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Grigoris K. Papagiannis, Member, IEEE, Dimitrios G. Triantafyllidis, Student Member, IEEE, and
Pimitris P. Labridis, Member, IEEE

Abstract—A method is presented, by which a Finite Element
Method (FEM) formulation is used for the direct computation of
overhead transmission line serics and sequence impedances. The
method is applied in single and double circuit line configurations of
arbitrary geometry, giving results in perfect agreement with those
available from classical calculation methods. The new method can
easily handle cases of nonhomogenous and/or irregular terrain,
where classical methods may fail.

Index Terms—TFinite element methods, impedance matrix,
power transmission lines, symmetrical components.

[. INTRODUCTION

VERHEAD transmission lines are a vital link in power

transmission systems. For the proper overhead transmis-

sion line modeling, in either steady state or transient calcula-

tions, the knowledge of the per unit length series impedances
and shunt admittances of the line is necessary.

Transmission line modeling may be complicated, due to the

asymmetrical, multiconductor physical arrangement of the con-

ductors as well as to the lossy nature of the conductors and of

the earth return path. This results in the frequency dependence
of the distributed transmission line parameters.

For transient simulations, where detailed transmission line
modeling is required, general methods for the computation
of overhead transmission line parameters are available. The
well-known Electromagnetic Transients Program (EMTP) [1}
includes such a supporting tool, dedicated to the computation
of overhead transmission line parameters. Line parameters
are computed taking into account the gecmetric configuration
of the line. Conductor impedances are calculated using skin
effect formulas for solid or tubular conductors [2], [3] The
influence of the imperfect earth is included through correc-
tion terms, calculated using Carson’s formulas [4]. Multiple
conductors in bundles are properly combined and ground
wires are mathematically eliminated in order to obtain reduced
matrices for equivalent phase conductors [5]. Positive and zero
sequence parameters may be obtained by applying symmetrical
component transformations [6].

A closed-form approximation, leading to much simpler for-
mulas for the ground return impedance calculation has been
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recently proposed [7]. This approach gives results in excellent
agreement with the corresponding results from Carson’s for-
mulas and may replace these formulas in the future [3].

A major drawback of the above approaches is that they are
unable to handle cases where certain terrain irregularities or dis-
continuities of soil characteristics are present in the vicinity of
the line.

The Finite Element Method (FEM) is a numerical method
widely used for the solution of electromagnetic field problems,
regardless of their geometric complexity. In this paper, the ap-
plication of FEM in the direct calculation of overhead trans-
mission line series impedances is presented. By the proposed
methed, electromagnetic field variables are properly linked with
the transmission line equivalent circuit parameters. The method
can handle cases of arbitrary terrain irregularities and nonho-
mogenous ground, ‘

II. PrROBLEM FORMULATION

A system of N parallel conductors, carrying rms currents
Li(i =1, 2,-.., N)over an imperfect earth of resistivity p is
considered. The nonuniform current distribution inside the con-
ductors and in the ground influences the effective impedance of
the conductors at a given frequency. The following matrix equa-
tion links voltages and currents in any conductor of the line,

i}

5,V = ZWI o)
where V is the voltage vector with respect to a reference, I is the
current vector, and z is the longitudinal direction along the trans-
mission fine. The elements of matrix Z(w) are the frequency
dependent per unit length series impedances, depending on the
geometric configuration, skin and proximity effect, eddy cur-
rents and the influence of the imperfect earth. The calculation
of each of the above contributions is complex. Closed form so-
lutions may be obtained only for relatively simple cases.

The problem itself could be greatly simplified, assuming that
the per unit length voltage drop V;, on every conductor is known
for a specific current excitation. The mutual complex impedance
Z ;5 between conductor ¢ and another conductor j carrying cur-
rent 1, where all other conductors are forced to carry zero cur-
rents, is then given by:

L, N). @)
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The self impedance of a conductor may also be calculated
from (2), by setting : = 7. In such a case, the following pro-
cedure may be used for the calculation of the transmission line
impedance matrix Z(w):

+ A sinusoidal current excifation of arbitrary magnitude
is applied sequentially to each conductor, while the
remaining conductors are forced to carry zero currents.
The corresponding voltages are recorded.

* Using (2), the jth column of Z (w) may be calculated. This
procedure is repeated V times, in order to calculate the N
columns of Z(w).

Therefore, the problem is reduced to that of calculating the
actual per unit length voltage drops, when a current excitation
is applied to the conductors. This may be achieved by a suitable
FEM formulation of the electromagnetic diffusion equation.

III. ELECTROMAGNETIC FIELD EQUATIONS AND CIRCUIT
PARAMETERS

In the previously described system of & conductors above
lossy ground, conductors are assumed to be long enough to
ignore end effects or possible discontinuities due to grounded
towers. Furthermore, if the current density vector is supposed
to be in the z direction, the problem becomes two-dimensional,
confined in the z—y plane, in which the conductors cross sec-
tions lie. The linear electromagnetic diffusion equation is de-
scribed by the following system of equations [8]

1 [a%4, 8%4,
popr | Ox? ay?

:| - jwazz + jsz =0 3

“‘ij'Zz -+ jsz = 7z (4)

f/ J.d5 =T1;,

i:lJQ:"'JN (5)

where A, is the z direction component of the magnetic vector
potential (MVP).

In (4) the total current density 7, is decomposed in two com-
ponents [8],[9],

jz — j&z + 7.92 (6)
where 7., is the eddy current density and J ... the source current
density, given by (7) and (8), respectively.

Joo = —jwoA, (7

Jsz:_a-v(l)‘ ®

FEM is applied for the soluticn of (3) and (4) with the
boundary conditions of (5), by imposing an homogenous
Dirichlet boundary condition for the MVP on the boundary.
Values for J ., . on each conductor ¢ of conductivity o; are then
obtained and (2) takes the form [10]

T = E _ j:sz,/o'i

W7 T,
linking properly electromagnetic field variables and equivalent
circuit parameters. Finally, positive, negative, and zero sequence

(i,j:l,?,---,N) 9
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Fig. 1. Transmission line configurations: (a) 150 kV single circuit
transmission line and (b) 735 kV double circuit transmission line,

impedances may be easily obtained, either by simple transfor-
mations from matrix # [6], or even directly by applying in (5)
sequentially unitary positive, negative, and zero sequence cur-
rents to the conductors.

I'V. FINITE ELEMENT FORMULATION

The electromagnetic field of an overhead transmission line
may be considered unbounded, The FEM has beenused to solve
unbounded field problems using several approaches, such as the
extension of the discretization area (direct solution), the use of
integral equations (Green’s function) [11], the window frame
technique [12], the boundary element method [13], the infini-
tesimal scaling [14], the hybrid harmonic/finite element method
[15]. For reasons explained in [16], the first method was adopted
here. The discretization area is a square 10 km x 10 km, with
the transmission line located in its center.

Following considerations apply for the FEM computation:
The discretization area is subdivided in first order trian-
gular finite elements.

A Delaunay based [17] adaptive mesh generation algo-

rithm has been developed.

An iteratively adaptive mesh generation algorithm has

been used, based on the continuity requirement for the

magnetic field on the interface between neighboring
elements,

* Bundled conductors are treated as a single conductor of
arbitrary shape, by assigning the same material identity to
ail conductors in the bundle.

+ ACSR conductors are treated as tubular conductors.

Overhead ground wires are treated as individual conduc-

tors with no excitation current applied to them.,

Existing symmetries in the geometry of the problem are

properly utilized to improve the computational efficiency

of the method.

V. NUMERICAL RESULTS

The proposed method has been applied for the calculation of
overhead transmission line impedance matrices. Two line con-
figurations are examined, namely a single ¢ircuit 150 KV trans-
mission line with two ground wires shown in Fig, 1(a) and a
double circuit 735 kV line with a 4-conductor bundle per phase
and two ground wires shown in Fig. 1(b}. Data for the first line
were obtained from Public Power Corporation of Greece and
for the second line from [18], with all dimensions converted to
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TABLE 1
CONDUCTORS AND GROUND WIRES DATA
150KV single 735kV double
circuit tine Cirguit line
{Fig. 1a) {Fig. 10}

Phage condugtors.
Conducler type ACSR ACSR
Qutside diameter (mm) 25.146 35,103
Inside diameater  (mm) 9.71 23,384
dc resistance {Qkm) 0.09136 0.04985
Ground wires.
Conductor type sclid St condyctor Alumoweld strand
Outside diameter  (mm) 0.9525 0.9779
dc resistance (Qyfkm) 3.4431 1.4913

SI units. All phase conductors and ground wires data appear in
Table L.

First, the proposed method is checked against classical
methods, as they are implemented in EMTP, for the calcu-
lation of overhead transmission line impedances. Both line
configurations were considered to run over a flat semi-infi-
nite homogenous earth with resistivity p = 5, b0, 500, and
5000 $dm. Series impedances are calculated by FEM over
4 frequency range from 50 Hz up to 1 MHz. Results were
compared with the corresponding from EMTP. The percent
difference, defined by

_ | Zumre| - [ZroMml

Difference(%) = - 100

— 1
|ZEmTe | (1
is shown in Fig. 2(a) and (b) for the magnitude of the zero se-
quence impedance of the single circuit line and of the left cir-
cuit of the double circuit fine respectively. In all above cases
the calculated differences were less than 2%. The new method
allows the direct calculation of the actual return current distri-
bution between ground wires and earth, being together with its
magnitude the two critical factors in transmission line modeling
[19]. Fig. 3(a) and (b) show the percentage of the return current
flowing in each of the symmetrical ground wires for the same
frequency and earth resistivity range. As expected, ground wire
currents are increased in cases of high earth resistivities, with
all curves showing a maximum in the kHz frequency region. All
currents tend to smaller and almost constant values in the MHz
frequency region, as in these high frequencies eddy currents are
restricted by the effect of their own field.

Table II presents the changes in % difference between EMTP
and FEM results as a function of the number of finite elements.
Data for phase conductors, ground wires, earth and surrounding
air is shown for the transmission line of Fig. 1(a). Frequency is
50 Hz and earth resistivity is 5000 2m. The continuity require-
ment of the flux density on the interface between neighboring
elements has been used as the criterion for the iterations. The
final FEM iteration for this case led to a discretization mesh
consisting of 21 134 first order triangular elements and 10597
nodes.

Next the method is used in the case of a nonhomogenous and
irregular terrain. More specifically, the configuration of Fig. 4is
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Fig. 2. EMTP-FEM differences (in %) for zero sequence impedance
calculation versus frequency. Curves 1-4 correspond to carth resistivities 5, 50,
500, and 5000 Qm, respectively: (a) single circuit line and (b) double circuit
line.
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Fig. 3. Percentage of the return curtent in each ground wire versvs frequency,
Curves 1-4 corvespond to carth resistivitics 5, 50, 500 and 5000 Qm
respectively: (a) Single circuit line and (b) Double circuit line.

considered. The single circuit line of Fig. 1(a) is assumed to run
parallel to a water region of variable length, consisting of 4 in-
dividual segments, each having a length of 25 m and a constant
depth of 5 m. Specific resistivity is p1 = 0.25 {2m for all seg-
ments. The water region is surrounded by two 100 m long and
5 m deep segments having an earth resistivity of py = 50 £2m.
The remaining semi-infinite ground to the limits of the dis-
cretization area is assumed to have pg = H00 £2m. In cases A-D,
the length of the water region is gradually reduced, by replacing
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TABLE 1T
EMTP-FEM DIFFERENCE (%) AS A FUNCTION OF FINITE ELEMENTS PUR ITERATION

Phase ; Phase Total

teration Phase | Left Right Earth Air Total Differ.
1 2 3 GW [ Gw elem. | Nodes %
1 67 67 67 36 38 62 1308 1641 827 13.19
2 67 67 67 36 36 194 2177 2644 1332 6.32
3 67 67 67 36 40 520 4071 4868 2451 3.43
4 79 71 73 71 78 1354 8173 g899 4975 2.36
5 121 134 140 141 134 3135 17329 | 21134 10597 2.00
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Fig. 6. Percentage of the return current in each ground wire for a transmission

Fig. 4. Transmission ling parallel to a variable length and constant depth water ;.0 parallel 0 a variable length and constant depth water region. Curves A-D
regton. correspond to the water segments shown in Fig. 5. Curve H is for homogenous
semi-infinite carth.
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Fig. 5. Divergence (%) in Iransmission line zero sequence impedance from
homogenous semi-infinite earth solution. Curves A-D correspond to the water
segments shown in Fig. 4.

each 25 m water segment with a soil segment of equal dimen-
sions, having an earth resistivity of py — 50 £m. Such a case
cannot be handled by methods based on Carson’s correction
terms. Transmission line series impedance matrices are com-
puted, using the preposed method, for all cases A-D. Results
are compared to the corresponding results obtained by FEM for
the case of homogenous semi-infinite earth, having a resistivity
p = 500 ©m and for a frequency range from 50 Hz to 1 MHz.
Fig. 5 shows the percent divergence of the magnitude of the line
zero sequence impedance as a function of frequency for the var-
ious water segment lengths, reaching almest 20% in the case of
full water length. Tn Fig. 6 the fraction of the return current on
each ground wire of the transmission line is shown for the above
cases A-D. Curve H corresponds to the casec of semi-infinite

303KV 39.8mH ¢ ¢

Fig. 7. Test configuration for transient simulation.

homogenous earth having p = 500 ©dm. Results show that the
presence of the water region may lead, for certain frequencies,
to a considerable reduction in ground wire current depending on
line contiguration and ground resistivities.

The results obtained by FEM were nsed in a transient simu-
latton, in order to demonstrate the effect of ignoring soil irregu-
larities. The BPA field test configuration, described in [20], was
adapted as shown in Fig. 7. The transmission line arrangement
of Fig. 4 was considered with a total length of 10 km. A single
line to ground fault through a 2 2 resistance is applied on the
open-ended phase ¢ at ¢ = 10.15 ms.

A time domain transmission line model was used with dis-
tributed parameters obtained by EMTP, considering semi-infi-
nite homogenous ground with p = 50 £2m and by FEM for
the actual line arrangement. In both cases line parameters were
calculated at 5 kHz. The frequency dependent line model by
J. Marti [21] with p = b0 £2m was also used as reference. In-
tegration step was 50 us in all cases. Fig. 8 presents the results
of the simulation for the phase b open end voltage. Peak voltage
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Fig. 8. Phase b open end voltage. Curves | and 2: Time domain transmission
line model wsing parameters obtained by EMPT and FEM, respectively. Curve
3: . Marti frequency domain line model,

TABLE 1II
TOTAL EXBCUTION TIMRBS OF FEM CAT.CULATIONS AND MAXIMUM MEMORY
ALLOCATED BY THE FEM SOLVER, FOR TIIREE DIFIRRENT FREQUENCIES

Frequency Execution time [min:sec] | Memory [Mbytes]
50 Hz 48:55 43
5000 Hz 31:18 30
1 MHz 25:54 16

values, corresponding to EMTP and FEM parameter calcula-
tions, differ 39.4 and 14.2% from the J. Marti model results,
respectively.

Finally, Table IIT shows the computational cost of the devel-
oped FEM program. Total execution times as well as memory
required are reported for three different cases of the problem
shown in Fig. 7, for line parameters calculation at 50 Hz, 5 kHz
and 1 MHz respectively. Computations have been made on a
Pentium 166 MHz PC with 96 Mb RAM.

VI. CONCLUSIONS

A new method, allowing the computation of the series
impedance matrix and of the sequence impedances of an
overhead transmission line directly from the Finite Element
Method output, is presented. The method can handle physical
overhead transmission line arrangements of arbitrary geometry,
with ACSR or solid conductors, single or bundled, as well as
ground wires.

Results obtained by the proposed method for single and
double circuit lines were checked against those obtained by
classical computation methods and showed excellent agreement
over a wide frequency and earth-resistivity range.

The strong advantage of the new method is its ability to
handle cases of terrain surface irregularities and/or nonhomoge-
nous, mulkti-layered, stratified soil, where classical methods
may fail. Such an example is examined in this contribution,
with results showing divergences of up to 20% in the magnitude
of the zero sequence impedance of the line compared to the
case of homogenous semi-infinite earth.

37

Implementation of the results in a short circuit simulation
showed a considerable improvement in transient responses com-
pared to corresponding results from frequency domain models,
Furthermore, the method may be used to estimate the actual cur-
rent distribution in phase conductors, ground wires and in the
earth for any arbitrary excitation of the transmission line.
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