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Abstract—Artificial intelligence (AI) has been used to deter-
mine the quasi-stationary two-dimensional electromagnetic fields
within rectangular boundaries. Amplitude and phase of magnetic
vector potential have been calculated in an iron slot with an
embedded current carrying conductor. A suitable fuzzy neural
network (FNN) for scaling finite elements electromagnetic field
calculations has been developed. FNN has been trained, using
finite elements calculations within rectangular boundaries. Then,
FNN has been used to calculate the field in a new geometry
differing significantly from the geometries used for training. It
was concluded that FNN may be used to scale results from one
geometry to another with negligible errors.

Index Terms—Artificial intelligence, eddy currents, finite ele-
ment methods, fuzzy neural networks.

I. INTRODUCTION

T HE FINITE element method (FEM) is a successful nu-
merical method for the solution of complex electromag-

netic field problems. The method always provides a stable
sequential methodology to define, descritize, assemble, and
solve for models with complex geometries. The original prob-
lem is transformed to a numerical problem, and the computing
time increases with the number of the discretization nodes [1].

A method of scaling the results from one geometry to
another may be of interest if it needs shorter computing
time than an additional FEM calculation. This scaling may
be used in the often encountered case when someone has to
present a parametrical result analysis and especially when the
boundaries of the geometry are changing. If instead of scaling
we use a FEM solver, the FEM solver has to redescretize
every new domain and to solve for the original and usually
large number of discretization nodes. Therefore, it is useful to
develop a method capable of obtaining a solution of a complex
problem by solving with FEM only in a few cases and to have a
scaling law for determining the missing cases with acceptable
error.

Artificial intelligence (AI) seems to be an efficient method
to create systems which are capable of learning relationships
and then use this knowledge for further calculations. Fuzzy
logic is a research area of AI which is receiving increased
attention lately. Fuzzy systems have been successfully applied
in system control [2], system identification [3], [4], power
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systems transient stability [5], optimal load flow [6], and
short-term load forecasting [7].

The purpose of the present work is to investigate whether
AI may be also used for the above-mentioned scaling problem.
Therefore, a fuzzy system has been developed in this paper
for the scaling of the FEM solution from one geometry to
another of an electromagnetic problem. This fuzzy system
combines the fuzzy inference principles [8] with the neural
network structure and learning abilities into an integrated
neural network-based fuzzy decision system called a fuzzy
neural network (FNN) [7].

The method has been applied in the two-dimensional (2-D)
steady-state field-diffusion problem of a rectangular conductor
embedded in a slot of an electrical machine, since it has been
already treated by other authors using analytical and finite
elements methods, [9] and, therefore, a comparison becomes
easy.

II. THE METHODS USED

A. Finite Elements Calculations

1) Electromagnetic Diffusion and Boundary Conditions:
The 2-D electromagnetic diffusion problem for thedirection
components of the magnetic vector potential (MVP)and of
the total current density vector is described by the system
of equations

(1a)

the boundary conditions

(1b)

and the integral form

(1c)

where is the magnetic permeability of vacuum, is
the relative magnetic permeability, is the direction
component of the uniformly distributed source current density,
and is the rms of the current flowing through each
conductor. The unknowns in the system of (1a) areand

while the values of at the limit of region are
specified by the Dirichlet condition (1b), and the total current
density is specified in the integral form (1c).
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Fig. 1. Basic configuration of fuzzy system.

2) Finite Elements Formulation:Applying the Galerkin
method to the system of equations (1) and assembling the
element contributions in the usual way [10], the following
matrix equation is obtained:

(2)

In (2), and are the usual finite element matrices
encountered in the solution of eddy current problems [1], while
the vectors , and , and the diagonal matrix are defined
in [11] for the multiconductor finite element formulation.

B. Description of Fuzzy Neural Networks

We consider the so-called multi-input single-output fuzzy
systems. In our problem, inputs are the coordinatesfrom
the space , and output is the MVP in each node.
They have to be transformed and interpreted to and from fuzzy
variables in order to use fuzzy logic to solve our problem.
So the basic configuration of the fuzzy system used in this
paper is shown in Fig. 1, [4] and comprises four principal
components: afuzzification interface, a fuzzy rule base, a fuzzy
inference machine,and adefuzzification interface.

The fuzzification interfaceperforms a scale mapping that
transfers the observed nonfuzzy input space to the
fuzzy sets defined in . Hence, the fuzzification interface
provides a link between the nonfuzzy outside world and the
fuzzy system framework. A fuzzy set [8] defined in is
characterized by a membership function. There are in general
many fuzzy sets defined in

Thefuzzy rule baseis a set of m rules in general linguistic or
conditional statements in the form of: “IF a set of conditions
is satisfied, THEN a set of consequences are inferred.”

The fuzzy inference machineis the decision making logic
[3] which employs fuzzy rules from the fuzzy rule base to
determine fuzzy outputs of a fuzzy system corresponding to
its fuzzified inputs. In this paper, afuzzy inference machineof
the form suggested by Takagi–Sugeno [3] is employed, where
fuzzy sets are involved only in the premise part (IF-part) of
the rules, while the consequent part (THEN-part) is described
by a nonfuzzy function of the input variables.

The th rule, in our case may be described as follows:

IF and belong to the th membership

functions and correspondingly

THEN (3)

where are the fuzzy rules, are the
input variables to the fuzzy system, is the MVP proposed
by the th rule, and are the membership functions which
characterize theth rule fuzzy sets defined in the space of the
variables of coordinates. These membership functions in
our case have been chosen as follows:

(4a)

(4b)

where , and are the mean values and the standard
deviations of the membership distributions, respectively. The
factors and of the consequent part of theth rule
are to be suitably determined.

Thedefuzzification interfacedefuzzifies the fuzzy outputs of
the fuzzy inference machine and generates a nonfuzzy (crisp)
output, which is the actual output of the fuzzy system. The
weighted average defuzzification [2], the most commonly used
method, is used here.

The crisp output of the fuzzy system, defined above, (also
in Fig. 1) is given by

(5)

where

(6)

gives the degree of fulfillment of rule by the input vector
and is given in (3).

The fuzzy system whose crisp output is defined by (5) can
be represented by a three layer network as shown in Fig. 2.
Due to the similarity of such a fuzzy system to a three layer
neural network, it is called an FNN. Another similarity of
FNN’s with neural networks is their training, described next.

C. Gradient Training of the Fuzzy Neural Network

FEM results of different geometries of the same problem
are used to create a suitable training data base (TDB) for the
FNN. Using this TDB, it is possible to construct the fuzzy rule
base. Fuzzy rule base parameters are determined by a training
process, so that the output of the FNN adequately matches the
FEM MVP results. Once trained, the FNN may be used to
calculate the electromagnetic field for other cases.

The parameters of the FNN to be adjusted, i.e., the tuning
parameters, through its training are (for and
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Fig. 2. Network representation of Fuzzy System.u: product operator.�: sum operator.h�1: inversion operator.A1
; � � � ; A

m: MVP proposed by the
jth (j = 1; � � � ;m) rule. A(x; y): MVP result.

and (for and
Let denote the vector of the tuning parameters. Initially, it
is assumed that the number of rulesis fixed.

The FNN is trained by presenting it with a set of
input/desired output pairs is the
number of nodes). A gradient algorithm is then used to tune
the FNN, so as to minimize the FNN mean square error

(7)

with

(8)

where and are the calculate values of MVP
at the node from FNN and FEM, respectively.

Given an input/desired output pair the gra-
dients of the square error with respect to the system
parameters are

(9a)

(9b)

(9c)

where , and .
The minimization of in (7) through a gradient algo-

rithm leads to the learning rule which is expressed by the
following formula:

(10a)

(10b)

where is an acceleration factor, is the iteration index, and
the gradient is computed using (9a)–(9c).

D. Rule Creation

1) Initialization of the FNN Rules:The number of rules
can be arbitrarily determined. This may in general lead to long
training time and large errors. To improve the training time and
reduce the errors, is determined by a sequential procedure.



2302 IEEE TRANSACTIONS ON MAGNETICS, VOL. 33, NO. 3, MAY 1997

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Geometry 1. (b) Geometry 2. (c) Geometry 3. (d) Geometry 4. (e) Geometry 5. (f) Geometry 6.

We start with a certain initialization of rules with a single rule
, and we use a rule base adaptation procedure [7].

The parameters of fuzzy rule are initialized on the
basis of the first input/desired output sample pair
as follows [4]:

(11)

The choosing method for the parameters described above
performs the function of fuzzification that converts input data
into suitable membership values, which may be viewed as
labels of fuzzy sets. The mean values of the memberships
are centered directly at point while the membership
deviations reflect the degree of fuzzification and are selected
in such a way that allows overlaps of membership functions

2) Rule Base Adaptation:This procedure starts with the
initialization of the first rule. The gradient training
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(g) (h)

Fig. 3. (Continued). (g) Geometry 7. (h) Geometry 8.

algorithm described by (9a)–(9c) is used to train the FNN
based on input/desired output pairs. When the procedure
has reached rules, we consider an additional new training
pattern

Let us denote thefiring strengthof the fuzzy rule base as

(12)

We also define a threshold as theleast acceptable firing
strengthof the fuzzy rule base. If , a new rule

must be added to the rule base. Let
denote the new membership in theth premise axis. Then, the
parameters of are selected as follows:

(13a)

(13b)

where is the mean value of an existing
membership closest to the incoming pattern vectorand
is an overlapping factor which has been chosen equal to two
from computer experiments.

The generation of new rules establishes the rule base adap-
tation mechanism which is described by the following steps.

Step 1) Feed forward the new pattern through the
FNN and compute the corresponding firing factor

Step 2) If , then leave the rule base un-
changed and perform Gradient Training to match
the new sample pair.

TABLE I
GEOMETRIES USED

Step 3) If , then create a new fuzzy rule
select parameters according to (13), and

perform Gradiend training on the expanded fuzzy
rule base.

To summarize, the overall FNN training procedure com-
prises three major parts: the rule base initialization, the rule
base adaptation, and the gradient learning algorithm. The
proposed training scheme offers the advantage of including
just the necessary fuzzy rules within the premise space leading
to a minimum of FNN parameters for training.

III. A PPLICATION OF THE METHOD

The 2-D steady-state field diffusion problem of a slot-
embedded conductor with the data defined in [9] has been used
to test the proposed method. This problem has been selected
because there is an analytical solution in the corresponding
one-dimensional case. The FEM solution has been compared to
the analytical one [9], [10], and the differences were negligible.
So, FEM may be considered as a reference for the FNN
calculated results and the corresponding error estimations.
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TABLE II
MVP AMPLITUDE IN THE CONDUCTOR OF THEGEOMETRY SHOWN IN FIG. 3(h) AS OBTAINED BY FEM AND FNN

The slot is embedded in infinitely permeable iron. The
permeabilities of both conductor and air are equal to .
The sheet conductivity is , and the conductor carries
a total measurable sheet current A at a frequency of

. The boundary condition on the MVP is that
at the top of the air gap.

Our main purpose is to train a FNN in different rectangular
geometries of this problem, keeping constant permeabilities,
conductivities of materials, and total current of the conductor
so that the MVP distribution in a new geometry can be
calculated.

A. Selection of the FNN Input and Output Variables

A two-input single-output FNN has been used. The inputs
and the output of the FNN are as follows:

inputs coordinate coordinate

output amplitude of magnetic vector potential

or

output phase of magnetic vector potential

(14)

where is the node index and is the number of
nodes of discretization.

The MVP of the steady state problem is expressed using
complex phasors, and, therefore, it consists of two parts: the
amplitude and the phase. Since the FNN method has a single
output, two different FNN are required to calculate MVP nodal
values. The first FNN must be trained in order to match the
amplitude and the second one in order to match the phase of

, i.e., node with coordinates.
The FNN would in general need information of the relative

position the conductor occupies within the slot. So, if we
decide to use a single FNN for the total solution region, we
have to introduce as an input the height of the conductor.
Instead of doing this, two FNN have been used, one for the
conductor region and the other for the air region. The first
FNN has been used for scaling results in the conductor and
the other in the air. The results have shown that this multiple-
FNN method is more efficient than a single-FNN method. The
physical explanation of the above may be that the separation in
two different regions materials helped the FNN to understand
better the material limits as well as the material interfaces.
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TABLE III
MVP AMPLITUDE IN THE AIR OF THE GEOMETRY SHOWN IN FIG. 3(h) AS OBTAINED BY FEM AND FNN

So a total of FNN’s is required. After their
training, two of them are used to calculate MVP, amplitude
and phase, respectively, in the conductor discretization nodes
and the other two in the air discretization nodes.

B. Training of the FNN

In order to test the proposed method, eight different ge-
ometries shown in Fig. 3(a)–(h) are considered with their data
defined in Table I. These geometries are used to train and
test the performance of the FNN. Applying the FEM in these
geometries, suitable results are obtained to construct TDB’s
for FNN’s. The training procedure of each FNN is described
as follows.

The first geometry is randomly chosen between the eight
constructed geometries. The rule base of the FNN is initialized
so that it contains only one rule , defined by the
first input–output pair of the corresponding data set to this
geometry. The FNN is then trained using this data set, which
consists of input-output data pairs with the form of (14).
Additional rules are created during the training process as
described before. The training was made with a mean absolute
error of 0.5% or less. At the end of the FNN training, the
rule base is stored. Then, a second geometry is randomly
chosen from the set of geometries. The FNN is trained using
the existing rule base, and the corresponding data is set to
this geometry. The same procedure is followed to train the
FNN totally in the seven out of the eight geometries. At the
end of the training procedure, the FNN rule base contains ten

rules on the average. The performance of the FNN is tested in
the additional eighth geometry, for which FNN is not trained.
The corresponding FEM solution is also obtained in order to
compare the FNN results. The method has been also tested
additionally in the seven other cases. For each case, seven
other geometries have been used to train the FNN, and the
remaining geometry has been used as a test object.

IV. TEST RESULTS

The method has been tested in eight different cases as
previously mentioned. In general, the deviations between FEM
and FNN calculations are nearly the same in all cases. In
the following, results from only one case, shown in Fig. 3(h)
and the most pessimistic one, are presented separately for the
amplitude and the phase of MVP and for the conductor and
the air regions.

Table II summarizes the results for the amplitude. The
results of our method are compared with results obtained using
the FEM described in Section II. The amplitude of nodal MVP
using FEM and FNN, as well as the corresponding relative
errors between FEM and FNN, are being reported. For this
case, the average absolute error between FEM and FNN is
0.44%. MVP amplitude estimation using FNN in the air of
the geometry shown in Fig. 3(h) is given in Table III, which
has the same structure with Table II. In this case, the average
absolute error is 2.63%.

MVP phase calculations in the conductor and in the air are
given in Tables IV and V, respectively. The angle of MVP
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TABLE IV
MVP PHASE IN THE CONDUCTOR OF THEGEOMETRY SHOWN IN FIG. 3(h) AS OBTAINED BY FEM AND FNN

phasors in the discretization nodes using FEM and FNN as
well as relative errors between FEM and FNN are reported.
The average absolute error in the conductor is 0.37 degrees
and in the air is 0.013 degrees.

From Tables II–V, it is evident that the resulting MVP
from FNN is comparable to the corresponding FEM results.
Once FNN is trained, the field in other new geometries can
be calculated, and the computing time is negligibly small in
comparison with the time needed for FEM calculations of
the new geometry. In the reported cases, the training of one
FNN requires a time approximately equal to the seven FEM
calculations.

The frequency distribution of the relative absolute error of
MVP amplitude between FEM and FNN in the conductor and
in the air of the geometry shown in Fig. 3(h) are in Fig. 4 and
Fig. 5, respectively. From Fig. 4, it can be shown that, in the
conductor, the 80% of the errors is less than 0.8%. Similarly,
Fig. 5 shows that in the air the 80% of the errors is less than
4%.

Figs. 6 and 7 show a three-dimensional representation of
MVP amplitude as a function of the node’s coordinates

Fig. 4. Frequency distribution of errors between the amplitudes of MVP
calculations by FEM and FNN in the conductor of the geometry shown in
Fig. 3(h).

in the conductor and in the air of the geometry shown in
Fig. 3(h), as it is calculated by FEM and FNN. In both cases,
FNN seems to follow satisfactory the results of FEM.
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TABLE V
MVP PHASE IN THE AIR OF THE GEOMETRY SHOWN IN FIG. 3(h) AS OBTAINED BY FEM AND FNN

Fig. 5. Frequency distribution of errors between the amplitudes of MVP
calculations by FEM and FNN in the air of the geometry shown in Fig. 3(h).

Fig. 6. FEM and FNN MVP amplitude computation (slim and bold line,
respectively) versusx; y coordinates in the conductor of the geometry shown
in Fig. 3(h).

Fig. 7. FEM and FNN MVP amplitude computation (slim and bold line,
respectively) versusx; y coordinates in the air of the geometry shown in Fig.
3(h).

V. CONCLUSIONS

FNN’s may be used for scaling results in electromagnetic
field calculations. The proposed FNN has given satisfactory
results in the electromagnetic field diffusion problem of the
current carrying conductor embedded in an iron slot.

It could be deducted that after suitable training FNN has a
comparable accuracy with FEM in the above field diffusion
problem, while it needs negligible computing times. The
training of the FNN becomes faster if the problem domain
is subdivided into two material-defined regions with separate
FNN’s in each one. The fact that the initialization parame-
ters of the FNN are not randomly chosen but are assigned
reasonable values accelerates the training procedure of the
FNN.
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