the discomfort thresholds of each user,
to underline the differences between them concerning the
use of lights and blinds and consequently to estimate
their respective energy consumption for lighting. It should
be noted that this is not a wide demographic research
of user preferences, or a deep study of user perception
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Figure 6. Mean occupancy schedules and respective variations for the three offices.

regarding daylight based on social or psychological vari-
ables. The scope of the proposed model was to show that
any monitored user in an office can be represented by prob-
ability curves of action triggered from lighting discomfort
depending on illuminance.

5. Sky modelling and solar radiation components

The understanding and estimation of solar radiation is also
necessary for the determination of the daylight into a room.
The solar radiation depends greatly on the day of the year
and the geographic location of the building. The shape and
the maximum values of the diurnal radiation curve also
differ significantly, according to the declination and ori-
entation of the examined surface. In addition, the solar
radiation that reaches a surface depends on the respective
sky conditions. Different models have been introduced (Liu
and Jordan 1960; Orgill and Hollands 1977; Erbs, Klein,
and Duffie 1982; Perez et al. 1990; Reindl, Beckman, and
Duffie 1990; Lam and Li 1996), in order to decouple the
total horizontal irradiance into its components (direct and
diffuse irradiance).

In this work, the model introduced by Reindl, Beck-
man, and Duffie (1990) was incorporated into the proposed
predictive model for the assessment of the internal illu-
minance according to the external solar radiation compo-
nents. Reindl’s model provides an estimation of the diffuse
fraction k,; based on measured global horizontal irradi-
ance data. This fraction depends on the clearness index
(k;) value and the solar altitude ¢, Equation (5). The dif-
fuse fraction (k;) is defined as the ratio of diffuse horizontal
irradiance to the global horizontal irradiance, Equation (6).
The clearness index (k;) is defined as the ratio of global
horizontal irradiance to the respective extraterrestrial solar

irradiance, Equation (7). Low k; values correspond to over-
cast skies, when only the diffuse fraction exists, while high
k; values correspond to clear sky when the diffuse compo-
nent decreases to a minimum value and the direct fraction
presents its highest value.

To implement this approach, hourly data of global hor-
izontal irradiance measured at a small urban PV station
located near the monitored building that matched our study
period were utilized. The respective extraterrestrial irradi-
ance was calculated and using Reindl’s model the hourly
components of direct and diffuse irradiance were estimated.

Interval: 0 < k; < 0.3

kg = 1.020 — 0.254k; + 0.0123 sin(«)
Interval: 0.3 < k; < 0.78

kg = 1.400 — 1.749k; 4 0.177 sin(«)
Interval: k;, > 0.78

ks = 0.486k, — 0.182 sin(«) (&)
Lir
kg = (6)
[glo,hor
]’IU hor
k= 2222 7
! Iy - cos 6, @

where:
I is the extraterrestrial irradiance

=1 (140033c0s 25"} wm? @
0= fe 0008 36505 m @)

depending on the day of the year n and on the Solar
Constant I, = 1373 W/m?2, and
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Figure 7.  Mean monthly global, diffuse, direct irradiances and clearness index for the measured period.

0. is the zenith angle of the sun:
6. = cos~'[cos ¢ cos § cos w + sin ¢ sin 8] )

Zenith angle 0, depends on declination angle §, latitude
¢ and solar hour angle w. Declination angle § varies sea-
sonally due to the tilt of the Earth on its axis of rotation
and the respective rotation of the Earth around the sun.
Equation (10) is used here for the calculation of the decli-
nation angle, as proposed by Cooper (Duffie and Beckman
1980):

23457 . [(2n(n+ 284)
§= sin
180 365

) (rad) (10)

Solar hour angle w specifies the angular divergence of the
position of the sun with respect to the solar noon for each
hour of the day. It can be calculated using Equation (11):

w = 15°(ty — 12h) (11)

The solar time f,,; is calculated for the building time zone
using Equation (12):

Lstd - Lloc Et
toot = 1 12
ol = tvd e S0 min /b (12)

where:

tso1 18 the solar time (hours), #y, is the standard time
(hours), and

Ly and Ly, designate the longitudes (degrees) of the
time zone and the location respectively.

The parameter E; is the well-known Equation of Time
and it can be approximated using Equation (13):

E; =9.87sin2B — 7.53cosB— 1.5sinB (min) (13)

with
B=360° x " 5! (14)
364
where n stands for the day of the year (with n = 1 for 1
January).

In Figure 7, the mean monthly Global, Diffuse and
Direct Irradiances (W/m?) along with the mean monthly
clearness index (k;) for the measured period are presented.

After estimating the components of direct and diffuse
irradiance on a horizontal surface, the respective values
for tilted surfaces can be calculated using Equation (15). It
should be mentioned that for a tilted surface, solar radiation
contains three components corresponding to the direct irra-
diance, the diffuse irradiance from the sky and the reflected
irradiance from the ground (Kreider, Curtiss, and Heating
2002).

Iglo,til = Iy cost; + Idlf Fsky + Iglo,hornggrd (15)

where:

1, 1s the direct irradiance

Fy 1s the fraction of the isotropic radiation from the
sky as seen from a flat surface tilted at an angle 6,, given
by Equation (16):

1 +cos6,

Fgq is the fraction of the isotropic radiation from the
ground as seen from the titled surface, given by Equation
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(17):

1 —cosb, amn
2

and parameter p, is the reflectivity of the ground, set in

our case equal to 0.6. The parameter 6; is the incidence

angle of the sun on the plane which can be calculated using

Equation (18):

Faa =

cos 0; = sin@; - sinB, - cos(y — orien) + cos 6, cos 6,
(18)
where: 6. is the zenith angle, 6, is tilt of the surface, orien
is the orientation of the tilted surface and y is the solar
azimuth, Equation (19):
. cos S - sinw
siny = ——— (19)
sin 6,
Finally, in the case of vertical surfaces (walls), where
6, = 90°, the global irradiance on the surface g v 1S
calculated using Equation (15) as:

[d_if I, glo,hor Pg

> > (20)

Iglo,vert = Idir Cos 91’ +
As it will be analytically discussed in Section 6, the three
components of Equation (20) are used as different inputs
in the proposed ANN model as they were found to be
essential for its accuracy.

6. Development and implementation of ANN models

Two distinct ANN models were developed assigned to pre-
dict the internal illuminance (E£) and the user actions in an
office. The models were intended to be generic, adaptable
to the user preferences and applicable for a work plane at
any distance from windows, for any office orientation, for
any day of the year, for different sky conditions and blinds
state.

ANNSs are broadly applied in the areas of the energy
modelling, such as load and renewables forecasting,
demand side management, operation of building manage-
ment systems, etc. An advantage of an ANN model is that
it does not require detailed building information and could
train itself to adapt to complicated surroundings, thus it is
preferable for data driven models like the one proposed
in this work. Besides that, it has capabilities in pattern
recognition and pattern classification.

An ANN model of Feed-Forward type (FFNN) consists
of neurons structured in layers; an input layer, an output
layer and between them one or more hidden layers. In each
neuron the inputs applied are biased and then filtered via a
hyperbolic tangent sigmoid function. In typical fully con-
nected ANN each neuron is linked with the neurons of
the previous layer and each link has its’ own weight fac-
tor. The middle layer of the ANN holds a filtering role
for the inputs especially in complicated problems with
non-similar inputs and outputs. The ANN parameters, i.e.

weights and biases, are determined using the Levenberg-
Marquardt back propagation algorithm. This is an iterative
process that is considered complete when a fitting error is
minimized.

Vectors of input-output data (patterns) were formed and
divided into three data sets, called Training, Validation and
Testing data sets. These three sets were carefully formed
in order to be statistically balanced. Samples were uti-
lized from a wide data base that includes both simulated
and real-data covering all aforementioned conditions (a
total number of 512 daily sets, i.e. 12288 hourly patterns).
50% of data were used for training, 17% for validation
and 33% for testing purposes. The training process is ter-
minated using the loss function of Mean Squared Error
(MSE) for the validation set; consequently, the trained
model is applied on test data and forecasting errors are
calculated.

6.1. Model 1

The aim of this model is to forecast for the same hour of the
day two different illuminance values (E) and (Ep;) on the
work plane referring to the respective states of blinds (open
and closed). These illuminance values are then translated
into possible user actions based on the formulated prob-
ability functions of the user (Section 4). The inputs and
the outputs selected for Model 1 (shown in Table 2) are
presented and described as follows:

Two different sinusoidal indices (inputs 1-2) were used
to represent the day of the year, so that each day is
described by a unique vector. This is a common option for
several similar simulation problems that present a seasonal
effect (e.g. load forecasting) (Bakirtzis et al. 1996).

As analyzed in Section 3, the season of the year and the
office orientation (input 3), are both critical for the diurnal
curve of the daylight illuminance. Sky condition, described
via the clearness index k; (input 4), has an obvious increas-
ing effect on the outputs, while work plane distance from
windows (input 5) has a decreasing one (Katsanou et al.
2018).

Inputs 69 are four distinct irradiance values on the
window plane calculated on an hourly basis as described
in Section 5. The direct irradiance (Input 6), the diffuse
(Input 7), the reflected (input 8) and total irradiance (input
9) are all incorporated in the model. Each value is calcu-
lated for the vertical window surface considering the time
of the day, the day of the year, the orientation of the office,
the sky condition and the reflectivity of the surrounding
environment. However, some of the latter parameters are
also used as separate inputs (1—4) as several tests proved
they are essential for the model efficiency.

Regarding the outputs of Model 1, illuminance values
presented a wide range from 0 to 50 klux. Since ANN
optimization algorithms perform better for data sets with a
normal distribution, it was decided that a logarithmic trans-
formation of illuminance values should be implemented.



Journal of Building Performance Simulation 711

Table 2. Inputs and outputs of the two ANN models.

Inputs Description Range of Values

[(=11]

12 Day of the year indices,
cos (2mn/365),
sin(2wn/365),n = 1,
2,...,365
3 Office orientation (rad, 0
for South, 7 for North)
4 Clearness index k; [0, 1]
Work plane distance from 0.5,1,3.3,55m
window
Ly cosb; [0, 613] W/m?
Ly 12 [0, 227] W/m?
Igioor Pg 12 [0, 294] W/m?
Lgio,vers (from Equation [0, 824] W/m?
20)
Description

[0, 277)

()]

NelNc RN o)}

Model 1
Outputs

1 Illuminance, (£) with
open blinds
2 Illuminance, (Epy) with
closed blinds
Description

[0, 4.7] logjolux
[0, 3.4] logjplux

Model 2
Outputs

1 Probability to switch on [0, 1]
the lights
(with open blinds),
p(L = E)
2 Probability to close [0, 1]
the manual blinds,
p(BL = 1|E)
3 Probability to switch on [0, 1]
the lights
(with closed blinds),
p(L = 1|Ep)

The architecture of the ANN depends on various fac-
tors: the number and type of inputs and outputs, the correla-
tion between inputs and outputs, the size of the dataset, etc.
Since a variety of heterogeneous inputs (indices, distances,
irradiances, etc.) and outputs (illuminances, probabilities,
etc.) exists, there is no strong linear correlation between
them, thus at least one hidden layer is essential as presented
in Figure 8. The hidden layer acts as filter or classifier of
input signals. The number of neurons in the hidden layer
and the possible addition of a second or third hidden layer
were determined though tests. The addition of a second
hidden layer brought a modest improvement in the results
(8%). However, when a third hidden layer was added, the
ANN did not perform better. The optimal ANN structure
for Model 1 was found to be 9:18:9:2, meaning 9 inputs,
18 neurons in the first hidden layer, 9 neurons in the second
hidden layer and 2 neurons in the output layer (2 outputs).

In Figure 9 some indicative results of the model per-
formance for different circumstances are illustrated. This
Figure presents 8 days of real and forecasted internal illu-
minance values with open blinds (£) and closed blinds

(Epy) for 8 different office orientations. A variety of diurnal
patterns is noted however the proposed model provides
satisfying accuracy for all cases.

In order to depict how the model adapts in a wide vari-
ety of cases a scatter diagram of all forecasts (4096 hourly
samples) versus real values is presented in Figure 10.
The overall performance is highly acceptable, as suggested
by the R-squared coefficient; evident weaknesses usually
appear during sunrise-sunset transient intervals as a result
of the hourly-based simulation of illuminance.

Both real and forecasted values of internal illuminance
have to be transformed into possible user actions through
Equations (1) to (4), which indicate if the user will switch
on the lights or close the blinds. In Table 3, Mean Abso-
Iute Errors (MAE) between real and forecasted user action
probabilities for the three monitored users are provided for
Model 1.

The proposed model should be evaluated based on the
probability errors of Table 3, as the aforementioned prob-
abilities, especially p(L = 1|E, Ep.), are directly related
to electrical load for lighting (per unit) or in kW after
multiplying p (L = 1|E, Ep;) with the respective installed
lighting capacity. It should be noted that this error for
Model 1 (3.2-4.2%) is referring to forecasting hourly light-
ing loads of the dataset which includes different office
orientations, work plane’s distance from windows, it cov-
ers all seasons and weather conditions, it is irrespective
of working hours and it is based on the preferences of
the average user. Regarding total light energy consump-
tion (in kWh) for the studied period, the model can provide
accurate results with a slight overestimation ( + 0.0722%).

6.2. Model 2

A second model was developed (Model 2) where the
ANN directly forecasts the three probabilities of user to
act (p(L = 1|E), p(BL = 1|E)and p(L = 1|Epy)). In this
model the same inputs (as in Model 1) were used. The
inputs and the outputs of Model 2 are presented in Table 2.
In this model, there are different patterns for each one of
the three Users under study. Specifically, the patterns have
the same inputs and different outputs. Thus, three differ-
ent ANN models were trained and optimized, one for each
user.

The optimum structures of these ANNs were also
investigated and the respective Mean Absolute Errors are
presented in Figure 11. It was found out that there are slight
differences in the results among the three users, but in gen-
eral the best performing configurations have three or four
hidden layers. However, this improved performance comes
with a disproportional increase of model complexity and
computational time.

The results of Table 3 indicate that Model 1 is
more accurate than Model 2, proving that the correla-
tion between external irradiance and internal illuminance
is more effective. Nevertheless, Model 2 provides also
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orientations.

satisfying results as the average error in the prediction
of p(L = 1|E, Epy) ranges from 4.1% to 5.1%. Regard-
ing the total lighting consumption, as in Model 1, it also
presents accurate results with a negligible overestimation
(+0.0778%).

6.3. Implementation of Model 1 for energy
consumption

In the previous subsections, two models were presented.
The first one can forecast internal illuminance on a work
plane, while the second one directly estimates the possi-
ble user actions. The superiority of Model 1 is clear as
(a) it is a tool providing illuminance values useful for a

wide range of applications, (b) it was found to perform
better than Model 2 when these illuminance outputs are
transformed into user-action probabilities, and (c) it is even
more efficient when estimating total lighting consumption
over a period of time.

This tool can be further implemented, in order to inves-
tigate the effect of user behaviour patterns on the corre-
sponding energy consumption for lighting. A case study
follows, concerning the three monitored users described
in Section 4 for the duration of a year. The probability
curves for each user were presented in Figures 4 and 5.
The annual period was fully simulated on an hourly basis,
using weather data for the city of Thessaloniki, Greece,
from EnergyPlus database, providing 8760 values for input
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Table 3. Comparison of the two models based on MAE of user action
probabilities.
Error for Model 1 Error for Model 2
Probability Userl User2 User3 Userl User2 User3
p(L=1]E) 0.0273  0.0279 0.0263 0.0376 0.0394 0.0344
pBL=1|E) 0.0210  0.0235 0.0150 0.0183 0.0227 0.0101
p(L = 1|Epr) 0.0146 0.0182 0.0082 0.0144 0.0172  0.0080
p(L=1|E,Egr) 0.0373 0.0423 0.0326 0.0461 0.0514 0.0411
0.18
0.16 —-User 1 |
014 ‘ -=-User 2
012 \\ -+User3 |
R\
2 oo\

0.06
0.04
0.02

0

9:18:3

9:27:3

9:36:3

9:9:9:3

9:18:18:3

9:27:27:3

9:36:36:3

9:9:9:9:3

ANN configuration

9:18:18:18:3

9:27:27:27:3

9:9:9:9:9:3
9:18:18:18:18:3

9:27:27:27:27:3

713

Figure 11. Mean absolute errors of different ANN configurations for the three users for Model 2. Outputs and errors refer to user action

probabilities.

4 (Table 2). It should be noted, that these values do not
correspond to a specific year, but they describe a typical
meteorological year for the specific region. Input 5 (dis-
tance from window) was set equal to 1 m. The rest of the

inputs were calculated as described in Section 5 for each

hour of the year, depending on the office orientation.

The proposed Model 1 produced the hourly illumi-
nance time series which were accordingly transformed into
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Table 4. Forecasted energy consumption for lighting for 24 different cases.

Energy Consumption for Lighting (pu-hours/semester)

User 1 User 2 User 3
Office Orientation Winter Summer Winter Summer Winter Summer
North 268.3 26.4 270.7 58.4 3104 9.9
East 284.9 47.2 296.7 92.3 319.6 45.7
South 268.5 78.6 2543 117.4 321.0 23.1
West 270.3 27.9 265.8 42.4 297.9 17.3
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Figure 12. Distribution of illuminance values for Winter Semester, depending on the office orientation.

p(L = 1|E, Eg;)values using the probability functions for
each user. In this case, a realistic working schedule was
implemented assuming five days per week and working
hours from 8:00 to 18:00. If an installed lighting capac-
ity equal to Py, in W is considered, the total energy
consumption Ej for each user can be estimated using
Equation (21):

M

Ej = P - ZpLon,mt,ijk @n
k=1

where:

i is the user,

J 1s the office orientation,

k is the hourly step, and

M is the total number of hours considering the working
schedule.

For comparison reasons, the total installed capacity of
the luminaires is considered 1pu for each user and the
working schedules are identical. Table 4 presents 24 values
of total lighting consumption depending on

(1) the user, as each user has different action probabil-
ity curves

(2) the office orientation, to demonstrate its effect for
the same user, and

(3) the season. To this end, the annual period is divided
in two semesters, “Winter” (October to March)
and “Summer” (April to September) showing the
impact of external lighting.

Figures 12 and 13 present the distribution of illumi-
nance values produced by Model 1, for each semester and
orientation restricted for the working hours. The vertical
lines approximately indicate three distinct ranges of illu-
minance values; within Range 1 (0500 lux) the user most
probably switches on the light, Range 2 (5001000 lux)
represents the lighting comfort zone and within Range 3
(above 1000 lux) the user may close the blinds. These
Figures can be used to interpret the numerous results
of Table 4. For instance, consumption during Summer
Semester is always lower comparing to Winter Semester
(230 times depending on the case), as there are no
illuminance values in Range 1 (Figure 13). User 3 has
the highest consumption during the Winter Semester,
because he switches the light on for higher illuminances
(seep (L = 1|E), Figure 4). User 2 has the highest con-
sumption in Summer Semester, because he is the first who
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Figure 13. Distribution of illuminance values for Summer Semester, depending on the office orientation. A considerable percentage of
values (20% of East, 20% of West and 9% of South) lies above 3000 lux.

closes the blinds (seep (BL = 1|E), Figure 5) and probably
switches the light on (see p (L = 1|Ep;), Equation 3).

The effect of orientation for each user has been also
investigated. During Winter, East office orientation usually
presents the highest consumption. As shown in Figure 12
for Winter, all orientations present the same distribution
pattern in Range 1, while East Orientation has a number of
values in Range 3. During Summer, West and North office
orientation present the lowest consumption, as most values
appear in comfort zone (Range 2).

It is consequently shown in Figures 12 and 13 that the
User preferences affect lighting consumption in a unique
manner. Also, it is confirmed how essential it was to
connect these preferences with parameters as orientation,
distance from window, etc., in order to build an adaptable
and efficient predictive tool.

6.4. Applications of the proposed models

The trained generic Model 1 is user-independent and can
be applied to test the performance of any similar office in
a different site or country. For instance, the methodology
of Section 6.3 could have been used to extract the con-
sumption for a building in London instead of Thessaloniki
by changing the weather input data. Since it mostly relates
external radiation to internal illuminance, it can be easily
applied anywhere as long as the window-to-wall ratio is the
same. Furthermore, the outputs of Model 1 (illuminance
on task area for open/closed blinds) can be coupled with
generalized occupant-behaviour-models.

Model 2 is trained and formed based on the data of
a specific user and thus it is more restricted. Still, the
trained model can be applied, for instance, to estimate
and compare the user actions and consumption in different

conditions (distance of task area from windows, office
orientation, country, etc.).

For a completely different building (different window to
wall ratio, obstacles to the outside environment, etc.), the
proposed process would have to be followed step by step
utilizing calculations, measured data and simulations. This
is needed in order to develop a generic model, applicable
to different orientations, locations, task area distances from
windows, etc. However, if the intention is to build an ANN
model for a specific office and user, in order for example to
use it in a real time application inside the office, the training
of the model would be rather simpler, requiring basically
illuminance data (gathered from an illuminance data log-
ger on task area) for Model 1 and the user preferences for
Model 2.

7. Conclusions

In this work, a novel ANN-based model for the predic-
tion of internal illuminance and user actions in a work-
ing environment has been presented. The proposed model
takes into account the daylight entering the respective
space, the usage of blinds and incorporates the require-
ments of each user. In this context, the model leads to
a targeted prediction of the users’ actions regarding their
lighting conditions, as well as to the corresponding energy
consumption.

In order to simulate the behaviour of the users under
study, data driven probability functions connecting the
user actions to the internal illuminance were formulated.
Among the monitored users’ actions, only the intermediate
events of switching the lights on or closing the blinds were
considered. This approach was followed to distinguish the
user actions triggered by internal illuminance discomfort
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from actions related to other factors. It was found that the
probability curves for the offices under study exhibit clear
differences among the respective users.

The hourly daylight conditions are essential for the
accuracy of the model. To this end, a validated sky model
was incorporated in order to extract the components of
direct and diffuse irradiance from the horizontal irradiance
data and use them as inputs to the model.

Two versions of the model (Model 1 and Model 2)
were developed, tested and evaluated. Model 1 forecasts
the internal illuminance on a work plane, which is then
translated into user actions through the user probability
functions. Model 2 directly estimates the possible user
actions. The overall performance of the two models is
highly acceptable, as the forecasted hourly lighting load
errors are in the order of 3.2-4.2% (for Model 1) and
4.1-5.1% (for Model 2). Also, regarding the total lighting
consumption, the two versions present accurate results with
only a negligible overestimation.

Model 1 was additionally implemented for an annual
period, in order to study the impact of various parameters
in the overall lighting consumption. It was found that user
preferences, orientation, distance from window, etc. affect
the annual lighting consumption causing deviations up to
25% for the examined case study.

The proposed model comprises a predictive tool that
can be utilized for various purposes, e.g. a real-time
adaptive control application or a greater scheme able to
predict user oriented total energy consumption (thermal,
air-conditioning, etc.). Also it can classify users in order
to estimate the potential savings in a building through
behavioural change and it can be further applied to formu-
late personalized incentives in a demand side management
programme.
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