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1. Introduction

This paper presents an analysis of the distribution of non-sinusoidal currents among parallel-connected
cables in low-voltage, three-phase TN-S systems. The cables are assumed to be laid on metallic cable trays
in free space, which means that the influence of earth is neglected. An iterative algorithm is developed
which can accurately estimate the distribution of line and neutral currents among parallel-connected
cables at various harmonic frequencies provided that the impedance matrix of the whole cable system is
given.

The impedance matrices of the cable systems are calculated by a Finite Element Method (FEM) model,
because - as shown - the approximate analytical equations presented in the literature introduce signif-
icant errors at frequencies above the 7th harmonic. On the contrary, a FEM model can take into account
the variation with frequency of the ohmic resistance, self and mutual inductance of a cable system. The
FEM model is further used to estimate the temperature at the surface of the cables.

It is shown that the non-uniform distribution of the current among parallel-connected cables can be
very high and that itincreases with frequency and with the number of parallel cables. The proposed model
is used to estimate the cable arrangement that yields almost uniform current distribution without having
to transpose the cables. Examples of the distribution of the current of two common non-sinusoidal loads
are presented for various cable configurations.

The proposed calculation method is validated through comparison with the measured distribution of
the current among eighteen 300 mm? single-core cables in an industrial distribution substation. Mea-
surements and calculations of the surface temperature of the individual cables showed also very good
agreement which further validates the method.

© 2008 Elsevier B.V. All rights reserved.

cables [5] is a well documented issue. The theoretical justification
for the current unbalance in both applications is the same. The

The use of parallel-connected conductors in large distribution
power systems is a common practice. Although the parallel con-
ductors per phase are identical, the flowing line current is rarely
distributed uniformly among them. The non-uniform current dis-
tribution causes several problems such as additional ohmic losses,
cable overloading and cable ageing. Cable overloading is of great
importance and usually goes undetected in installations where the
circuit breaker monitors the total line current instead of the indi-
vidual cable currents.

The unbalanced current distribution among parallel-connected
conductors [1-4] and in strands of multi-stranded superconducting
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unbalance is a result of the different mutual inductances between
the parallel conductors, due to the different distances between
them. The theoretical solution for the unbalance is the transposi-
tion of the cables in order to equalize the inter-conductor distances
and therefore the resulting mutual inductances. Although, transpo-
sition is applied in multi-stranded superconducting cables, it is not
applicable in many practical situations due to lack of space and/or
lack of the relative knowledge.

Ghandakly and Curran suggested two methods in order to cal-
culate the current distribution in parallel-connected conductors.
The first method [3] can be applied in tightly bundled cables. By
this method, the current distribution in the cable bundle is calcu-
lated without taking into account the effect of other neighboring
current-carrying cables. The second method [2] can be applied in
widely spaced parallel conductors feeding large three-phase loads.
This method calculates the current distribution taking into account
the interaction with other neighboring cables, but it can only be
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applied in cables used in Scott-T Transformer systems. For both
calculation models the geometric characteristics of the cables and
the voltage drops across them are required as input.

Finally, Natarajian [6] suggested a mathematical model for the
calculation of the current distribution among single-phase paral-
lel conductors. The effect of the return current was not taken into
account and the cable voltage drops are also required as input.

In this paper, the current distribution among parallel-connected
conductors is examined and a new mathematical iterative model
is proposed. The parallel-connected cables are assumed to form
a low-voltage, three-phase, TN-S system and are laid on metallic
trays in free space, i.e., the influence of the earth in the calculation
of the cable impedances is neglected. In distinction to the afore-
mentioned calculation models, the voltage drops across the cables
are not required as input data, but they are calculated along with
the current distribution. The proposed model can be applied in any
cable configuration in any three-phase system provided it runs in
free space, for example in the bundle of cables running from the
low-voltage side of transformers to the main distribution board
which is the case in many 20/0.4 kV substations. Furthermore, the
proposed model takes into account the electromagnetic interaction
between all conductors, including the neutral.

The cable impedance matrix must be initially calculated, in
order to be entered directly to the proposed calculation method.
The resistance, the self and mutual inductances of the cables can be
calculated either by a Finite Element Method (FEM) or by analytical
equations, depending on the desired precision.

In this paper, the cable impedances are calculated using a FEM
model, due to the complicated cable configuration examined. The
calculation of the cable resistances at various frequencies includes
the influence of the skin and proximity effect. The calculation of
the cable self and mutual inductances includes the influence of
the skin effect and the induced eddy currents respectively. Hence,
the impedance matrix of the cable is accurately calculated for any
harmonic frequency.

The term “cable configuration” is extensively used throughout
this paper and means an assembly of four or more single-core cables
which interconnect two buses in a low-voltage TN-S system.

The proposed model is used to calculate the current distribu-
tion in a real cable configuration consisting of eighteen, flat-laid,
single-conductor cables laid on metallic tray in free space, each
with 300 mm?2 cross-section, used in a textile industrial site in
Greece. The calculation results, which show a significant unbalance
in the distribution of the line current among the parallel-connected
cables of each phase, are confirmed by comparison to real case
current measurements. In order to examine the effect of the non-
uniform distribution of the current on the cable temperature, the
cable is thermally modeled using FEM analysis. The model results,
confirmed by real case temperature measurements, show cable
overheating.

Using the mathematical algorithm, the cable arrangement that
yields the most uniform distribution of the current is calculated.
With the application of this arrangement, minimum ohmic losses
equal to that of a theoretically transposed cable are achieved, result-
ing in low cable temperatures.

The influence of the harmonic frequency of the line current on its
distribution among parallel-connected cables is also examined. The
non-uniformity in the distribution of the current among parallel-
connected conductors appears to increase with the frequency of
the current and the number of parallel conductors per phase. This
leads to significantly different Total Harmonic Distortion (THD) of
the current of the individual parallel-connected conductors.

It is also shown that the use of a FEM model for the calculation of
the impedance matrix of a cable configuration at frequencies above
the 7th harmonic is imperative, because the approximate analytical

approach presented in the bibliography [2,6] introduces significant
errors.

2. The current-sharing problem

A multi-conductor cable consisting of K conductors with any
given configuration is assumed to feed a large three-phase load in
any given harmonic frequency f=50 x h, where h is the harmonic
order. Let, ka, kg and k¢ be the number of conductors carrying the
line currents of phases A, B and C respectively. Similarly, let ky be
the number of conductors carrying the neutral current. Then

kA—i-kB-l—kc-i-kN:K (1)

The distribution of the current among the cable conductors must
satisfy three basic conditions. The first condition is the Ohm’s law
across each conductor.

[Vr] = 2] x [If] (2)

where [V;] and [If] are K x 1 vectors of the voltage drops and the
currents at each one of the conductors for the harmonic frequency
fand [Zf] is the K x K cable impedance matrix for the frequency f.

The second condition is the Kirchhoff’s law for each bundle of
phase conductors and the bundle of the neutral. Kirchhoff's law
is described by the following four equations for the line and the
neutral currents for each examined frequency f.

ka

Z’n,f =las
n=1

ka+kp

Z In,f = iB,f

n=ka+1
ka+kg-+kc (3)

Z In,f :iC,f

n=ks+kg+1
K

S Tap=lng

n=ka+kp+kc+1

where Iy, Igf, Icy and Iy are, respectively, the total line currents of
phases A, B, C and of the neutral.

Finally, the parallel-connected conductors must have the same
voltage drop at each examined frequency. The voltage drop in a
cable feeding a three-phase load in a TN-S system, as defined in
[12], is developed at the three-phases and the neutral. This condi-
tion is described by the following equations

Vig==Vigr=Vas _

!kA+l,f == VkAikB,f = VB,f o (4)
Vigrkg+1.f = = Vigrkgrke.f = Vs

Vigakgrke+1.f = =Vis=Vnys

The model proposed in this paper is based on the above three
conditions in order to calculate the current distribution, assuming
that [Zf] is known for every frequency f. The mathematical problem
involves (K+4) unknown variables, which must satisfy the (K+4)
linear Egs. (2)-(4). This system of equations has always a unique
solution.

3. Description of the algorithm

In the proposed model, only the total line currents and the
cable impedance matrix at each examined harmonic frequency are
required as input data. On the contrary, the calculation methods
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Fig. 1. The loop currents in m parallel conductors, where I;;;,. is the total line current,
Z;; are the conductor self-impedances, I; are the conductor currents and I}y j; are
the loop currents caused by the different voltage drops V;. m can take values ka, kg,
ke or ky.

described in literature [3,4,6] require the cable geometrical charac-
teristics and then use the classic analytical equations to calculate
the elements of the cable impedance matrix.

The advantage of directly introducing the impedance matrix is
that the user is no longer constrained by the model’s calculation
method. Depending on the cable configuration, the user can either
apply any of the well-documented methods based on analytical
equations for simple configurations or finite element analysis for
complicated configurations.

The proposed mathematical algorithm considers an initial
current distribution, which satisfies Eq. (3). Through multiple
iterations, this current distribution is corrected, until the final dis-
tribution is calculated. The criterion determining the final solution
is the satisfaction of the third condition, described by Eq. (4).

At the start of the algorithm a uniform distribution of the line
and neutral currents among the parallel-connected conductors is
assumed, Eqgs. (5)-(8). Other combinations of conductor currents
could also be given as initial conditions, provided Eq. (3) is satisfied.

. Ly
Lrelyrmead, = AL 5
1.f=1lay kaf = Jor (5)
Tesrs =Tipans = =Ty opys = L (6)
ka+1.f = tka+2.f = 0 = lkatkpf = kg

i _1 o] _lo 7)
ka+kg+1.f = ka+kp+2.f = = lkp+kg+kc.f = kC

i 1 Y S Y (8)
ka+kp+kc+1.f = tka+kp+kc+2.f = =IKf = kn

The above current values are entered in Eq. (2), in order to calcu-
late the conductor respective voltage drops. If the calculated voltage
drops satisfy Eq. (4), then the current values considered describe
the correct current distribution and the iterative algorithm is fin-
ished. On the contrary, if Eq. (4) are not met, the current values are
incorrect. In this case, the considered current distribution causes
different voltage drops across the parallel-connected conductors.
Due to these different voltage drops, internal loop currents are
created as shown in Fig. 1.

The loop currents developed due to the different voltage drops
are

iluopj—],j =3 V] — Vj_l—

Ziaj+Z (9)
i Vi1 =Y
loopj,j+1 = 3

Zij+Zijn

The new current I; ey, in conductor j after the creation of the
loop currents is
7j,new = Tj - 7loopj—l,j + 7Ioopj.j-¢—1 (10)
All conductor currents are calculated by applying Egs. (9) and
(10). With Eq. (11), it is proven that, when the values of the initial
currents satisfy Eq. (3), all the conductor currents calculated with
the application of (10), will also satisfy Eq. (3).

Tt new + - + i1 new + Inew + I 1.new + - + Im,new
=L + iloopl,z) +o @4 - I""’ijzvj’l +il°°pj71’j)
+(0; = Tioopj—1.j + Tioopjj+1) + (1 = Tioopjj1 + Tioopj1,j+2)
+o - (Im = Tlooprn—l,m) =Ii+- +Yj*1 +Yj +ij+l

+ 1 :Yline (11)

The new current values are replaced in Eq. (2) and the new cor-
responding voltage drops are calculated. If the voltage drops satisfy
Eq. (4), then the newly calculated current distribution is correct and
the iterative algorithm is finished. If the voltage drops are not cor-
rect, the current distribution is recalculated by applying Eqs. (9)
and (10) and so on.

The iterative algorithm described above is run until the voltage
drops satisfy Eq. (4). When this happens, the calculated current
distribution and the four voltage drops are the unique solution to
the mathematical problem defined by Egs. (2)-(4).

The proposed model has the following main characteristics:

a. Itcanbe applied to any given cable configuration due to the direct
use of the cable impedance matrix.

b. The voltage drops are not required as input data, but instead,
they are calculated along with the current distribution.

c. All calculation results (currents and voltage drops in all con-
ductors) are given in complex form for any given harmonic
frequency.

d. With the proposed model, the current distribution among cables
feeding three-phase loads in TN-S systems can be calculated.
The solution takes into account the electromagnetic interaction
between all current carrying conductors of the three phases and
of the neutral.

The proposed algorithm and the calculation of the cable
impedance matrix using a FEM software, were applied to a real
industrial cable configuration in order to prove its validity.

4. Presentation of the case studied
4.1. Cable configuration and measurements

The examined cable configuration is used in an industrial
substation feeding a textile industrial site in Greece. The cables
examined are of the J1VV type [7], i.e., PVC insulated cables with
no metallic sheath, each with 300mm? cross-section, rated for
0.6/1.0kV. The single-line diagram of the industry’s substation is
shown in Fig. 2. The cable configuration and the geometrical char-
acteristics are shown in Fig. 3 and Table 1 respectively. Fig. 4 shows
the positioning of the cables on metallic trays in free space.

As shown in Fig. 2, a total of K=18 cables (five cables per phase
and three cables for the neutral) are used to connect the low-voltage
side of the 1600 kVA, 20/0.4 kV transformer to the low-voltage main
busbars.

The surface temperature of all cables was measured under real
operating conditions. The currents in all eighteen cables were
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Fig. 2. The single-line diagram of the substation.

| Neutral [ Phase A

Phase B 1 Phase C |

Fig. 3. The examined cable configuration 18 x (1 x 300) mm?.

measured using three-phase harmonic analyzers (Fluke 434). Two
separate electrical measurements were conducted. The load cur-
rents in the first measurement (denoted as “Measurement 1”)
contained apart from the fundamental frequency of 50Hz - a
250Hz component too. The second measurement was conducted
three months after the first one. During that time, passive har-
monic filters for the reduction of the harmonic distortion were
installed. Hence, the currents measured during the second mea-

Table 1
Dimensions of the examined cables shown in Fig. 3.

Dimensions [mm]

Conductor radius 10.0

Cable outer radius 15.0

Distance between centers of neighboring cables, except 30.0
cables 7 and 8 (see Fig. 3)

Distance between centers of cables 7 and 8 (see Fig. 3) 100.0

Fig. 4. Photograph of the actual cable configuration on metallic trays.

surement (denoted as “Measurement 2”) were purely sinusoidal at
50 Hz. The measured line currents and their distribution among the
single-conductor cables are given in Tables 2 and 3 respectively. The
phase angles of the line currents in Table 2 refer to the respective
phase voltage at the examined frequency.

The surface temperature of all eighteen cables was also mea-
sured using both a thermo-camera and an infrared thermometer.
A view of the surface temperatures measured with the thermo-
camera is shown in Fig. 5. The cable surface temperatures measured
with the infrared thermometer are shown in Table 3.

4.2. Calculation of the impedance matrix

4.2.1. Conductor resistances

The cables shown in Fig. 3 were modeled in two dimensions
with the commercially available finite elements analysis software
OPERA-2d [8]. The elements of the impedance - matrix resistances,

63,5 '

Fig.5. The cable temperaturesin [°C] as measured by a thermocamera at a particular
location of the cable bundle.
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Table 2

Measured total line currents [A].

Measurement Phase A Phase B Phase C Neutral
rms Phase angle rms Phase angle rms Phase angle rms

Measurement 1-50 Hz 1063 -18 1089 -15 1020 -12 74

Measurement 1-250 Hz 92 —86 100 -83 100 —88 0

Measurement 2-50 Hz 1079 -20 1102 -19 1052 -18 35

self and mutual inductances - were calculated with the software,
for the two harmonic frequencies under examination (50Hz and
250Hz).

The ohmic resistance of the conductors was calculated from the
respective ohmic losses. At each harmonic frequency, the ohmic
losses per unit length of each conductor are calculated by the FEM
software using Eq. (12)

]2
Ploss = /*ds
SO’

where Sis the conductor surface, J is the current density and o is the
specific conductivity of the conductor. Giving as input the current of
each conductor, the FEM software calculates the spatial distribution
ofthe current density over the surface of each conductor, taking into
account the skin and the proximity effect.

The resistance per unit length of each conductor for the cables
illustrated in Fig. 3 can be calculated from (13) for any harmonic
frequency 50 x h

(12)

P, losses, h
Tac,h = )
I
rms,h

(13)

where Py, are the ohmic losses per unit length of each con-
ductor, 14 is the conductor resistance per unit length, and Iy,
is the specified conductor rms current for harmonic frequency
50 x h.

The resistance calculated by (13) includes the influence of the
skin and the proximity effect. The skin effect depends only on
the current frequency. The proximity effect, besides the frequency,
depends also on the magnitude and phase-angle of the neighbor-
ing cable and tray currents [10]. Therefore, Eq. (13) must be applied
after every step of the iterative algorithm in order to update the
cable resistances according to the new current distribution.

In the FEM model, the conductors were assumed solid and made
of copper. The cable tray was assumed to be of galvanized steel,
1.5mm thick, with relative magnetic permeability u,=700 and
electric conductivity o =107 S/m, according to the manufacturer’s
data.

4.3. Conductor self-inductance

The self-inductance of a conductor, at any given frequency f, is
defined by

A
I

Irms

(14)

where Ay is the conductor magnetic flux linkage caused by the flow
of the current I,y s. The magnetic flux linkage is the sum of two
components: the first component is the flux linkage inside the con-
ductor, which decreases as the frequency of the current increases
due to the varying spatial distribution of the current density over
the conductor surface. The second component is the flux linkage
outside the conductor and it is independent of the current fre-
quency [9]. As aresult, the total magnetic flux linkage of a conductor
decreases with the increase of the current frequency.

In this paper, the self-inductance Lgss of a conductor which
carries I g s current was calculated by

(15)

where Epqgn s is the energy of the generated magnetic field. Epggn
was calculated using the FEM analysis software [8], according to:

Emagn,f = //Efﬁf ds

S

(16)

Table 3
Measured currents and surface temperatures of individual cables. See Fig. 3 for cable numbering.
Connection Current distribution [A] Temperature
Measurement 1, 50 Hz Measurement 1, 250 Hz Measurement 2, 50 Hz Measurement [°C]

Cable 1 46 9 43 36
Cable 2 Neutral 19 1 14 36
Cable 3 87 3 91 37
Cable 4 125 11 124 39
Cable 5 87 6 88 39
Cable 6 Phase A 100 8 95 38
Cable 7 164 16 164 39
Cable 8 592 52 618 71
Cable 9 523 48 476 57
Cable 10 185 11 233 51
Cable 11 Phase B 109 7 114 51
Cable 12 168 11 168 59
Cable 13 446 46 440 63
Cable 14 504 54 493 59
Cable 15 202 12 209 49
Cable 16 Phase C 117 8 119 43
Cable 17 111 9 117 42
Cable 18 201 19 207 42
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Fig. 6. Variation with frequency of the mutual inductance ratio Ly (h)/Ln(50 Hz) of two 300 mm? conductors due to the induced eddy currents.
where By and Hy are the flux density and intensity of the magnetic Table 4
field respectively. Self-inductance of a 300 mm? conductor vs frequency.

Table 4 shows the self-inductance of a 300 mm?2 conductor for Harmonic order [h] f[Hz] Leeir [WH/m] Loy (h)/Lser (50 Hz)
various frequencies corresponding to the odd harmonic frequencies 1 50 0.1695 1.000
from 50 Hz to 1250 Hz. 3 150 0.1683 0.993

The self-inductance values presented in Table 4 correspond to 5 250 0.1659 0.986
a skin depth equal to 0.012 m in order to be comparable. It can be 7 350 0.1627 0.980
deduced from Table 4 that the self-inductance decreases by 3.2% at ]? ggg g'}ggg g'g;;
the 25th harmonic. ) ) ) 13 650 0.1509 0.974

In order to be used at the corresponding impedance matrices, 15 750 0.1468 0.972
the self-inductance values were reflected to the correct skin depth, 17 850 0.1426 0.971
given by 19 950 0.1384 0.971

21 1050 0.1342 0.970
23 1150 0.1301 0.969
25 1250 0.1260 0.968
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Fig. 7. Calculation results and measurements of the fundamental harmonic currents in Measurement 1.
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where § is the skin depth, p is the conductor specific resistance, In the case examined, the dependence of the mutual inductance

w=27fis the current angular frequency and 19 =4710~7 H/m. on the current frequency was taken into account. The mutual induc-

tances between all conductors of the cable configuration shown

4.4. Conductor mutual inductance in Fig. 3 were calculated with the FEM model. Fig. 6 shows the

mutual inductance ration Ly, (h)/Lim (50 Hz) of two 300 mm? conduc-

The mutual inductance, at a given frequency f, between two tors when the distance between their centers is 28 mm, 140 mm and

circular conductors C1 and C2 is defined by 280 mm respectively. As expected, the mutual inductance increases

Ko g with frequency.. The. increase i§ higher when the conductors are

Linytual,f = % (18) closer, because in this case the induced eddy currents are larger.

where A, is the magnetic flux linkage in conductor C2 due to 4.5. Iterative calculation of the current distribution
current Iy in conductor C1. A, is a function of frequency since

the magnitude of the eddy currents induced in C2 depends on the The proposed iterative mathematical algorithm was imple-
magnitude and frequency of the current in C1, as well as on the mented in a Matlab script computer program. This program was
conductor distance. used to calculate the distribution of the line and neutral currents
700 -
618
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Fig. 9. Calculation results and measurements of the fundamental harmonic currents in Measurement 2.
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among the individual conductors in the cable configuration shown
in Fig. 3. The current distribution was calculated for the three mea-
sured loads, shown in Table 2. The cable length is not required for
the calculation of the current distribution, but only for the total
voltage drops. In this case, the length was 50 m.

In Figs. 7-9, the calculation results are compared to the respec-
tive measurements, showing good agreement. The non-uniform
distribution of the line and neutral current among the respective
parallel-connected conductors is significant. Neighboring cables
that belong to different phases (such as cables 8, 9, 13 and 14) are
overloaded. This pattern also appears in similar cases examined in
literature [3].

According to [11], the ampacity of 300 mm? single conductor
cables arranged in cable configurations as shown in Fig. 3, is 468 A
considering 37 °Cambient temperature. As shown in Figs. 7-9, three
cables were overloaded. Moreover, the ratio of the maximum to
the minimum rms current of the conductors belonging to the same
phase can be as high as 6 and 10 at 50 Hz and 250 Hz respectively.

The resistance of the individual cables depends - due to the
proximity effect — on the distribution of the current. Table 5 shows
the Rac/Ry. resistance ratio of the phase cables, as calculated for the
initial uniform and for the final non-uniform current distribution
illustrated in Fig. 9. The resistance of the cables 10, 11 and 12 is
increased significantly due to the proximity effect caused by the
large currents flowing through cables 8, 9, 13 and 14.

The cable configuration shown in Fig. 3 was also thermally mod-
eled, in order to examine the effect of the non-uniform distribution
of the current on the overheating of a cable. For simple cable con-
figurations, the thermal modeling of the cable is usually based on
the equations of the heat transfer theory [13-16]. For complex
configurations, the thermal models are based on finite element
analysis, because the application of the analytic equations becomes
extremely difficult without significant simplifications [17-19].

In this case, a thermal model was created using the finite ele-
ment analysis software Opera 2-d. The ohmic losses of the cables
that were calculated by the proposed mathematical algorithm were
entered in the thermal model as heat sources and then all heat

transfer methods (conduction, induction, and radiation) were con-
sidered. The measured ambient temperature of 37 °C was applied
as the boundary condition for the heat transfer problem. The cal-
culated temperatures at the surface of the cables are compared to
the measured ones in Fig. 10, showing good agreement. The good
agreement between the calculation results and the measurements
proves that the combination of the electrical and the thermal model
is accurate. Moreover, Fig. 10 shows that the overloading of cable 8
(shown in Fig. 9) leads to its overheating to 71 °C, which is above
the permissible temperature for PVC insulation (70 °C).

5. Optimization of the cable arrangement

Theoretically, the solution for the non-uniform current distri-
bution is the cable transposition [9]. Also, the cable arrangement
affects the current distribution among parallel-connected cables

Table 5
Rac/Rqc resistance ratio of the individual conductors of the cable configuration shown
in Fig. 3 calculated for uniform and non-uniform distribution of the current.

Connection Initial current distribution Final current distribution

50Hz 250Hz 50Hz 250Hz
Cable 4 1.32 3.50 1.30 3.05
Cable 5 1.17 2.38 1.30 2.83
Cable6  Phase A 1.18 2.36 1.31 2.82
Cable 7 1.25 2.85 1.19 221
Cable 8 1.36 3.80 1.21 2.39
Cable 9 1.78 6.60 1.40 4.28
Cable 10 1.44 4.42 292 15.24
Cable 11  Phase B 1.39 4.10 442 2747
Cable 12 1.57 5.50 3.18 17.94
Cable 13 223 10.15 1.47 533
Cable 14 2.20 9.89 1.33 3.54
Cable 15 1.48 4.81 1.33 3.44
Cable 16 Phase C 1123 2.80 1.36 3.56
Cable 17 1.15 2.19 1.25 2.91
Cable 18 1.22 2.63 1.23 2.48
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N-N-A-C-8B-8B C - -A-C-B-B-C-A-A-C-8B

| Total losses for all cables:
37.73 Wim

Arrangement 2:
Max Ohmic losses |2 =

A-A -A-N-A-C N -

Total losses for all cables:

-C-C-C-B-N-B-B-B- B | g545Wm

Fig. 11. The arrangements with the minimum and maximum ohmic losses of a 18 x (1 x 300 mm?) cable when the line and neutral currents shown in Table 2 (Measurement

2) flow.

[1]. Hence, the non-uniformity of the current can be minimized by
choosing the suitable cable arrangement, without applying trans-
position.

Eq. (19) gives the number of possible arrangements for a cable
system comprised of K conductors, with kg, kg, kc and ky being
the number of conductors for phases A, B, C and the neutral N,
respectively.

K K—kA K—kA—kB K—kA—kB—kC

() () (e ) (o)
K!

_kA!‘kB!'kC!'kN! (19)
The number of possible arrangements is reduced significantly, if
the cable configuration is symmetrical in any direction or, when
the three-phase load is balanced, because several arrangements
become equivalent and can be omitted.

Using the proposed algorithm, the current distribution was cal-
culated for all possible non-equivalent arrangements of the cable
configuration shown in Fig. 3. The criterion for the selection of the
best arrangement was the total cable losses per unit length. Fig. 11
shows the arrangements that yield the smallest and largest cable
losses per unit length when the line and neutral currents shown in
Table 2 (Measurement 2) flow.

Theoretically, the minimum ohmic losses can be achieved by
applying transposition, because in this case the current distribu-

500

450 enemmmnenne e e

L e

S O Tosses rrawim ]
mMax Losses 65.45W/m

250§ -neennee s

Current [A]

200 ---mmmmmeemensnnmne e

L E

100 1---

50 1---

tion is fully uniform. Assuming that the line currents shown in
Table 2 are uniformly distributed, the respective ohmic losses at
the examined cable were calculated equal to 37.39 W/m.

Fig. 12 shows the current distribution corresponding to the cable
arrangements with the minimum and maximum losses, shown
in Fig. 11. The distribution of the current when the arrangement
with the minimum losses is applied is almost fully uniform. On
the contrary, the current distribution is highly non-uniform for the
arrangement with the maximum losses.

The ohmic losses with the existing cable arrangement and the
measured current distribution are 52.45W/m. By applying the
Arrangement 1 as shown in Fig. 11 the cable ohmic losses are
reduced to 37.73W/m, i.e., about 28% less. Furthermore, the losses
per unit length become only 1% larger compared to the theoretical
minimum achieved by cable transposition (37.39 W/m). However,
considering that transposition will increase the actual cable length
by approximately 4%, the total cable losses are smaller when the
Arrangement 1 shown in Fig. 11 is used.

Table 6 shows the calculated temperatures at the surface of
the individual cables of Fig. 11. The calculation was carried out
using the thermal FEM model. A significant reduction of the cable
temperature is achieved by employing the proposed arrange-
ment.

The criterion for choosing the optimum arrangement was the
minimum ohmic losses, because it is the trait for balanced current
distribution. Other parameters, such as the smallest voltage drop

Cable1 Cable2 Cable3 Cable4 Cable5 Cable6 Cable7 Cable8 Cable9 Cable 10 Cable 11 Cable 12 Cable 13 Cable 14 Cable 15 Cable 16 Cable 17 Cable 18

Fig. 12. Distribution of the current for the arrangements with the minimum (37.73 W/m) and the maximum (65.45 W/m) ohmic losses for a 18 x (1 x 300) mm? cable.
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Table 6
Temperature at the surface of 300 mm? cables as shown in Fig. 11.

Arrangement
with the min
ohmic losses [°C]

Existing
arrangement [°C]

Arrangement
with the max
ohmic losses [°C]

Cable 1 37 37 45
Cable 2 38 37 42
Cable 3 39 37 43
Cable 4 42 40 48
Cable 5 44 39 52
Cable 6 44 38 63
Cable 7 42 38 53
Cable 8 42 67 41
Cable 9 43 62 42
Cable 10 44 55 43
Cable 11 45 52 44
Cable 12 44 56 53
Cable 13 43 59 59
Cable 14 44 61 55
Cable 15 44 51 50
Cable 16 44 41 44
Cable 17 42 40 39
Cable 18 46 43 42
Table 7

Dimensions of the examined configurations.

Dimensions [mm] Examined cables [mm?]

7x(1x120) 11x(1x120) 18 x(1x120)
Conductors per phase 2 3 5
Conductors for neutral 1 2 3
Conductor radius, Ry, 6.25 6.25 6.25
Outer cable radius, Rout 10 10 10
Distance between the centers 20 20 20

of two neighboring cables

at any harmonic frequency, could be set as a criterion with the pro-
posed algorithm in order to calculate the best cable arrangement.

6. Influence of frequency on current distribution

The proposed mathematical model was utilized to examine
the effect of frequency on the current distribution among paral-
lel conductors. Three typical cable configurations were examined
consisting of J1VV 120 mm? single conductor cables as specified in
[7]. The configurations examined are shown in Fig. 13 and Table 7.

(@) 7x(1x120 mm3)
Distance

60000000

|__Phase A PhaseB || PhaseC || MNeutral |

(b) 11x(1x120 mm?3)

775

The ampacity of each of the 120 mm? single-conductor cables
was set to 1pu. The actual value (in amperes) of the ampacity
is different for each cable configuration and was derived from
[11] assuming ambient temperature 35°C. Hence, the line cur-
rents in each configuration were assumed equal to k4 pu, where
ka is the number of conductors for phase A. As shown in Fig. 13,
ka=2, 3 and 5 for configurations a, b and c respectively. Three-
phase symmetrical line currents were assumed. This means that
for zero-sequence harmonics, the line currents are in phase and
the neutral conductors carry their algebraic sum. For nonzero-
sequence harmonics, the neutral conductors carry only eddy
currents.

The calculations of the current distribution were conducted with
the proposed mathematical model for all odd harmonic frequencies
from 50 Hz to 1250 Hz. The cable impedance matrices for each har-
monic frequency and each configuration were calculated with the
FEM software.

The distribution of the current for the fundamental harmonic
frequency 50 Hz is presented in Table 8. All phase angles are referred
to the voltage vector of phase A. It can be noticed that, although
the cable configurations are loaded with their theoretical ampac-
ity, several individual cables are overloaded carrying currents up
to 1.73 times their ampacity. As a result, some of the cables are
underloaded carrying only 0.71 times their theoretical ampacity
current.

The distribution of the harmonic current for the three cable con-
figurations for all odd harmonic frequencies from 50 Hz to 1250 Hz
(except zero-sequence harmonics) are illustrated in Figs. 14-16.

In all cases, the current distribution is highly non-uniform. Three
patterns can be recognized for all frequencies and cable config-
urations. First, it is apparent that the non-uniform distribution
of the current increases with frequency. Second, the neighboring
cables belonging to different phases are overloaded. Finally, the
non-uniform distribution of the current increases with the number
of parallel conductors per phase.

The non-uniform distribution of the current among parallel-
connected conductors is caused by the uneven magnetic coupling
between the conductors and depends on the ohmic resistance, the
self and the mutual impedance of the conductors. The uneven mag-
netic coupling between the conductors becomes more pronounced
as the number of parallel conductors and the frequency increases,
and as the distance between conductors that belong to different
phases decreases. The increase of the uneven mutual coupling
explains the three aforementioned patterns.

0,06000,00,0000

1 Phase A Il Phase B Il Phase C

Neutral |

(c) 18x(1x120 mm?2)

0,060,0,0,0,0000060000000

1 Phase A Phass B

Phase C 1 Neutral |

Fig. 13. The examined cable configurations (a) 7 x (1 x 120)mm?, (b) 11 x (1 x 120)mm? and (c) 18 x (1 x 120)

respectively.

mm?. R;, and Roy are the conductor and the outer cable radii
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Table 8
Current distribution for the cable configurations shown in Fig. 13, at 50 Hz.

Ixx1x120mm?)+1x120mm? | Ix@x1x120mmp+2x1x120mm? | 3x(5x1x120mm?)+3x1x120mm*

lampacity = 295A = 1pu lampacity = 281A = 1pu lampacity = 267A = 1pu
line = 2pu = 5904 line = 3pu = 843A line = 5pu = 1335A
Magnitude _ Angle Magnitude. _Angle Magnitude _Angle
Cable 1 Phase A 098 -7 096 -1 074 123
Cable 2 1,04 6| Phase A 0,94 B 071 108
Cable 3 Phase B 1347 233% 1,15 15| Phase A 0,83 106
Cable 4 0.85 249 140 -132 1,10 116
Cable 5 Phase C 109 123] Phase B 032 -126] 171 133
Cable & 091 117 0,81 -91 1,25 64
Cable 7 Neutral 0,00 0 126 125 0,93 -102
Cable 8 Phase C 092 115 Phase B 083 -139]
Cable 9 083 118] 1,11 -145
Cable 10 0,10 -3 173 -140
Cable 11 i 0.10 17 152 21
Cable 12 1,05 2
Cable 13 Phase C 0,84 -1
Cable 14 0,82 -16
Cable 15 094 -12
Cable 16 0,20 -168
Cable 17 Neutral 0,02 37|
Cable 18 0,18 16|
1,61

Current [pu]

Cable 1 Cable 2

g Y, " Cable 3

Cable 4

W S0Hz
@ 250Hz
D 350Kz
DS50Hz
W 650Hz
@850tz
|| mason:
O1150Hz
|| ma2son:

Cable 5 Cable 8

RN Y, Cable 7

'
Phase A

~y"
Phase B

~

Phase C Neutral

Fig. 14. Distribution of current in the cable configuration shown in Fig. 13a for various harmonic frequencies. The ampacity of each individual cable is 1 pu.

Fig. 17 illustrates the current distribution for the 11 x
(1x120)mm? cable calculated with the proposed algorithm
assuming, however, that the impedance matrix is calculated
according to the bibliography [2,4,6], i.e., neglecting the fre-
quency dependency of the cable parameters. Fig. 15 illustrates
the current distribution for the same cable considering that the
cable parameters are frequency dependent, as analyzed previ-
ously. Comparing Fig. 15 with Fig. 17 shows that neglecting the
frequency dependence of the cable parameters introduces signifi-

1.8

cant errors in the current distributions at frequencies higher than
350Hz.

The distribution of zero-sequence harmonic currents for the
cable configurations shown in Fig. 13 is illustrated in Figs. 18-20.
The phase displacement of the line currents is assumed to be zero
rads at zero-sequence harmonics while the neutral conductor car-
ries the algebraic sum of the phase currents. Hence, the total neutral
current is equal to 3 x k4 pu, giving 6, 9 and 15 pu for configurations
a, b and c of Fig. 13 respectively. Due to the large neutral currents,

LT R (| [ S

14

=)
A=
=
[ e
2
E
=]
]

| [msonz
B250Hz
1 | 2350Hz
D550Hz
| [mes0Hz
B850Hz
| | m950Hz
| [o1150H2
| |m12s0Hz

Cable 1 Cable 2 Cable 3 Cable 4 Cable 5 Cable 6 Cable 7 Cable 8 Cable9 Cable 10 Cable 11
Ae A AN
TE Y YT
Phase A Phase B Phase C Neutral

Fig. 15. Distribution of current in the cable configuration shown in Fig. 13b for various harmonic frequencies. The ampacity of each individual cable is 1 pu.
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Fig. 16. Distribution of current in the cable configuration shown in Fig. 13c for various harmonic frequencies. The ampacity of each individual cable is 1 pu.
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Fig. 17. Distribution of current in the cable configuration shown in Fig. 13b for various harmonic frequencies. The ampacity of each individual cable is 1 pu. The resistance,

self and mutual inductance of the cable are considered independent of the frequency.

large voltages are induced in the neighboring phase cables causing,
in turn, large loop currents. The loop currents increase the non-
uniform distribution of the current especially in the conductors that
are closer to the neutral.

7. Distribution of non-sinusoidal line currents
The distribution of the current among the parallel-connected

conductors of the cable configurations of Fig. 13 was calculated
for two non-sinusoidal loads. The current waveforms of the loads

are shown in Fig. 21. Load A is an office load consisting mainly
of computers and load B is a typical ac-dc-ac drive with large
inductance on the dc side. In Table 9 the harmonic synthesis,
the total rms value and the Total Harmonic Distortion of the load
currents are given as percentages of the fundamental frequency
current.

The total line current for each of the two loads was assumed
equal to ks pu, where k, is the number of conductors per phase
for each cable configuration and 1 pu is the ampacity of a 120 mm?
single conductor cable as shown in Fig. 13.

107
g .| mis0H:
450 Hz
811 m7S0Hz
7 41 [@1050Hz
S 6
=
= 5 3
3]
£ 4 L
3J
O 3 |
L |
Cable 1 Cable 2 Cable 3 Cable 4 Cable 5 Cable 6 Cable 7
P !
' YT hd
Phase A Phase B Phase C Neutral

Fig. 18. Distribution of current in the cable configuration shown in Fig. 13a for various zero-sequence harmonic frequencies. The ampacity of each individual cable is 1 pu.
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Fig. 19. Distribution of current in the cable configuration shown in Fig. 13b for various zero-sequence harmonic frequencies. The ampacity of each individual cable is 1 pu.

5,

4,5 1 =150 Hz

4 eme B 450 Hz
— 3,51 @ 750 Hz
é a4 B1050 Hz
é 2,5
5 2
© s

1

0,5

0.

Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable Cable
Q 2 3 4 5/\6 T 8 9 10/'\11 12 13 14 15/\16 17 18 Y.
N NG '
Phase A Phase B Phase C Neutral

Fig. 20. Distribution of current in the cable configuration shown in Fig. 13c for various zero-sequence harmonic frequencies. The ampacity of each individual cable is 1 pu.
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Fig. 21. Waveforms of the load currents shown in Table 9. Each waveform represents one period of the fundamental frequency (20 ms).

The distribution of the current among the individual cables
shown in Fig. 13 was calculated with the proposed algorithm for

the two loads at each harmonic frequency.

The total rms current of each individual cable, I;;,s was then

Table 9
Harmonic profiles, I, [%].
Harmonic order [h] Load type

A B
1 100.0 100.00
3 79.7 0.75
5 49.8 26.00
7 18.8 19.20
9 5.2 0.38
11 13.6 0.37
13 10.5 0.00
15 2.2 0.37
17 6.2 0.37
19 8.7 0.37
21 5.9 0.37
23 0.3 0.37
25 4.5 0.37
14, rms [%] 140.3 105.1
THD [%] 98.39 32.35

calculated by

(20)

25
Irms = E Iﬁ
h=1

where I, is the rms current at the harmonic frequency h x 50 Hz.
Tables 10 and 11 show the distribution of the total line current
among the individual cables for the two loads and the respective
THD of the current in each individual cable. It can be observed that
there are large differences in the THD of the current of individ-
ual cables, which is attributed to the different distribution of each
harmonic component of the load current. Load A has significant

Italic values are the sum of the above harmonic components.

1st, 3rd and 5th harmonic frequency currents. Because of the high
third-harmonic current, the THD in the cables next to the neutral is
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Table 10
Current distribution for the cable configurations shown in Fig. 13, for load A.

779

3x(2x13120mmmm? )+ 131 20mm? 3x(313120mm?) +2x120mm? 3x(5x1 1 20mm? )43 20mm’

Alpu] | THD [%] Alpu]  THD [%] Alpu] _ THD [%]
Cable 1 Phase A 0399  100%] 102  109%] 102]  163%
Cable 2 1,03 98%| Phase A 090 B89%| 082  128%)
Cable 3 Sl 105 77%, 1,16 99%| Phase A 089  113%)
Cable 4 105  142% 1.22] 70%| 092 62%,
Cable 5 Phase 1,08 97%| Phase B 059 91%| 1,60 85%|
Cable 6 104 144% 122]  185%) 1,15 B2%,
Cable 7 Neutral 343 1.25] 97%| 078 63%|
Cable 8 Phase C 107  130%| Phase B 077 85%)
Cable 9 140 214%] 114 102%)
Cable 10 Nouial 283 198]  126%
Cable 11 233 160]  108%)
Cable 12 087 59%|
Cable 13 Phase C 073 70%)
Cable 14 119]  178%)
Cable 15 265 383%)
Cable 16 367
Cable 17 MNeutral 244
Cable 18 249
Table 11

Current distribution for the cable configurations shown in Fig. 13, for load B.

Ix(2x 131 20mm?)+1 1 20mm? Jx(3x1x120mm?)+2x120mm? In(Ex1x120mm?)+31 20mm?
Alpu] | THD [%] Alpu]  THD [%] Alpu]  THD [%

Cable 1 Phase A 097 28%) 035 28% 075 36%,
Cable 2 1,05 37%) Phase A 093 28% 070 28%,
Cable 3 Phase B 118 34%) 119 41%| Phase A 081 26%|
Cable 4 085 35% 141 35% 1,09 28%)|
Cable 5 Phase C 1,10 36%| Phase B 091 27% 174 37 %
Cable B 080 28%) 085 A7%, 1,30 44%)
Cable 7 Neutral 006 128 38% 092 26%
Cable 8 Phase C 090 27%| Phase B 081 23%|
Cable 9 0,32 30% 1,09 25%)
Cable 10 Neutral 0,12 1,75 36%,
Cable 11 0,11 156 41%|
Cable 12 1,04 30%)
Cable 13 Phase C 083 25%)
Cable 14 080 25%
Cable 15 94 32%,
Cable 18 22

Cable 17 Meutral 0_5,1

Cable 18 0.19]

relatively large. On the contrary, Load B has significant 1st, 5th and
7th harmonic currents and therefore the THD is relatively similar in
all cables. In this case, neighboring cables that belong to different
phases have larger THD.

8. Conclusions

The distribution of current among parallel-connected conduc-
tors was investigated for various harmonic frequencies with a
new iterative calculation method, taking into account the cur-
rents in the neutral conductors. The conductors were assumed
to be laid on metallic trays in free space, forming low-voltage,
three-phase TN-S systems. It was shown that the frequency affects
significantly the impedance matrix of a given cable arrangement.
The non-uniformity in the distribution of the current among
parallel-connected conductors increases with the frequency and
the number of conductors per phase, resulting in overloading of
one or more of the parallel-connected conductors.

Using the proposed calculation method, the cable configura-
tion that yields the most uniform current distribution without any
transposition was calculated. With this arrangement, overloading
can be avoided. It was shown that for frequencies above the 7th
harmonic, a FEM model should be used for the calculation of the
impedance matrix — and thus, of the current distribution - because
the analytical expressions presented in the literature introduce sig-
nificant errors.

The proposed calculation method can be applied to any cable
arrangement and to any number of parallel conductors per phase,

as long as the impedance matrix of the cable arrangement and
the total line currents are given. The resulting voltage drop is also
calculated.

The proposed method was validated by comparing the results
with measurements of current and temperature in a cable configu-
ration at a real installation in an industrial distribution substation.

Appendix A. List of symbols

Emagng  The energy, per unit length, of the magnetic field gener-
ated by the flow of a current of I;;;s, value through the
conductor of a single-core cable [J/m]

TA, 7 The total line current of phase A at frequency f[A]

TB, f The total line current of phase B at frequency f[A]

TC, ¥ The total line current of phase C at frequency f[A]

[if] K x 1 vector of the currents in each of the K single-core
cables in a cable configuration at the harmonic frequency,
f=hx50Hz

Tloop j—1,j The loop current that would flow between the parallel-
connected cable j and j—1 if the voltage drop across them
were not identical [A]

TN, f The total current in the neutral at frequency f[A]

fn,f The current in an individual cable at frequency f, where n
is an integer in the range [1,K] [A]

f— The rms value of the current that flows in a single-core

cable at the harmonic frequency 50 x h [A]
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J The distribution of the current density over the surface S
of the conductor of a single-core cable [A/m?2]

ka number of parallel-connected cables that carry the total
line current of phase A

kg number of parallel-connected cables that carry the total
line current of phase B

ke number of parallel-connected cables that carry the total
line current of phase C

kn number of parallel-connected cables that carry the total
line current of the neutral

K the total number of the single-core cables in a cable con-
figuration.

Leysy The self-inductance per unit length of a single-core cable

at the harmonic frequency 50 x h [H/m]

Liutuaty The mutual inductance per unit length between two

single-core cables at frequency f[H/m]

The losses per unit length in a conductor of surface S and

specific conductivity o, caused by a current density J with

frequency 50 x h over its surface [W/m]

Tac.h The effective ac resistance of the conductor of a single-
core cable at the harmonic frequency 50 x h [©2/m]

[Vf] K x 1 vector of the voltage drops along the each of the K
single-core cables in a cable configuration at the harmonic
frequency, f=h x 50Hz

P, losses h

S The surface of the conductor of a single-core cable [m?]

[Zf] K x K impedance matrix of the cable configuration at fre-
quency f.

\_/A’f The voltage drop across the parallel-connected cables of
phase A at frequency f[V]

\_/B’f The voltage drop across the parallel-connected cables of
phase B at frequency f[V]

Vc,f The voltage drop across the parallel-connected cables of
phase C at frequency f[V]

VN,f The voltage drop across the parallel-connected cables of

the neutral at frequency f[V]

Greek symbols

§ is the skin depth of the conductor of a single-core cable
[m]

P is the specific resistance of the conductor of a single-core
cable [2m]

o The specific conductivity of the material of a conductor in
S/m [S/m]

Af The flux linage per unit length in the conductor of a single-
core cable when a current of I, value flows through it
[Wb/m]

Amf The magnetic flux linkage, per unit length, with a single-
core cable due to the current in another cable at frequency
FIWb/m]
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