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a b s t r a c t

This paper presents an analysis of the distribution of non-sinusoidal currents among parallel-connected
cables in low-voltage, three-phase TN–S systems. The cables are assumed to be laid on metallic cable trays
in free space, which means that the influence of earth is neglected. An iterative algorithm is developed
which can accurately estimate the distribution of line and neutral currents among parallel-connected
cables at various harmonic frequencies provided that the impedance matrix of the whole cable system is
given.

The impedance matrices of the cable systems are calculated by a Finite Element Method (FEM) model,
because – as shown – the approximate analytical equations presented in the literature introduce signif-
icant errors at frequencies above the 7th harmonic. On the contrary, a FEM model can take into account
the variation with frequency of the ohmic resistance, self and mutual inductance of a cable system. The
FEM model is further used to estimate the temperature at the surface of the cables.

It is shown that the non-uniform distribution of the current among parallel-connected cables can be
very high and that it increases with frequency and with the number of parallel cables. The proposed model

is used to estimate the cable arrangement that yields almost uniform current distribution without having
to transpose the cables. Examples of the distribution of the current of two common non-sinusoidal loads
are presented for various cable configurations.

The proposed calculation method is validated through comparison with the measured distribution of
the current among eighteen 300 mm2 single-core cables in an industrial distribution substation. Mea-
surements and calculations of the surface temperature of the individual cables showed also very good
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agreement which further

. Introduction

The use of parallel-connected conductors in large distribution
ower systems is a common practice. Although the parallel con-
uctors per phase are identical, the flowing line current is rarely
istributed uniformly among them. The non-uniform current dis-
ribution causes several problems such as additional ohmic losses,
able overloading and cable ageing. Cable overloading is of great
mportance and usually goes undetected in installations where the

ircuit breaker monitors the total line current instead of the indi-
idual cable currents.

The unbalanced current distribution among parallel-connected
onductors [1–4] and in strands of multi-stranded superconducting
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ables [5] is a well documented issue. The theoretical justification
or the current unbalance in both applications is the same. The
nbalance is a result of the different mutual inductances between
he parallel conductors, due to the different distances between
hem. The theoretical solution for the unbalance is the transposi-
ion of the cables in order to equalize the inter-conductor distances
nd therefore the resulting mutual inductances. Although, transpo-
ition is applied in multi-stranded superconducting cables, it is not
pplicable in many practical situations due to lack of space and/or
ack of the relative knowledge.

Ghandakly and Curran suggested two methods in order to cal-
ulate the current distribution in parallel-connected conductors.
he first method [3] can be applied in tightly bundled cables. By
his method, the current distribution in the cable bundle is calcu-

ated without taking into account the effect of other neighboring
urrent-carrying cables. The second method [2] can be applied in
idely spaced parallel conductors feeding large three-phase loads.

his method calculates the current distribution taking into account
he interaction with other neighboring cables, but it can only be
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pplied in cables used in Scott-T Transformer systems. For both
alculation models the geometric characteristics of the cables and
he voltage drops across them are required as input.

Finally, Natarajian [6] suggested a mathematical model for the
alculation of the current distribution among single-phase paral-
el conductors. The effect of the return current was not taken into
ccount and the cable voltage drops are also required as input.

In this paper, the current distribution among parallel-connected
onductors is examined and a new mathematical iterative model
s proposed. The parallel-connected cables are assumed to form

low-voltage, three-phase, TN–S system and are laid on metallic
rays in free space, i.e., the influence of the earth in the calculation
f the cable impedances is neglected. In distinction to the afore-
entioned calculation models, the voltage drops across the cables

re not required as input data, but they are calculated along with
he current distribution. The proposed model can be applied in any
able configuration in any three-phase system provided it runs in
ree space, for example in the bundle of cables running from the
ow-voltage side of transformers to the main distribution board

hich is the case in many 20/0.4 kV substations. Furthermore, the
roposed model takes into account the electromagnetic interaction
etween all conductors, including the neutral.

The cable impedance matrix must be initially calculated, in
rder to be entered directly to the proposed calculation method.
he resistance, the self and mutual inductances of the cables can be
alculated either by a Finite Element Method (FEM) or by analytical
quations, depending on the desired precision.

In this paper, the cable impedances are calculated using a FEM
odel, due to the complicated cable configuration examined. The

alculation of the cable resistances at various frequencies includes
he influence of the skin and proximity effect. The calculation of
he cable self and mutual inductances includes the influence of
he skin effect and the induced eddy currents respectively. Hence,
he impedance matrix of the cable is accurately calculated for any
armonic frequency.

The term “cable configuration” is extensively used throughout
his paper and means an assembly of four or more single-core cables
hich interconnect two buses in a low-voltage TN–S system.

The proposed model is used to calculate the current distribu-
ion in a real cable configuration consisting of eighteen, flat-laid,
ingle-conductor cables laid on metallic tray in free space, each
ith 300 mm2 cross-section, used in a textile industrial site in
reece. The calculation results, which show a significant unbalance

n the distribution of the line current among the parallel-connected
ables of each phase, are confirmed by comparison to real case
urrent measurements. In order to examine the effect of the non-
niform distribution of the current on the cable temperature, the
able is thermally modeled using FEM analysis. The model results,
onfirmed by real case temperature measurements, show cable
verheating.

Using the mathematical algorithm, the cable arrangement that
ields the most uniform distribution of the current is calculated.
ith the application of this arrangement, minimum ohmic losses

qual to that of a theoretically transposed cable are achieved, result-
ng in low cable temperatures.

The influence of the harmonic frequency of the line current on its
istribution among parallel-connected cables is also examined. The
on-uniformity in the distribution of the current among parallel-
onnected conductors appears to increase with the frequency of
he current and the number of parallel conductors per phase. This

eads to significantly different Total Harmonic Distortion (THD) of
he current of the individual parallel-connected conductors.

It is also shown that the use of a FEM model for the calculation of
he impedance matrix of a cable configuration at frequencies above
he 7th harmonic is imperative, because the approximate analytical

3

c
r
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pproach presented in the bibliography [2,6] introduces significant
rrors.

. The current-sharing problem

A multi-conductor cable consisting of K conductors with any
iven configuration is assumed to feed a large three-phase load in
ny given harmonic frequency f = 50 × h, where h is the harmonic
rder. Let, kA, kB and kC be the number of conductors carrying the
ine currents of phases A, B and C respectively. Similarly, let kN be
he number of conductors carrying the neutral current. Then

A + kB + kC + kN = K (1)

he distribution of the current among the cable conductors must
atisfy three basic conditions. The first condition is the Ohm’s law
cross each conductor.

V̄f ] = [Z̄f ] × [Īf ] (2)

here [V̄f ] and [Īf ] are K × 1 vectors of the voltage drops and the
urrents at each one of the conductors for the harmonic frequency
and [Z̄f ] is the K × K cable impedance matrix for the frequency f.

The second condition is the Kirchhoff’s law for each bundle of
hase conductors and the bundle of the neutral. Kirchhoff’s law

s described by the following four equations for the line and the
eutral currents for each examined frequency f.

kA∑
n=1

In,f = IA,f

kA+kB∑
n=kA+1

In,f = IB,f

kA+kB+kC∑
n=kA+kB+1

In,f = IC,f

K∑
n=kA+kB+kC +1

In,f = IN,f

(3)

here IA,f, IB,f, IC,f and IN,f are, respectively, the total line currents of
hases A, B, C and of the neutral.

Finally, the parallel-connected conductors must have the same
oltage drop at each examined frequency. The voltage drop in a
able feeding a three-phase load in a TN–S system, as defined in
12], is developed at the three-phases and the neutral. This condi-
ion is described by the following equations

V1,f = · · · = VkA,f = VA,f

VkA+1,f = · · · = VkA+kB,f = VB,f

VkA+kB+1,f = · · · = VkA+kB+kC ,f = VC,f

VkA+kB+kC +1,f = · · · = VK,f = VN,f

(4)

The model proposed in this paper is based on the above three
onditions in order to calculate the current distribution, assuming
hat [Z̄f ] is known for every frequency f. The mathematical problem
nvolves (K + 4) unknown variables, which must satisfy the (K + 4)
inear Eqs. (2)–(4). This system of equations has always a unique
olution.
. Description of the algorithm

In the proposed model, only the total line currents and the
able impedance matrix at each examined harmonic frequency are
equired as input data. On the contrary, the calculation methods
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ig. 1. The loop currents in m parallel conductors, where Iline is the total line current,
j,j are the conductor self-impedances, Ij are the conductor currents and Iloop j,i are
he loop currents caused by the different voltage drops Vj . m can take values kA , kB ,
C or kN .

escribed in literature [3,4,6] require the cable geometrical charac-
eristics and then use the classic analytical equations to calculate
he elements of the cable impedance matrix.

The advantage of directly introducing the impedance matrix is
hat the user is no longer constrained by the model’s calculation

ethod. Depending on the cable configuration, the user can either
pply any of the well-documented methods based on analytical
quations for simple configurations or finite element analysis for
omplicated configurations.

The proposed mathematical algorithm considers an initial
urrent distribution, which satisfies Eq. (3). Through multiple
terations, this current distribution is corrected, until the final dis-
ribution is calculated. The criterion determining the final solution
s the satisfaction of the third condition, described by Eq. (4).

At the start of the algorithm a uniform distribution of the line
nd neutral currents among the parallel-connected conductors is
ssumed, Eqs. (5)–(8). Other combinations of conductor currents
ould also be given as initial conditions, provided Eq. (3) is satisfied.

1,f = I2,f = · · · = IkA,f = IA,f

kA
(5)

kA+1,f = IkA+2,f = · · · = IkA+kB,f = IB,f

kB
(6)

kA+kB+1,f = IkA+kB+2,f = · · · = IkA+kB+kC ,f = IC,f

kC
(7)

kA+kB+kC +1,f = IkA+kB+kC +2,f = · · · = IK,f = IN,f

kN
(8)

The above current values are entered in Eq. (2), in order to calcu-
ate the conductor respective voltage drops. If the calculated voltage
rops satisfy Eq. (4), then the current values considered describe
he correct current distribution and the iterative algorithm is fin-
shed. On the contrary, if Eq. (4) are not met, the current values are
ncorrect. In this case, the considered current distribution causes
ifferent voltage drops across the parallel-connected conductors.
ue to these different voltage drops, internal loop currents are
reated as shown in Fig. 1.

The loop currents developed due to the different voltage drops
re ⎫

Īloop j−1,j = V̄j − V̄j−1

Z̄j−1,j−1 + Z̄j,j

Īloop j,j+1 = V̄j+1 − V̄j

Z̄j,j + Z̄j+1,j+1

⎪⎪⎬
⎪⎪⎭

(9)

a
s
b

o

ems Research 79 (2009) 766–780

The new current Ij,new in conductor j after the creation of the
oop currents is

j,new = Ij − Iloop j−1,j + Iloop j,j+1 (10)

All conductor currents are calculated by applying Eqs. (9) and
10). With Eq. (11), it is proven that, when the values of the initial
urrents satisfy Eq. (3), all the conductor currents calculated with
he application of (10), will also satisfy Eq. (3).

1,new + · · · + Ij−1,new + Ij,new + Ij+1,new + · · · + Im,new

= (I1 + Iloop1,2) + · · · + (Ij−1 − Iloop j−2,j−1 + Iloop j−1,j)

+(Ij − Iloop j−1,j + Iloop j,j+1) + (Ij+1 − Iloop j,j+1 + Iloop j+1,j+2)

+· · · + (Im − Iloop m−1,m) = I1 + · · · + Ij−1 + Ij + Ij+1

+· · · + Im = Iline (11)

The new current values are replaced in Eq. (2) and the new cor-
esponding voltage drops are calculated. If the voltage drops satisfy
q. (4), then the newly calculated current distribution is correct and
he iterative algorithm is finished. If the voltage drops are not cor-
ect, the current distribution is recalculated by applying Eqs. (9)
nd (10) and so on.

The iterative algorithm described above is run until the voltage
rops satisfy Eq. (4). When this happens, the calculated current
istribution and the four voltage drops are the unique solution to
he mathematical problem defined by Eqs. (2)–(4).

The proposed model has the following main characteristics:

a. It can be applied to any given cable configuration due to the direct
use of the cable impedance matrix.

. The voltage drops are not required as input data, but instead,
they are calculated along with the current distribution.

c. All calculation results (currents and voltage drops in all con-
ductors) are given in complex form for any given harmonic
frequency.

. With the proposed model, the current distribution among cables
feeding three-phase loads in TN–S systems can be calculated.
The solution takes into account the electromagnetic interaction
between all current carrying conductors of the three phases and
of the neutral.

The proposed algorithm and the calculation of the cable
mpedance matrix using a FEM software, were applied to a real
ndustrial cable configuration in order to prove its validity.

. Presentation of the case studied

.1. Cable configuration and measurements

The examined cable configuration is used in an industrial
ubstation feeding a textile industrial site in Greece. The cables
xamined are of the J1VV type [7], i.e., PVC insulated cables with
o metallic sheath, each with 300 mm2 cross-section, rated for
.6/1.0 kV. The single-line diagram of the industry’s substation is
hown in Fig. 2. The cable configuration and the geometrical char-
cteristics are shown in Fig. 3 and Table 1 respectively. Fig. 4 shows
he positioning of the cables on metallic trays in free space.

As shown in Fig. 2, a total of K = 18 cables (five cables per phase

nd three cables for the neutral) are used to connect the low-voltage
ide of the 1600 kVA, 20/0.4 kV transformer to the low-voltage main
usbars.

The surface temperature of all cables was measured under real
perating conditions. The currents in all eighteen cables were
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Fig. 2. The single-line diagram of the substation.
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Fig. 3. The examined cable c

easured using three-phase harmonic analyzers (Fluke 434). Two
eparate electrical measurements were conducted. The load cur-
ents in the first measurement (denoted as “Measurement 1”)
ontained apart from the fundamental frequency of 50 Hz – a

50 Hz component too. The second measurement was conducted
hree months after the first one. During that time, passive har-

onic filters for the reduction of the harmonic distortion were
nstalled. Hence, the currents measured during the second mea-

able 1
imensions of the examined cables shown in Fig. 3.

Dimensions [mm]

onductor radius 10.0
able outer radius 15.0
istance between centers of neighboring cables, except
cables 7 and 8 (see Fig. 3)

30.0

istance between centers of cables 7 and 8 (see Fig. 3) 100.0

Fig. 4. Photograph of the actual cable configuration on metallic trays.

p

s
A
c
w

4

4
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uration 18 × (1 × 300) mm2.

urement (denoted as “Measurement 2”) were purely sinusoidal at
0 Hz. The measured line currents and their distribution among the
ingle-conductor cables are given in Tables 2 and 3 respectively. The
hase angles of the line currents in Table 2 refer to the respective
hase voltage at the examined frequency.

The surface temperature of all eighteen cables was also mea-
ured using both a thermo-camera and an infrared thermometer.

view of the surface temperatures measured with the thermo-
amera is shown in Fig. 5. The cable surface temperatures measured
ith the infrared thermometer are shown in Table 3.

.2. Calculation of the impedance matrix
.2.1. Conductor resistances
The cables shown in Fig. 3 were modeled in two dimensions

ith the commercially available finite elements analysis software
PERA-2d [8]. The elements of the impedance – matrix resistances,

ig. 5. The cable temperatures in [◦C] as measured by a thermocamera at a particular
ocation of the cable bundle.
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Table 2
Measured total line currents [A].

Measurement Phase A Phase B Phase C Neutral

rms Phase angle rms Phase angle rms Phase angle rms
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easurement 1–50 Hz 1063 −18 1089
easurement 1–250 Hz 92 −86 100
easurement 2–50 Hz 1079 −20 1102

elf and mutual inductances – were calculated with the software,
or the two harmonic frequencies under examination (50 Hz and
50 Hz).

The ohmic resistance of the conductors was calculated from the
espective ohmic losses. At each harmonic frequency, the ohmic
osses per unit length of each conductor are calculated by the FEM
oftware using Eq. (12)

loss =
∫

S

J2

�
dS (12)

here S is the conductor surface, J is the current density and � is the
pecific conductivity of the conductor. Giving as input the current of
ach conductor, the FEM software calculates the spatial distribution
f the current density over the surface of each conductor, taking into
ccount the skin and the proximity effect.

The resistance per unit length of each conductor for the cables
llustrated in Fig. 3 can be calculated from (13) for any harmonic
requency 50 × h

ac,h = Plosses,h

I2
rms,h

(13)

here Plosses,h are the ohmic losses per unit length of each con-
uctor, rac,h is the conductor resistance per unit length, and Irms,h

s the specified conductor rms current for harmonic frequency
0 × h.

The resistance calculated by (13) includes the influence of the
kin and the proximity effect. The skin effect depends only on

he current frequency. The proximity effect, besides the frequency,
epends also on the magnitude and phase-angle of the neighbor-

ng cable and tray currents [10]. Therefore, Eq. (13) must be applied
fter every step of the iterative algorithm in order to update the
able resistances according to the new current distribution.

w

E

able 3
easured currents and surface temperatures of individual cables. See Fig. 3 for cable num

Connection Current distribution [A]

Measurement 1, 50 Hz Measure

able 1
Neutral

46 9
able 2 19 1
able 3 87 3

able 4

Phase A

125 11
able 5 87 6
able 6 100 8
able 7 164 16
able 8 592 52

able 9

Phase B

523 48
able 10 185 11
able 11 109 7
able 12 168 11
able 13 446 46

able 14

Phase C

504 54
able 15 202 12
able 16 117 8
able 17 111 9
able 18 201 19
−15 1020 −12 74
−83 100 −88 0
−19 1052 −18 35

In the FEM model, the conductors were assumed solid and made
f copper. The cable tray was assumed to be of galvanized steel,
.5 mm thick, with relative magnetic permeability �r = 700 and
lectric conductivity � = 107 S/m, according to the manufacturer’s
ata.

.3. Conductor self-inductance

The self-inductance of a conductor, at any given frequency f, is
efined by

self,f = �f

Irms
(14)

here �f is the conductor magnetic flux linkage caused by the flow
f the current Irms,f. The magnetic flux linkage is the sum of two
omponents: the first component is the flux linkage inside the con-
uctor, which decreases as the frequency of the current increases
ue to the varying spatial distribution of the current density over
he conductor surface. The second component is the flux linkage
utside the conductor and it is independent of the current fre-
uency [9]. As a result, the total magnetic flux linkage of a conductor
ecreases with the increase of the current frequency.

In this paper, the self-inductance Lself,f of a conductor which
arries Irms,f current was calculated by

self,f = 2 · Emagn,f

I2
rms

(15)

here Emagn,f is the energy of the generated magnetic field. Emagn,f

as calculated using the FEM analysis software [8], according to:

magn,f =
∫ ∫

S

Bf Hf ds (16)

bering.

Temperature

ment 1, 250 Hz Measurement 2, 50 Hz Measurement [◦C]

43 36
14 36
91 37

124 39
88 39
95 38

164 39
618 71

476 57
233 51
114 51
168 59
440 63

493 59
209 49
119 43
117 42
207 42
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)/Lm(50 Hz) of two 300 mm2 conductors due to the induced eddy currents.

w
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v
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Table 4
Self-inductance of a 300 mm2 conductor vs frequency.

Harmonic order [h] f [Hz] Lself [�H/m] Lself (h)/Lself (50 Hz)

1 50 0.1695 1.000
3 150 0.1683 0.993
5 250 0.1659 0.986
7 350 0.1627 0.980
9 450 0.1590 0.977

11 550 0.1550 0.975
13 650 0.1509 0.974
15 750 0.1468 0.972
17 850 0.1426 0.971
19 950 0.1384 0.971
Fig. 6. Variation with frequency of the mutual inductance ratio Lm(h

here Bf and Hf are the flux density and intensity of the magnetic
eld respectively.

Table 4 shows the self-inductance of a 300 mm2 conductor for
arious frequencies corresponding to the odd harmonic frequencies
rom 50 Hz to 1250 Hz.

The self-inductance values presented in Table 4 correspond to
skin depth equal to 0.012 m in order to be comparable. It can be
educed from Table 4 that the self-inductance decreases by 3.2% at
he 25th harmonic.

In order to be used at the corresponding impedance matrices,
he self-inductance values were reflected to the correct skin depth,
iven by
= 1.85

√
�

�0 · ω
(17)

2
2
2

Fig. 7. Calculation results and measurements of the fun
1 1050 0.1342 0.970
3 1150 0.1301 0.969
5 1250 0.1260 0.968

damental harmonic currents in Measurement 1.
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Fig. 8. Calculation results and measurements

here ı is the skin depth, � is the conductor specific resistance,
= 2�f is the current angular frequency and �0 = 4�10−7 H/m.

.4. Conductor mutual inductance

The mutual inductance, at a given frequency f, between two
ircular conductors C1 and C2 is defined by

mutual,f = �m,f

Irms,f
(18)
here �m,f is the magnetic flux linkage in conductor C2 due to
urrent Irms,f in conductor C1. �m,f is a function of frequency since
he magnitude of the eddy currents induced in C2 depends on the

agnitude and frequency of the current in C1, as well as on the
onductor distance.

4

m
u

Fig. 9. Calculation results and measurements of the fun
e fifth harmonic currents in Measurement 1.

In the case examined, the dependence of the mutual inductance
n the current frequency was taken into account. The mutual induc-
ances between all conductors of the cable configuration shown
n Fig. 3 were calculated with the FEM model. Fig. 6 shows the

utual inductance ration Lm(h)/Lm(50 Hz) of two 300 mm2 conduc-
ors when the distance between their centers is 28 mm, 140 mm and
80 mm respectively. As expected, the mutual inductance increases
ith frequency. The increase is higher when the conductors are

loser, because in this case the induced eddy currents are larger.
.5. Iterative calculation of the current distribution

The proposed iterative mathematical algorithm was imple-
ented in a Matlab script computer program. This program was

sed to calculate the distribution of the line and neutral currents

damental harmonic currents in Measurement 2.
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5. Optimization of the cable arrangement

Theoretically, the solution for the non-uniform current distri-
bution is the cable transposition [9]. Also, the cable arrangement
affects the current distribution among parallel-connected cables

Table 5
Rac/Rdc resistance ratio of the individual conductors of the cable configuration shown
in Fig. 3 calculated for uniform and non-uniform distribution of the current.

Connection Initial current distribution Final current distribution

50 Hz 250 Hz 50 Hz 250 Hz

Cable 4

Phase A

1.32 3.50 1.30 3.05
Cable 5 1.17 2.38 1.30 2.83
Cable 6 1.18 2.36 1.31 2.82
Cable 7 1.25 2.85 1.19 2.21
Cable 8 1.36 3.80 1.21 2.39

Cable 9

Phase B

1.78 6.60 1.40 4.28
Cable 10 1.44 4.42 2.92 15.24
Cable 11 1.39 4.10 4.42 27.47
Cable 12 1.57 5.50 3.18 17.94
Cable 13 2.23 10.15 1.47 5.33
Fig. 10. Measured and calculated te

mong the individual conductors in the cable configuration shown
n Fig. 3. The current distribution was calculated for the three mea-
ured loads, shown in Table 2. The cable length is not required for
he calculation of the current distribution, but only for the total
oltage drops. In this case, the length was 50 m.

In Figs. 7–9, the calculation results are compared to the respec-
ive measurements, showing good agreement. The non-uniform
istribution of the line and neutral current among the respective
arallel-connected conductors is significant. Neighboring cables
hat belong to different phases (such as cables 8, 9, 13 and 14) are
verloaded. This pattern also appears in similar cases examined in
iterature [3].

According to [11], the ampacity of 300 mm2 single conductor
ables arranged in cable configurations as shown in Fig. 3, is 468 A
onsidering 37 ◦C ambient temperature. As shown in Figs. 7–9, three
ables were overloaded. Moreover, the ratio of the maximum to
he minimum rms current of the conductors belonging to the same
hase can be as high as 6 and 10 at 50 Hz and 250 Hz respectively.

The resistance of the individual cables depends – due to the
roximity effect – on the distribution of the current. Table 5 shows
he Rac/Rdc resistance ratio of the phase cables, as calculated for the
nitial uniform and for the final non-uniform current distribution
llustrated in Fig. 9. The resistance of the cables 10, 11 and 12 is
ncreased significantly due to the proximity effect caused by the
arge currents flowing through cables 8, 9, 13 and 14.

The cable configuration shown in Fig. 3 was also thermally mod-
led, in order to examine the effect of the non-uniform distribution
f the current on the overheating of a cable. For simple cable con-
gurations, the thermal modeling of the cable is usually based on
he equations of the heat transfer theory [13–16]. For complex
onfigurations, the thermal models are based on finite element
nalysis, because the application of the analytic equations becomes

xtremely difficult without significant simplifications [17–19].

In this case, a thermal model was created using the finite ele-
ent analysis software Opera 2-d. The ohmic losses of the cables

hat were calculated by the proposed mathematical algorithm were
ntered in the thermal model as heat sources and then all heat

C
C
C
C
C

atures at the surface of the cables.

ransfer methods (conduction, induction, and radiation) were con-
idered. The measured ambient temperature of 37 ◦C was applied
s the boundary condition for the heat transfer problem. The cal-
ulated temperatures at the surface of the cables are compared to
he measured ones in Fig. 10, showing good agreement. The good
greement between the calculation results and the measurements
roves that the combination of the electrical and the thermal model

s accurate. Moreover, Fig. 10 shows that the overloading of cable 8
shown in Fig. 9) leads to its overheating to 71 ◦C, which is above
he permissible temperature for PVC insulation (70 ◦C).
able 14

Phase C

2.20 9.89 1.33 3.54
able 15 1.48 4.81 1.33 3.44
able 16 1.23 2.80 1.36 3.56
able 17 1.15 2.19 1.25 2.91
able 18 1.22 2.63 1.23 2.48
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ig. 11. The arrangements with the minimum and maximum ohmic losses of a 18 ×
) flow.

1]. Hence, the non-uniformity of the current can be minimized by
hoosing the suitable cable arrangement, without applying trans-
osition.

Eq. (19) gives the number of possible arrangements for a cable
ystem comprised of K conductors, with kA, kB, kC and kN being
he number of conductors for phases A, B, C and the neutral N,
espectively.

K
kA

)
×

(
K − kA

kB

)
×

(
K − kA − kB

kC

)
×

(
K − kA − kB − kC

kN

)

= K!
kA! · kB! · kC! · kN!

(19)

he number of possible arrangements is reduced significantly, if
he cable configuration is symmetrical in any direction or, when
he three-phase load is balanced, because several arrangements
ecome equivalent and can be omitted.

Using the proposed algorithm, the current distribution was cal-
ulated for all possible non-equivalent arrangements of the cable
onfiguration shown in Fig. 3. The criterion for the selection of the
est arrangement was the total cable losses per unit length. Fig. 11

hows the arrangements that yield the smallest and largest cable
osses per unit length when the line and neutral currents shown in
able 2 (Measurement 2) flow.

Theoretically, the minimum ohmic losses can be achieved by
pplying transposition, because in this case the current distribu-

t
m

m
d

ig. 12. Distribution of the current for the arrangements with the minimum (37.73 W/m)
00 mm2) cable when the line and neutral currents shown in Table 2 (Measurement

ion is fully uniform. Assuming that the line currents shown in
able 2 are uniformly distributed, the respective ohmic losses at
he examined cable were calculated equal to 37.39 W/m.

Fig. 12 shows the current distribution corresponding to the cable
rrangements with the minimum and maximum losses, shown
n Fig. 11. The distribution of the current when the arrangement

ith the minimum losses is applied is almost fully uniform. On
he contrary, the current distribution is highly non-uniform for the
rrangement with the maximum losses.

The ohmic losses with the existing cable arrangement and the
easured current distribution are 52.45 W/m. By applying the
rrangement 1 as shown in Fig. 11 the cable ohmic losses are
educed to 37.73 W/m, i.e., about 28% less. Furthermore, the losses
er unit length become only 1% larger compared to the theoretical
inimum achieved by cable transposition (37.39 W/m). However,

onsidering that transposition will increase the actual cable length
y approximately 4%, the total cable losses are smaller when the
rrangement 1 shown in Fig. 11 is used.

Table 6 shows the calculated temperatures at the surface of
he individual cables of Fig. 11. The calculation was carried out
sing the thermal FEM model. A significant reduction of the cable

emperature is achieved by employing the proposed arrange-

ent.
The criterion for choosing the optimum arrangement was the

inimum ohmic losses, because it is the trait for balanced current
istribution. Other parameters, such as the smallest voltage drop

and the maximum (65.45 W/m) ohmic losses for a 18 × (1 × 300) mm2 cable.
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Table 6
Temperature at the surface of 300 mm2 cables as shown in Fig. 11.

Arrangement
with the min
ohmic losses [◦C]

Existing
arrangement [◦C]

Arrangement
with the max
ohmic losses [◦C]

Cable 1 37 37 45
Cable 2 38 37 42
Cable 3 39 37 43
Cable 4 42 40 48
Cable 5 44 39 52
Cable 6 44 38 63
Cable 7 42 38 53
Cable 8 42 67 41
Cable 9 43 62 42
Cable 10 44 55 43
Cable 11 45 52 44
Cable 12 44 56 53
Cable 13 43 59 59
Cable 14 44 61 55
Cable 15 44 51 50
Cable 16 44 41 44
Cable 17 42 40 39
Cable 18 46 43 42

Table 7
Dimensions of the examined configurations.

Dimensions [mm] Examined cables [mm2]

7 × (1 × 120) 11 × (1 × 120) 18 × (1 × 120)

Conductors per phase 2 3 5
Conductors for neutral 1 2 3
Conductor radius, Rin 6.25 6.25 6.25
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netic coupling between the conductors becomes more pronounced

F
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uter cable radius, Rout 10 10 10
istance between the centers
of two neighboring cables

20 20 20

t any harmonic frequency, could be set as a criterion with the pro-
osed algorithm in order to calculate the best cable arrangement.

. Influence of frequency on current distribution

The proposed mathematical model was utilized to examine

he effect of frequency on the current distribution among paral-
el conductors. Three typical cable configurations were examined
onsisting of J1VV 120 mm2 single conductor cables as specified in
7]. The configurations examined are shown in Fig. 13 and Table 7.

a
a
p
e

ig. 13. The examined cable configurations (a) 7 × (1 × 120) mm2, (b) 11 × (1 × 120) mm2

espectively.
ems Research 79 (2009) 766–780 775

The ampacity of each of the 120 mm2 single-conductor cables
as set to 1 pu. The actual value (in amperes) of the ampacity

s different for each cable configuration and was derived from
11] assuming ambient temperature 35 ◦C. Hence, the line cur-
ents in each configuration were assumed equal to kA pu, where
A is the number of conductors for phase A. As shown in Fig. 13,
A = 2, 3 and 5 for configurations a, b and c respectively. Three-
hase symmetrical line currents were assumed. This means that
or zero-sequence harmonics, the line currents are in phase and
he neutral conductors carry their algebraic sum. For nonzero-
equence harmonics, the neutral conductors carry only eddy
urrents.

The calculations of the current distribution were conducted with
he proposed mathematical model for all odd harmonic frequencies
rom 50 Hz to 1250 Hz. The cable impedance matrices for each har-

onic frequency and each configuration were calculated with the
EM software.

The distribution of the current for the fundamental harmonic
requency 50 Hz is presented in Table 8. All phase angles are referred
o the voltage vector of phase A. It can be noticed that, although
he cable configurations are loaded with their theoretical ampac-
ty, several individual cables are overloaded carrying currents up
o 1.73 times their ampacity. As a result, some of the cables are
nderloaded carrying only 0.71 times their theoretical ampacity
urrent.

The distribution of the harmonic current for the three cable con-
gurations for all odd harmonic frequencies from 50 Hz to 1250 Hz
except zero-sequence harmonics) are illustrated in Figs. 14–16.

In all cases, the current distribution is highly non-uniform. Three
atterns can be recognized for all frequencies and cable config-
rations. First, it is apparent that the non-uniform distribution
f the current increases with frequency. Second, the neighboring
ables belonging to different phases are overloaded. Finally, the
on-uniform distribution of the current increases with the number
f parallel conductors per phase.

The non-uniform distribution of the current among parallel-
onnected conductors is caused by the uneven magnetic coupling
etween the conductors and depends on the ohmic resistance, the
elf and the mutual impedance of the conductors. The uneven mag-
s the number of parallel conductors and the frequency increases,
nd as the distance between conductors that belong to different
hases decreases. The increase of the uneven mutual coupling
xplains the three aforementioned patterns.

and (c) 18 × (1 × 120) mm2. Rin and Rout are the conductor and the outer cable radii



776 K. Gouramanis et al. / Electric Power Systems Research 79 (2009) 766–780

Table 8
Current distribution for the cable configurations shown in Fig. 13, at 50 Hz.

for va

(
a
a
q
t
c
o
f

c
3

c

Fig. 14. Distribution of current in the cable configuration shown in Fig. 13a

Fig. 17 illustrates the current distribution for the 11 ×
1 × 120) mm2 cable calculated with the proposed algorithm
ssuming, however, that the impedance matrix is calculated
ccording to the bibliography [2,4,6], i.e., neglecting the fre-

uency dependency of the cable parameters. Fig. 15 illustrates
he current distribution for the same cable considering that the
able parameters are frequency dependent, as analyzed previ-
usly. Comparing Fig. 15 with Fig. 17 shows that neglecting the
requency dependence of the cable parameters introduces signifi-

T
r
r
c
a

Fig. 15. Distribution of current in the cable configuration shown in Fig. 13b for va
rious harmonic frequencies. The ampacity of each individual cable is 1 pu.

ant errors in the current distributions at frequencies higher than
50 Hz.

The distribution of zero-sequence harmonic currents for the
able configurations shown in Fig. 13 is illustrated in Figs. 18–20.

he phase displacement of the line currents is assumed to be zero
ads at zero-sequence harmonics while the neutral conductor car-
ies the algebraic sum of the phase currents. Hence, the total neutral
urrent is equal to 3 × kA pu, giving 6, 9 and 15 pu for configurations
, b and c of Fig. 13 respectively. Due to the large neutral currents,

rious harmonic frequencies. The ampacity of each individual cable is 1 pu.
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Fig. 16. Distribution of current in the cable configuration shown in Fig. 13c for various harmonic frequencies. The ampacity of each individual cable is 1 pu.
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ig. 17. Distribution of current in the cable configuration shown in Fig. 13b for vari
elf and mutual inductance of the cable are considered independent of the frequenc

arge voltages are induced in the neighboring phase cables causing,
n turn, large loop currents. The loop currents increase the non-
niform distribution of the current especially in the conductors that
re closer to the neutral.
. Distribution of non-sinusoidal line currents

The distribution of the current among the parallel-connected
onductors of the cable configurations of Fig. 13 was calculated
or two non-sinusoidal loads. The current waveforms of the loads

c

e
f
s

ig. 18. Distribution of current in the cable configuration shown in Fig. 13a for various ze
rmonic frequencies. The ampacity of each individual cable is 1 pu. The resistance,

re shown in Fig. 21. Load A is an office load consisting mainly
f computers and load B is a typical ac-dc-ac drive with large
nductance on the dc side. In Table 9 the harmonic synthesis,
he total rms value and the Total Harmonic Distortion of the load
urrents are given as percentages of the fundamental frequency

urrent.

The total line current for each of the two loads was assumed
qual to kA pu, where kA is the number of conductors per phase
or each cable configuration and 1 pu is the ampacity of a 120 mm2

ingle conductor cable as shown in Fig. 13.

ro-sequence harmonic frequencies. The ampacity of each individual cable is 1 pu.
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Fig. 19. Distribution of current in the cable configuration shown in Fig. 13b for various zero-sequence harmonic frequencies. The ampacity of each individual cable is 1 pu.

Fig. 20. Distribution of current in the cable configuration shown in Fig. 13c for various zero-sequence harmonic frequencies. The ampacity of each individual cable is 1 pu.

Fig. 21. Waveforms of the load currents shown in Table 9. Each wavefo

Table 9
Harmonic profiles, Ih [%].

Harmonic order [h] Load type

A B

1 100.0 100.00
3 79.7 0.75
5 49.8 26.00
7 18.8 19.20
9 5.2 0.38
11 13.6 0.37
13 10.5 0.00
15 2.2 0.37
17 6.2 0.37
19 8.7 0.37
21 5.9 0.37
23 0.3 0.37
25 4.5 0.37

Id, rms [%] 140.3 105.1
THD [%] 98.39 32.35

Italic values are the sum of the above harmonic components.

s
t

c

I

w

a
T
t
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t

rm represents one period of the fundamental frequency (20 ms).

The distribution of the current among the individual cables
hown in Fig. 13 was calculated with the proposed algorithm for
he two loads at each harmonic frequency.

The total rms current of each individual cable, Irms was then
alculated by

rms =

√√√√ 25∑
h=1

I2
h

(20)

here Ih is the rms current at the harmonic frequency h × 50 Hz.
Tables 10 and 11 show the distribution of the total line current

mong the individual cables for the two loads and the respective
HD of the current in each individual cable. It can be observed that

here are large differences in the THD of the current of individ-
al cables, which is attributed to the different distribution of each
armonic component of the load current. Load A has significant
st, 3rd and 5th harmonic frequency currents. Because of the high
hird-harmonic current, the THD in the cables next to the neutral is
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Table 10
Current distribution for the cable configurations shown in Fig. 13, for load A.

Table 11
Current distribution for the cable configurations shown in Fig. 13, for load B.
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elatively large. On the contrary, Load B has significant 1st, 5th and
th harmonic currents and therefore the THD is relatively similar in
ll cables. In this case, neighboring cables that belong to different
hases have larger THD.

. Conclusions

The distribution of current among parallel-connected conduc-
ors was investigated for various harmonic frequencies with a
ew iterative calculation method, taking into account the cur-
ents in the neutral conductors. The conductors were assumed
o be laid on metallic trays in free space, forming low-voltage,
hree-phase TN–S systems. It was shown that the frequency affects
ignificantly the impedance matrix of a given cable arrangement.
he non-uniformity in the distribution of the current among
arallel-connected conductors increases with the frequency and
he number of conductors per phase, resulting in overloading of
ne or more of the parallel-connected conductors.

Using the proposed calculation method, the cable configura-
ion that yields the most uniform current distribution without any
ransposition was calculated. With this arrangement, overloading
an be avoided. It was shown that for frequencies above the 7th
armonic, a FEM model should be used for the calculation of the
mpedance matrix – and thus, of the current distribution – because
he analytical expressions presented in the literature introduce sig-
ificant errors.

The proposed calculation method can be applied to any cable
rrangement and to any number of parallel conductors per phase,

Ī

Ī

I

s long as the impedance matrix of the cable arrangement and
he total line currents are given. The resulting voltage drop is also
alculated.

The proposed method was validated by comparing the results
ith measurements of current and temperature in a cable configu-

ation at a real installation in an industrial distribution substation.

ppendix A. List of symbols

magn,f The energy, per unit length, of the magnetic field gener-
ated by the flow of a current of Irms,h value through the
conductor of a single-core cable [J/m]

A,f The total line current of phase A at frequency f [A]

B,f The total line current of phase B at frequency f [A]

C,f The total line current of phase C at frequency f [A]
Īf ] K × 1 vector of the currents in each of the K single-core

cables in a cable configuration at the harmonic frequency,
f = h × 50 Hz

loop j−1,j The loop current that would flow between the parallel-
connected cable j and j−1 if the voltage drop across them
were not identical [A]
N,f The total current in the neutral at frequency f [A]

n,f The current in an individual cable at frequency f, where n
is an integer in the range [1,K] [A]

rms,h The rms value of the current that flows in a single-core
cable at the harmonic frequency 50 × h [A]
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The distribution of the current density over the surface S
of the conductor of a single-core cable [A/m2]

A number of parallel-connected cables that carry the total
line current of phase A

B number of parallel-connected cables that carry the total
line current of phase B

C number of parallel-connected cables that carry the total
line current of phase C

N number of parallel-connected cables that carry the total
line current of the neutral
the total number of the single-core cables in a cable con-
figuration.

self,f The self-inductance per unit length of a single-core cable
at the harmonic frequency 50 × h [H/m]

mutual,f The mutual inductance per unit length between two
single-core cables at frequency f [H/m]

losses h The losses per unit length in a conductor of surface S and
specific conductivity �, caused by a current density J with
frequency 50 × h over its surface [W/m]

ac,h The effective ac resistance of the conductor of a single-
core cable at the harmonic frequency 50 × h [�/m]

V̄f ] K × 1 vector of the voltage drops along the each of the K
single-core cables in a cable configuration at the harmonic
frequency, f = h × 50 Hz
The surface of the conductor of a single-core cable [m2]

Z̄f ] K × K impedance matrix of the cable configuration at fre-
quency f.

¯A,f The voltage drop across the parallel-connected cables of
phase A at frequency f [V]

¯B,f The voltage drop across the parallel-connected cables of
phase B at frequency f [V]

¯C,f The voltage drop across the parallel-connected cables of
phase C at frequency f [V]

¯N,f The voltage drop across the parallel-connected cables of
the neutral at frequency f [V]

reek symbols
is the skin depth of the conductor of a single-core cable
[m]
is the specific resistance of the conductor of a single-core
cable [�m]
The specific conductivity of the material of a conductor in
S/m [S/m]

f The flux linage per unit length in the conductor of a single-
core cable when a current of Irms,h value flows through it
[Wb/m]

m,f The magnetic flux linkage, per unit length, with a single-
core cable due to the current in another cable at frequency
f [Wb/m]
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