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Abstract: The lossy earth return path influences significantly the impedances of underground
power cables, especially in cases where transient simulation models are of interest. The use of
approximations for the calculation of the earth correction terms proves to be inaccurate, especially
at high frequencies or for low earth resistivities. A novel direct numerical integration scheme for the
evaluation of the infinite integral terms is presented. The new method proves to be numerically
stable and efficient in all cases examined. Results obtained by the novel integration scheme are
compared with those obtained by other approaches, as well as by a finite-element method
formulation for several single-core cable configurations and for cases of homogeneous and
multilayered earth.

1 Introduction

In transient simulations, detailed transmission line model-
ling is required. In the case of underground power cables,
the model parameters are strongly influenced by the resistive
earth return path. The influence of the lossy earth on
conductor impedances has been analysed since 1926. For
the case of overhead lines, correction terms can be
calculated using the widely accepted Carson’s formulas
[1]. Similar formulas have been developed by Pollaczek [2],
applicable not only to overhead conductors but also to
cases of underground isolated conductor systems and to
combinations of both. In these approaches earth is assumed
to be homogeneous and semi-infinite.

Both approaches lead to complicated expressions with
complex infinite integrals. These integrals have been
approximated using algebraic infinite series. This evaluation
has been adopted by Wedepohl and Wilcox [3] and by
Ametani [4], who proposed general models for the
simulation of wave propagation in power cables. The
formulation of [4] was also adopted in the Cable constants/
parameters supporting routines of the well-known Electro-
magnetic Transients Program (EMTP) [5].

The electromagnetic field of current-carrying conductors
results from the conductors and their images. For under-
ground cables, however, the earth contribution is much
more significant as the actual conductors are in the ground
and their images in the air. This leads to infinite integrals for
the self and mutual earth return impedances, which differ
from the corresponding ones for overhead lines. They
include highly oscillatory functions and therefore are not
easy to evaluate numerically. To overcome these difficulties
several approaches have been proposed. Besides infinite

series approximations, a simplified closed-form approxima-
tion has been proposed in [6], while direct numerical
integration is used in [7], but certain numerical problems,
limiting the efficiency of the method, are reported. In a
recent approach [8] the difficulties related to the specific
form of the integral terms are once again reported and an
integration algorithm is proposed for complementary use to
the existing methodologies.

A further complication is due to the fact that the real
ground is composed of several layers with different
electromagnetic properties. Sunde [9] extended the homo-
geneous earth solution of [1, 2] and developed new formulas
for the case of a two-layer earth under certain assumptions.
The resulting integral forms for the case of underground
conductors are very complex and were practically aban-
doned. In 1973, Nakagawa [10] proposed a more rigorous
and general solution but only for the case of overhead
conductors above a multilayered earth model. Therefore
there is a lack in modelling cases of underground cables in
non-homogeneous earth structures.

The finite-element method (FEM) is a numerical method
widely used for the solution of electromagnetic field
equations in a region, regardless of the geometric complex-
ity. The application of FEM in cable parameter calculation
was proposed in [11] mainly for pipe-type cables, where the
discretisation area is limited inside the pipe. In a recently
proposed method by some of the present authors [12], a
suitable FEM formulation was used in the computation of
overhead transmission-line parameters with unbounded
discretisation areas. The method is capable of handling
cases of terrain surface irregularities and non-homogeneous,
stratified soil, where most classical methods usually fail.

This paper presents a novel numerical integration
technique, which can be used for the direct calculation of
the earth return impedances of underground cable arrange-
ments for the case of homogeneous earth. The technique is
based on proper combinations of numerical integration
methods to overcome efficiently the problems arising from
the oscillative form of the infinite integrals. Results obtained
by the novel method are compared against those obtained
by the EMTP supporting routines for several cable
arrangements, earth resistivities and frequencies. The new
method eliminates the need for approximations and shows
remarkable numerical stability and efficiency.
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Finally a FEM formulation is used both for the
justification of the results of the novel approach as well as
for the evaluation of the complex impedances in cases of
cable arrangements in two-layer earth structures. Certain
cases of two-layer earth models, based on actual ground
resistivity measurements, are investigated and the results are
compared with those of the homogeneous earth case.

2 Earth return impedances of underground cable
systems

A transmission line is generally described by the two matrix
equations, which are shown in (1) and (2), linking the
voltages and currents across the line:

@

@z
v ¼ �Z 0 oð Þi ð1Þ

@

@z
i ¼ �Y 0 oð Þv ð2Þ

where o¼ 2pf is the angular velocity, v is the voltage vector
with respect to a reference conductor, i is the current vector
and z is the longitudinal direction along the transmission
line. Matrices Z 0ðoÞ and Y 0ðoÞ are the frequency
dependent series impedance and shunt admittance per unit
length matrices, respectively.

For the case of an underground cable system, Z 0ðoÞ may
be considered to consist of two components [4]:

Z 0 oð Þ ¼ Z 0i oð Þ þ Z 0e oð Þ ð3Þ
where Z 0i oð Þ represents the internal impedances of the
conductors in the cable system and Z 0e oð Þ accounts for the
influence of the earth return path. The exact form and the
dimensions of the above matrices depend on the number of
conducting elements of each cable, e.g. core, sheath,
armour, and on the type and the actual configuration of
the cable system. In the case of single-core (SC) cables, the
diagonal elements of Z 0e oð Þ represent the impedances of the
loops formed by the outermost tubular conductor of the
cables, either sheath or armour and the earth, while the
non-diagonal elements account for the mutual impedances
between the outermost tubular conductors of each pair of
cables and the earth.

The cable arrangement of Fig. 1 consists of two SC
cables i and j, buried in the ground, which is considered to
be semi-infinite and homogeneous, having an earth
resistivity r and relative permeability and permittivity of
mr and er, respectively.

According to [2, 3], the mutual earth return impedance
between the two underground cables i and j is

Z
0
mutual ¼

rm2

2p
K0 mdð Þ � K0 mDð Þ þ Jm
� �

ð4Þ

with

Jm ¼
Z1
�1

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aj j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p ejaxda ð5Þ

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ hþ yð Þ2

q
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h� yð Þ2

q
;

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jomrm0=r

p
where j is the imaginary unit, m0 is the free space
permeability and K0 is the modified complex Bessel function
of the second kind with zero order. The integral form of (5)
results from the application of the Fourier integral trans-
form on the generalised wave equations in the ground and
in the air [13]. The parameter a in (5) is the transformed

space variable and mathematically represents the frequency
of the Fourier spectrum [14]. The self-impedance formula is
derived from (4) and (5) by putting x¼ r and y¼ h, where r
is the radius of the outermost surface of the cable.

By applying some simple transformations in (5) the
following relation results [9]:

Jm ¼ 2

Z1
0

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p cos xað Þda ð6Þ

3 Numerical evaluation of the infinite integral

The corresponding expression for the mutual earth return
impedances of conductors above ground is [1]:

Z
0
m ¼

rm2

2p
ln

D
d

� �
þ J

0
m ð7Þ

where

J
0
m ¼

rm2

p

Z1
0

e� hþyð Þa

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p cos xað Þda ð8Þ

The variables h, y, x, D and d of (7) and (8) correspond to
the variables presented in Fig. 1, assuming that air and
earth in Fig. 1 switch places. The relative permeability and
permittivity in the air are considered to be equal to one.

Thus m in (7) and (8) is m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jom0=r

p
.

Equations (4) and (7) differ mainly in two points. First (4)
includes the Bessel functions instead of the natural
logarithm term. However, these functions seem to present
no serious problem as they can be evaluated easily using
standard library functions. The key difference though is the
fact that the exponential function in the infinite integral in
(6) is complex, whereas in (8) it is real. As a result the real
and imaginary parts of the infinite integral of (8) are
monotonic and non-oscillatory functions [1] and can be
calculated by infinite series, which converge rapidly [5].

In the approach of Wedepohl [3], the infinite integral of
(5) is divided into parts, each of which is approximated
using infinite series. Simplified expressions of the general
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Fig. 1 Geometric configuration of two single-core underground
cables
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formulas are also proposed for low frequencies and
common cable configurations.

In [5] it is recognised that the integral term in (5) becomes
identical to Carson’s earth return impedance if the

numerator e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

is replaced by e� hþyð Þa. Accepting
this approximation, which is valid for 7a7447m7, Carson’s
infinite series or asymptotic expansion can be used for the
numerical evaluation of (5). However this approximation is
highly uncertain especially for high frequencies and for low
earth resistivities. This drawback is reported in [5]. In the
same reference a single case of two underground conductors
is examined using the above approximation together with
Wedepohl’s approach [3]. The results are compared with
those obtained by the numerical integration of (5), using the
Romberg extrapolation [15]. The approximation of EMTP
shows significant differences for frequencies greater than
10kHz, while Wedepohl’s approach is accurate enough at
least up to 100kHz. Numerical efficiency problems
concerning the application of the integration method are
also reported.

Direct numerical integration is also used in [7]. Several
integration methods, such as the Simpson rule and
Romberg rule, are tried. Problems concerning the numerical
efficiency and the stability of these methods are reported,
leading to the adaptation of artificial intelligence techniques
for the evaluation of the infinite integrals.

Finally, in [8] the integral of (6) is transformed into a
more convenient form and is then approximated by a finite
one, according to a truncation criterion. To avoid numerical
oscillations the finite integration range is separated into
several sub ranges, which are calculated using the
trapezoidal rule. The proposed technique is considered by
the authors to be complementary to other methods.

Most of the above approaches either use approximations,
which are valid only within certain limits, or suffer from
numerical efficiency, which prohibits their generalised
application. Therefore the problem of finding an efficient
and accurate general-purpose method for the numerical
evaluation of the infinite integral in (6) is still of research
interest.

Direct numerical integration of the infinite integral is the
method used in this paper for the evaluation of (6). Instead
of using the previously mentioned integration algorithms, a
novel integration technique has been developed, based on
combinations of integration methods. More specifically, the
Gauss–Legendre method [15], a highly accurate numerical
integration method applicable in finite intervals of func-
tions, is combined with two other numerical integration
methods: the Gauss–Laguerre method [15], which is best
suited for infinite integrals and the Lobatto rule, a very
efficient numerical integration method for oscillative func-
tions [15]. The selective implementation of the different
numerical integration methods in the intervals between the
roots of cos(ax), for both the real and the imaginary part of
Jm, leads to a quick and very efficient integration scheme
for the evaluation of (6). An analytical description of the
novel technique is presented in the Appendix.

4 Finite-element approach

The problem of the calculation of the cable series
impedance matrix in (1) could be greatly simplified,
assuming that the per unit length voltage drop V i on every
conductor is known for a specific current excitation. The

mutual complex series impedance per unit length Z
0
ij

between conductor i and another conductor j carrying
current Ij, where all other conductors are forced to carry

zero currents, is then given by:

Z
0
ij ¼

�Vi

�Ij
i; j ¼ 1; 2; . . . . . . ; nð Þ ð9Þ

The self impedance of a conductor may also be calculated
from (9), by setting i¼ j. In such a case, the following
procedure may be used for the calculation of the cable series
impedance matrix [12]:

� A sinusoidal current excitation of arbitrary magnitude is
applied sequentially to each cable conductor, while the
remaining conductors are forced to carry zero currents. The
corresponding voltages are recorded.

� Using (9), the self and mutual impedances of the j cable
conductor may be calculated. This procedure is repeated n
times in order to calculate the impedances of n conductors.

Therefore, the problem is reduced to that of calculating the
actual per unit length voltage drops, when a current
excitation is applied to the conductors. This may be
achieved by a suitable-FEM formulation of the electro-
magnetic diffusion equation.

An underground power cable arrangement, consisting of
n parallel conductors, is assumed to be long enough to
ignore end effects. Furthermore, if the current density vector
is supposed to be in the z direction, the problem becomes
two-dimensional and it is confined to the x–y plane, in
which the conductors’ cross-sections lie. The above two-
dimensional diffusion problem is described by the system of
equations [16]:

1

m0mr

@2Az

@x2
þ @

2�Az

@y2

� �
� josAz þ �Jsz ¼ 0 ð10Þ

�josAz þ Jsz ¼ Jz ð11Þ
Z

Si

Z
JzdS ¼ I i; i ¼ 1; 2; . . . ; n ð12Þ

where Az is the z direction component of the magnetic
vector potential (MVP).

In (11) the total current density Jz is decomposed into
two components:

Jz ¼ Jez þ Jsz ð13Þ

where Jez is the eddy current density and Jsz is the source
current density, given by:

Jez ¼ �josAz ð14Þ

Jsz ¼ �srF ð15Þ
FEM is applied for the solution of (10) and (11) with the
boundary conditions of (12). Values for Jszi on each
conductor i of conductivity si are then obtained and (9)
takes the form

Z 0ij ¼
�Vi

Ij
¼ Jszi=si

I j
; i; j ¼ 1; 2; . . . ; n ð16Þ

linking properly electromagnetic field variables and equiva-
lent circuit parameters.

The results obtained by FEM are highly accurate as they
are obtained by solving the actual electromagnetic field
equations of the system. A further distinct advantage of the
FEM is its capability of handling cases of almost any kind
of geometrical or electromagnetic irregularities of the
ground, where conventional methods fail.
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5 Numerical results

The proposed numerical integration scheme is applied in the
following cases of SC cable arrangements in homogeneous
ground. First the case of a shallowly located SC cable
system of Fig. 2 is examined [11] in a horizontal (Fig. 2a)
and a vertical (Fig. 2b) cable arrangement. The cable is
at a depth h¼ 1.2m with a spacing of s¼ 0.25m in
the horizontal arrangement. The core radius is rc¼
23.4� 10�3m, while the outer radius is rs¼ 48.4� 10�3m.
The conductance of the cable core is s¼ 5.88235� 107S/m,
while mr¼ 1 and er¼ 1 for all the media in Fig. 2. The
conductivity of the air is considered to be zero.

Series impedances are calculated for this configuration
using the proposed integration scheme and they are
compared to the corresponding impedances obtained by
the EMTP and the FEM methods. The earth resistivity is
considered to vary from 2 up to 1000Om and the frequency
range examined is from 1Hz to 10MHz, to cover power
system operating conditions from steady state up to very
fast lightning surges. For each case the relative differences in
the form of (17) are calculated:

relative difference %ð Þ ¼
ZNum

�� ��� ZEMTP

�� ���� ��
ZEMTP

�� �� � 100 ð17Þ

Figure 3 shows the relative differences for the magnitude of
the self impedance of the horizontal cable arrangement of
Fig. 2. Differences up to 12% occur, especially for low earth
resistivities and high frequencies.

Figure 4 shows the corresponding differences for the
magnitude of the mutual impedance of the cable arrange-
ment. The differences in this case are due only to the
different approaches in earth return impedance calculation
and are higher, reaching up to 30%.

Next the case of a SC cable with core and sheath, as in
Fig. 5 is considered. Original cable data from [3] are
reproduced in Table 1. The cable arrangements are similar
to those in Fig. 2b with h¼ 0.75m, s¼ 0.15m and mr¼ 1 for
all the media.

The differences of (17) are calculated for the above cable
arrangement using the previous earth resistivities and
frequencies. Figs. 6 and 7 show these differences for the
case of the vertical configuration, for the real and the
imaginary parts of the mutual impedance between the cable
sheaths, respectively. Differences of almost 25% are
recorded.
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Fig. 2 Single-core cable arrangements in homogeneous ground
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Fig. 5 Single-core cable with core and sheath

Table 1: Data of the SC cable arrangement of Fig. 5

Core radius r1 0.0127m

Main insulation radius r2 0.0228m

Sheath radius r3 0.0254m

Outer insulation radius r4 0.0279m

DC resistance of copper core 0.034O/km

DC resistance of lead sheath 0.436O/km
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All results show that significant differences in the
calculated earth return impedances occur, mainly for
frequencies above 10kHz. The differences are greater for
low earth resistivities, reaching almost 30% and starting
even at power frequency for the case of mutual impedances,
where the influence of the earth is more distinct. This is
because, under these conditions, the assumptions used in the
EMTP calculation method are no longer valid. These
differences can influence the behaviour of cable modelling in
transient simulations and must be taken into account.

To justify the validity of the results of the direct
numerical integration, they were checked against the
corresponding by FEM for all above cases. The differences
calculated by a formula similar to (17) are less than 1% for
all cases over the whole range of frequencies and earth
resistivities. In all cases examined the novel numerical
integration scheme proved to be numerically stable. The
computation time for the numerical integration is less than
5 s for a set of 280 earth resistivity and frequency
combinations using an Intel Pentium IV PC running at
1.7GHz.

The case of a multilayered earth is considered next.
Sunde’s extension for multilayered earth structures [9] refers
only to conductors over or on the surface of the ground.
For the case of underground conductors no solution for the
electromagnetic field exists in the literature. Therefore the
FEM is used for the calculation of the impedance matrices
of cables buried in a two-layered earth. The horizontal
arrangement of Fig. 2a is considered. Six different two-

layered earth models were investigated, based on actual
grounding parameter measurements [17]. The correspond-
ing data for the resistivities r1 for the first and r2 for the
second layer and for the depth d of the first layer are shown
in Table 2. The second layer is of infinite extent.

Cable impedances were obtained by FEM for the
frequency range 50Hz–1MHz, to cover conditions from
steady state up to fast lightning transients. Results are
compared against the corresponding ones obtained by the
proposed numerical integration scheme, under the assump-
tion of homogeneous earth. Differences calculated by a
formula similar to (17) are shown in Fig. 8 concerning the
magnitude of the mutual impedance between the cables in
Fig. 2a. The homogeneous earth model is assumed to have
resistivity r1 of the first earth layer. Differences of up to
22% are encountered, especially in cases of great divergence
between the resistivities of the two layers. Differences start
at power frequency and are amplified at higher frequencies.

Another interesting feature is that these differences persist
even at very high frequencies where the penetration depth,
calculated by (18), approaches the depth of the first layer.
For overhead lines over multilayered ground these differ-
ences disappear in such cases [18]. This is an indication that
the validity of (18) for underground conductors must be
further investigated:

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfm0s

p ð18Þ

This remark is also validated by the results in Fig. 9, where
the differences for the magnitude of the self impedance are
shown, as calculated by FEM and the numerical integration
method, assuming homogeneous earth.
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between numerical integration and EMTP
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Table 2: Two-layered earth models

r1(Om) r2(Om) d(m)

Case I 372.729 145.259 2.690

Case II 246.841 1058.79 2.139

Case III 57.344 96.714 1.651

Case IV 494.883 93.663 4.370

Case V 160.776 34.074 1.848

Case VI 125.526 1093.08 2.713
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Fig. 8 Two-layered earth case: differences in magnitude of mutual
impedance
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6 Conclusions

This paper has addressed the problem of the calculation of
the earth return impedances for simulating transients in
underground single core power cable configurations. The
available approaches for the numerical evaluation of the
infinite integrals and the corresponding assumptions and
limitations are reported.

A novel numerical integration scheme, based on proper
combinations of integration methods is proposed. The
scheme has been applied successfully to a number of test
cases, involving various cable configurations and earth
resistivities over a wide frequency range from 1Hz upto
10MHz. The validity of the results obtained is justified
using a suitable FEM formulation. It is shown that the
assumptions implemented in the Electromagnetic Transients
Program (EMTP) Cable constants/parameters supporting
routines may lead to differences of 10–30%, and sometimes
even more, compared to the results of the new method. The
differences are noticeable above 10kHz, except for the case
of low earth resistivities, where differences are recorded even
at power frequency. The new direct integration method
shows a remarkable numerical stability and efficiency and
does not suffer from the approximations implemented in
other methods, which have been used for the evaluation of
cable parameters to late. Therefore it may replace such
methods in several popular software packages.

Application of the FEM in cases of underground cables
in a two-layered earth gives results with significant
differences from those obtained with the assumption of
homogeneous earth. Differences start at less than 10% at
power frequency and reach up to 20% at high frequencies.
They also seem not to follow the penetration depth theory
and cannot be disregarded. They justify the need for the
further research into suitable mathematical models for the
case of underground conductors in multilayered earth
structures, as well as for efficient and general purpose
methods for their numerical evaluation.
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8 Appendix

A new numerical integration technique is used for the
calculation of the infinite integral of (6). It is based on
combinations of numerical integration methods. Consider-
ing first the case where the horizontal distance x between
the two conductors is not zero, the following procedure is
applied.

The integral in (6) is divided into the following finite
integrals:

Za1
0

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p cos xað Þda ð19Þ

Za2
a1

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p cos xað Þda ð20Þ

Zaiþ1

ai

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p cos xað Þda ð21Þ

Za7
a6

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p cos xað Þda ð22Þ

Z3p=2x

p=2x

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p cos xað Þda ð23Þ
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Fig. 9 Two-layered earth case: differences in magnitude of self
impedances
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Z2kþ3ð Þp=2x

2kþ1ð Þp=2x

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p cos xað Þda ð24Þ

where i¼ 1, 2, y, 6, ai+1¼ 10*ai, a1 ¼ 10�6 p
2x, a7 ¼ p

2x
and k¼ 0, 1, 2, 3, y. The integration limits of (19)–(22)
result as the interval between zero and the first root of the
cosine function is divided logarithmically. The shifted 16-
point Gauss–Legendre method [15] is used to calculate (19)–
(22). The above separation, in combination with the
implemented integration method, can handle efficiently
the initial steep descent of the integrand. For the calculation
of (23) and (24), the 20-point shifted Lobatto rule [15] is
applied, since this rule is best suited for the integration of
periodic functions. The integrand is zero at the endpoints of
the integration interval and this feature improves the
accuracy of the method and minimises the computational
time. The procedure stops when the absolute value of (24)
for both the real and the imaginary part of the integral is
less than a user defined tolerance, set to 10�9 for all
applications in this paper.

If the horizontal distance x is zero, the integration
procedure is different. The integral in (6) is again divided
into the integrals (19)–(22), where now a1¼ 10�6� 2p and

a7¼ 2p and it is calculated by the 16-point shifted Gauss–
Legendre method. The rest integral until infinity is then
transformed as:

Z1
a7

e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p da ¼

Z1
a7

e� h�yj ja e� hþyð Þ
ffiffiffiffiffiffiffiffiffiffi
a2þm2
p

e h�yj ja

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ m2
p da

¼
Z1
a7

e� h�yj ja�g að Þda ð25Þ

The 35-point shifted Gauss–Laguerre method [15] is used
for the evaluation of (25), since it is the best method for the
calculation of infinite integrals with exponential weight
functions. The procedure is repeated iteratively. In each
iteration, the use of the Gauss–Legendre method is
extended by 2a7 intervals to the right of a7 and the rest of
the integral starting from 2a7 is calculated by the Gauss–
Laguerre method. Convergence is achieved when the
absolute difference between two succeeding values of the
calculated integral is less than the predefined tolerance.

In all cases examined, convergence was achieved after 3–4
iterations.
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