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Coupled magneto-thermal field computation 
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Part 1: Finite element formulation 
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Contents: A numerical procedure employing the finite element 
technique is developed for the computation of the coupled magneto- 
thermal field in three-phase gas insulated cables. The finite element 
formulation of both the electromagnetic and temperature field 
problems, the iterative procedure and the effective thermal conduc- 
tivity of the insulation gas needed for the solution of the problem are 
presented here. Calculations made with the proposed method are 
presented in Part 2. 

Berechnung des gekoppelten magnetisch-thermischen 
Feldes dreiphasiger gasisolierter Kabel 

Teil 1: Liisungsansatz mit finiten Elementen 

Ubersicht: Es wird ein auf der Methode der finiten Elemente 
basierendes numerisches Verfahren zur Berechnung des gekoppelten 
magnetisch-thermischen Feldes dreiphasiger gasisolierter Kabel 
entwickelt. Hierzu werden der L6sungsansatz mit finiten Elementen 
f/Jr das elektromagnetische Feld und das Temperaturfeld, das 
Iterationsverfahren und die zur L6sung des Problems ben6tigte 
effektive thermische Leitffihigkeit des Isoliergases angegeben. Be- 
rechnungsergebnisse mit der vorgeschlagenen Methode werden in 
Teil 2 vorgestellt. 

1 Introduction 

The essential duty of a power cable is that it should 
transmit the maximum current (or power) for specified 
installation conditions. There are three main factors that 
determine the safe continuous current that a cable may 
carry: 

a) The maximum permissible temperature at which its 
components may be operated with a reasonable factor of 
safety, 
b) the heat-dissipating properties of the cable and 
c) the installation and ambient conditions. 

Gas insulated power cables are used for the transmis- 
sion of high electrical power because they have advanta- 
ges as compared to oil-paper insulated pipe-type cables. 
Some of these advantages are: 

- Easy construction, 
- good heat transfer through the dielectric SF6, 
- low ohmic losses, 
- longer critical length and 
- inexpensive terminations. 

Therefore, the calculation of the coupled electromagnetic 
and thermal fields in gas insulated cables is of importance 
for the design and reasonable operation of the transmis- 
sion system. 

In an oil-paper insulated pipe-type cable the maximum 
permitted insulation temperature is a limitation to its 
ampacity. In a gas cable, due to the good heat transfer 
through the SF6, the maximum sheath temperature is the 
limit. The enclosure temperature has to be limited so that it 
will not dry out the soil and increase its thermal resistivity. 
Fixing the maximum permissible sheath temperature is 
a matter of judgement. The literature on this subject 
mentions temperatures ranging from 40 ~ to 60 ~ 

By solving the steady-state heat conduction problem, 
the temperature distribution in the cable and in the 
surrounding soil is obtained. The inputs for the heat 
conduction problem are the power losses due to the 
imposed and induced currents in the conductors and the 
sheath. It is known that the magnitude of these losses 
depends upon the current density distribution inside the 
conductive parts of a multiconductor system. By solving 
the steady-state electromagnetic problem, the field distri- 
bution in the cable cross-section is obtained and the 
operating parameters of the cable (losses, forces and 
inductances) may be calculated. The input for the electro- 
magnetic field calculation is the rms of the current flowing 
through each conductor. A complication originates from 
the temperature dependence of the electrical conductivi- 
ties of the conductors and of the sheath. Therefore a 
solution of a coupled set of partial differential equations, 
representing thermal and magnetic diffusion problems, 
respectively, is required. 

An additional complication of the problem is the heat 
transfer through the gas dielectric, in which both convec- 
tion and radiation are important. These two mechanisms 
have a dependence on the conductor's and the sheath's 
temperatures, leading to an iterative solution for the 
thermal problem. In this paper an equivalent thermal 
conductivity of the SF6 is used, based on the geometry, the 
temperatures and the other physical parameters of the 
cable. This does not overcome the necessity for an 
iterative solution, but allows the use of a single conduc- 
tion-based thermal diffusion equation. The complication 
of the cable geometry and of the boundary condition of 
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the two diffusion problems leads to a finite element 
computational solution. 

The finite element method (FEM) has been used 
extensively in the solution of the steady-state and tran- 
sient thermal problems in underground cable systems, 
using approximations for the input of the problem. In [1] 
the current distribution inside the conductors is assumed 
to be uniform, the sheath losses are set to 25% of the 
conductor losses and the electrical conductivity is con- 
sidered to be temperature independent. In [2] and [3] the 
solution is given for cables that are approximated as line 
heat sources with an a priori known heat input rate. In [4] 
the heat input rate in the cables is taken from tables, while 
in the more general approach of [5] the conductors are 
approximated by a boundary having a known and 
constant heat flux. 

On the other hand, the FEM has also been used for 
solving the steady-state multiconductor skin effect prob- 
lem [6-8]. In [91 a finite element formulation has been 
presented for a three-phase gas cable, leading to the 
calculation of the losses in the conductors and the sheath. 
However, in these approaches, the electrical conductivity 
has been considered independent of the temperature. 

The first attempt to couple the electromagnetic and 
heat transfer processes has been reported in [10], in which 
a temperature distribution around a three-phase cable 
system is computed with a finite element procedure. In 
that paper the surfaces of the cable sheaths have been 
assumed to be equitemperatural, the sheath eddy current 
losses are calculated from the Fredholm integral equation 
(approximating the sheaths with thin homogeneous cylin- 
ders), while the skin and the proximity effects in the 
conductors have been neglected. In [11] both diffusion 
equations are solved with the FEM, using the same mesh 
and taking the output of the magnetic problem (i.e. the 
power loss density) as the input of the thermal problem. 
Although the method has been applied to an eddy current 
analysis of an induction motor, assuming the electrical 
conductivity independent of temperature, the use of the 
FEM in that problem leads to an accurate description of 
the temperature distribution. 

In this paper, a finite element formulation is used to 
model the three-phase gas cable electromagnetic and 
thermal steady-state diffusion problems, taking into ac- 
count the real geometry and the real electromagnetic and 
thermal properties of the involved materials. The finite 
element mesh is the same for the two problems, applying 
different boundary conditions. An iterative procedure for 
the solution of the coupled electromagnetic and thermal 
diffusion is presented. The given quantity is the rms of the 
measurable current flowing through each conductor. As 
a result, the field distributions of the magnetic vector 
potential (MVP) and of the temperature can be calculated. 

A general-purpose finite element program has been 
developed. From the MVP distribution, the current 
density distribution and finally the losses of the cable are 
easily obtained. From the temperature distribution, using 
a given maximum sheath temperature as a limitation, the 
ampacity of the cable is also easily determined. Calcula- 
tions made with the method proposed in this paper are 
presented in Part 2. 

2 The model 

The cable consists of three tubular phase conductors with 
external radius ra and wall thickness de, in equilateral 
configuration and in distance m between their centres as 
shown in Fig. 1. The conductors are located inside 
a tubular sheath with internal radius Ri and wall thickness 
ds. The insulating gas between conductors and sheath is 
SF6 at a pressure of 345 kPa (50 psi). The cable is directly 
buried in the ground in depth D, that is the distance 
between the soil surface and the outside sheath wall, as 
shown in Fig. 2. 

The assumptions used in the calculation are the 
following: 

- The cable is of infinite length, so that the coupled 
diffusion problem becomes a two-dimensional one. 

- Charges and displacement currents are neglected. 
- The conductors and the sheath have constant relative 

permeabilities/~rc and/~s, respectively. 

Fig. 1. Cross section of the three-phase gas insulated cable 

Ground surface 
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Fig. 2. Cable installation in depth D from soil surface 
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- The conductors' and the sheath's electrical conductivi- 
ties o7 and as, respectively are functions of temperature. 

- The thermal conductivities of the conductors, sheath 
and soil (kc, ks and ke) are independent of temperature. 

- The air inside the tubular conductors is still, therefore 
a thermal conductivity of air ka is used in this region. 

- An effective thermal conductivity keff of SF6, including 
the effects of free convection and radiation between 
conductors and sheath, is calculated. Conduction 
becomes the dominant mode of heat transfer in the 
whole domain. This effective thermal conductivity 
keff is a function of sheath and conductors mean 
temperatures. 

- The phase currents are sinusoidal and balanced. 

On the basis of the last assumption, the following 
complex functions for the time variation of the three 
conductor currents are introduced: 

rl  = ~ Irmse j~~ 

I2 = / 2  Ivmse j(cot-2~z/3) (1) 

"13 = ~ lrms ej(~ot-4n/3) 

where co is the angular frequency and I,.ms is the rms of the 
current flowing through each conductor of the cable. 

3 T h e  e l e c t r o m a g n e t i c  f i e ld  p r o b l e m  

3.1 Equations and boundary conditions 

The assumptions made lead to a piecewise linear, steady- 
state, time harmonic electromagnetic field in a two- 
dimensional region S bounded by the curve C, as shown in 
Fig. 3. Following the analysis presented in [9] and sup- 
posing that the current density vector J and the magnetic 
potential vector A have z-direction, the two-dimensional 
electromagnetic diffusion problem is described by the 
system of equations 

1 F~2A ~2A 7 
]~O#r L ~X2 "~ ~y2 J --jcoaA + Js = 0 

- jcoo-A + Js = J (2a) 

where /~o is the permeability of vacuum and Js is the 
uniformly distributed source current density. 

Because it is assumed that J~ is the only component of 
current density and the problem is solved in terms of the 
vector potential component Az, the required boundary 
conditions to ensure the uniqueness of the solution of the 
problem and of the magnetic field are [12] 

A=lc = Ao(x, y) (2b) 

and 

~ J ds -- Irms (2 C) 
s 

So the unknowns in the system of equations (2 a) are A and 
Js, while the values of A at the limit C of region S are 
specified by the Dirichlet condition (2b) and the total 
current density J is specified in the integral form (2 c). 

yl 
0 

C=C1uC2uC 3 

i (x ,y)  
local node /-~ 1/..,, ' 
number 

/ /  ~ e  ~ _  k--- global node number 
2 ~ . . . ~  - , - = = ' ~ / ~ 3  (• 

j (Xj, yj) 

Fig. 3. Region under consideration S with limit the curve C and 
typical finite element e 

The problem also consists of many interconnected 
regions and therefore is required to use the two continuity 
relations at the interfaces. The normal component of the 
flux density B and the tangential components of the 
magnetic field H have to be continuous across the 
boundary between two different media (provided that the 
boundary has no current sheet). 

3.2 Finite element formulation 

It has been shown [7] that for a straight conductor the 
source current density Js is constant over its cross- 
sectional area. So the unknowns A and Js may be 
approximated [9] in terms of linear interpolation poly- 
nomials N(x, y) and Ns(x, y) (see Appendix I) as 

A(x, y) = NtA (3 a) 

and 

Js(x, y) = Nstj: (3 b) 

where the superscript t means the transposed vector and, 
in a multiconductor problem with m nodes and n conduc- 
tors, 

A t - -  [A1 A2 ... Am], Js t =  [Jsl Js2 ... Jsn] (4a) 

N t =  [N1 N2 ... N,,], Ns*= [1 1 ... 11 (4b) 

According to the assumptions, the electrical conducti- 
vities ac and as of the conductors and sheath, respectively 
are functions of temperature. Since conductivity values 
are usually quoted at 0 ~ and if this conductivity is ao, 
then the conductivity a(T) of the material at temperature 
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T measured in ~ is approximated by 

a(T) - O-o 
1 + c~T (5) 

where the temperature coefficient ~ is well known for the 
metals and alloys used in power cables. 

Applying the Galerkin method to the system of 
equations (2) and assembling the element contributions in 
the usual way [6], leads to the following matrix equation 

1 
Sv - jcoa(T) Te 

#o#r 
--joJa(T) Qt 

= (6) 
jcoG(T) 

where Sv and Tv are the usual finite element matrices 
encountered in the solution of eddy current problems [13], 
while the vectors Q, I and G and the diagonal matrix 
W are defined [9] for the multiconductor finite element 
formulation. 

The boundary condition (2 b) is an essential condition, 
therefore it must be imposed upon the interpolation 
polynomials N(x, y) that are associated with the curve 
C of Fig. 3. In the multiconductor problem, the function 
Ao(x, y) is usually set to zero at a great distance from the 
cable, so (2 b) becomes a homogeneous Dirichlet condi- 
tion of the form 

AIc = 0 (7) 

in which subscript z is omitted (since it is the only 
component of the magnetic vector potential A). The 
condition (7) is now easily imposed on the assembled 
matrix (6) by deleting the columns and rows that corre- 
spond to nodes belonging to curve C. On the other hand, 
boundary condition (2c) has been already imposed, 
during the Galerkin process, in the system (2 a). Concern- 
ing finally the continuity relations of the electromagnetic 
field, it is well known, that the continuity of B, is always 
satisfied exactly, since the MVP is chosen to be continous 
across the element boundaries, while the continuity of 
Ht is a natural condition. Therefore the continuity 
relations need not to be imposed explicitly on (6). 

4 The temperature field problem 

4.1 Equation and boundary conditions 

As was stated earlier, an effective thermal conductivity 
keff of SF6, that includes the effects of free convection and 
radiation between conductors and sheath, is introduced 
(see Appendix II). Also, according to the assumptions, 
conduction is the mechanism of heat transfer inside the 
tubular conductors and the thermal conductivity of air 
ka is used in this region. So in order to determine the 
temperature distribution T(x, y) in the two-dimensional 
region S bounded by the curve C (as shown in Fig. 3), 
a heat conduction problem is to be solved in the whole 
region of interest. When the problem is to be solved under 
steady-state conditions, the differential equation govern- 

ing the heat conduction is 

V - k  lax2 + ey2j  = 0 (s) 

where 0 is the rate of heat generated per unit volume per 
unit time and k is the thermal conductivity of the material. 

The solution of equation (8) depends on the physical 
conditions existing at the boundaries of the medium. With 
regard to the boundary conditions, there are several 
common possibilities which are simply expressed in 
mathematical form. Since the differential equation is of 
second order, two boundary conditions need to be 
specified. The possible cases are those in which: 

1. The temperature T is specified (Dirichlet condition or 
boundary condition of the first kind) 

Tic, = To(x, y) (9) 

2. The heat flux qs per unit area at the boundary surface is 
specified (Neumann condition or boundary condition of 
the second kind) 

k ~ x l x + ~ y l ,  + q s = 0  on C2 (10a) 

A special case of this condition corresponds to the 
perfectly insulated or adiabatic surface 

k ~-x lx + ~fiy l r = 0 on C 2 (10b) 

3. The convective heat loss h(T - To), where h is the heat 
transfer coefficient and T~o is the ambient temperature, is 
specified (boundary condition of the third kind) 

k ~ x l x + ~ f y l ,  + h ( r - T o o ) = O  on Ca (11) 

where 

lx, ly: direction cosines of the outward drawn normal to 
the surface, 

C,: boundary on which the value of temperature is 
specified, 

C2 : boundary on which the heat flux q, is specified and 
C3: boundary on which the convective heat loss 

h ( T -  T~) is specified. 

The three boundaries of the thermal problem C1, C2 and 
C3, as shown in Fig. 3, are a subset of the curve C, i.e. of the 
bound of the two-dimensional region S. 

4.2 The finite element formulation 

The problem of finding the temperature distribution 
inside the whole region of interest involves the solution of 
(8) using the boundary conditions (9) to (11). Using the 
FEM technique, the unknown T may be approximated in 
terms of linear interpolation polynomials N(x, y) (see 
Appendix I) as 

T(x, y) = N'T (12) 
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Applying the Galerkin method to equation (8) and 
assembling the element contributions in the usual way 
[16], leads to the following matrix equation 

KT = P (13a) 

where the matrix K and the vector P are given by 

K = ~ (K1 ~ + KJ)  (13b) 
e 

and 

P = ~ (PLY- P2 ~ + P3 e) (13c) 
e 

The elementary matrices K1 ~ and K2 e and vectors P1 ~, P2 ~ 
and P3 ~ that appear in (13 b) and (13 c) are defined for the 
temperature field problem in Appendix I. 

Equations (13) are the desired equations. These have to 
be solved, after incorporating the boundary conditions, to 
obtain the values of nodal temperatures. The advantage of 
this formulation is that the boundary conditions (9) - (11) 
of the thermal problem have to be imposed on the same 
curve C, on which the homogeneous Dirichlet condition 
(7) of the electromagnetic problem has already been 
imposed. So it is possible to use the same finite element 
mesh for both diffusion problems and to define the 
appropriate boundaries for the problem that is currently 
solved. 

5 T h e  i t e r a t i v e  procedure 

The solution of the system of equations (2 a), that describe 
the electromagnetic diffusion problem, is equivalent to the 
matrix equation (6). In order to compute the nodal values 
of the MVP A and of the source current density J~, we 
have to determine: 

- The current Lm~ flowing through each conductor of the 
three-phase cable, in order to define the vector I (see 
Appendix I) on the right-hand side of (6) 

- The temperature distribution on the cross-section of 
the conductors and of the sheath, in order to calculate 
the value of the electrical conductivity o- at every point 
of these materials, as given in (5). 

The solution of equation (8), that describes the thermal 
diffusion problem, is equivalent to the matrix equation 
(13a). In order to compute the nodal values of the 
temperature T, we have to determine 

- The average loss density 0 at every point on the cross 
section of the conductors and of the sheath, in order to 
define the vector P1 (see Appendix I) that appears on 
the right-hand side of (13 a) 

- The mean temperatures of the conductors and of the 
sheath T~ and T~ respectively, in order to estimate the 
effective thermal conductivity keff of the insulating gas, 
as given in (A 12) (see Appendix II). 

For the calculation of the loss density 0 we have to solve 
the electromagnetic diffusion problem. From the solution 
of the system in (6), this average loss density 4 e for the 

typical element e may be calculated [9] from 

J e j e *  
0 e -- [W/m 3] (14) 

O -e 

where J~ and fie are the total current density and the 
electrical conductivity of element e, respectively. The elec- 
trical conductivity o -~ is again a function of temperature, 
using the approximation (5). For all the above reasons, an 
iterative procedure is necessary in order to solve this 
strongly coupled electromagnetic and thermal diffusion 
problem. The iterative procedure contains 4 steps that will 
be explained in detail. 

S tep  1: The electromagnetic diffusion problem, de- 
scribed by the system of equations (2 a), is solved with the 
finite element formulation (6) for the computation of the 
unknown values of MVP A at every node and of the 
source current density J~ at every conductor. This solution 
is a function of the given current L,,s flowing through each 
conductor of the three-phase cable. 

In the first iteration, the temperatures of the con- 
ductors and of the sheath are set equal to arbitrary 
and constant values (i.e. every point of the conductors 
material  is assumed to have a constant temperature 
equal to T~a and every point of the sheath material a 
constant temperature equal to T~a). For all further itera- 
tions, the temperature values at every point will be 
obtained from step # 4 and they will be different from 
point to point. 

With the known temperature distribution at every 
point, the electrical conductivities o -~ at every finite 
element e that lies on the cross-section of the conductors 
and of the sheath is computed according to (5) as 

O-0 e 
o -e - (15a) 

1 +cdTm e 

using the local values ao e and ~e and the mean tempera- 
ture T~ ~ of element e given by 

rm e = (T1 e -~- T2 e -~- r 3 e ) / 3  (15b) 

S tep  2." Using the values of A and Js from the solution 
at step # 1, the total element current density j e  is 
computed for every element e as [9] 

j ( D O  e 
j e  _ (AIe + A2 e + A3 e) + Jsi (16a) 

3 

if element e lies on the cross-section of conductor i with 
source current density Js~, or 

j ( D 0  e 
j e  __ - -  (A1 e + A2 e + A3 e) (16b) 

3 

if element e lies on the cross-section of the sheath. Using 
(16) and (14), the average loss density 0 e of element e is 
calculated. 

Step  3: Using the values of T from the solution at step 
# 4  (or the arbitrary values T~a and T~a of the first 
iteration), the mean conductors temperature T~ and 

23 
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sheath temperature T~ are calculated. Using these values, 
the effective thermal conductivity kef f of SF 6 is computed 
using (A 12). 

Step 4: The thermal diffusion problem, described by 
equation (8), is solved with the finite element formulation 
(13a) for the computation of the unknown values of 
temperature T at every node. The values of iteration 
i T(i) are compared with the values T(i-~) of the previous 
iteration i - 1. If IT(i) - T(~_,)[ < T~,, at every node, where 
T~,, is a small temperature, the iterative procedure is 
terminated. 

As will be shown from the calculations presented in 
Part 2 of the paper, the convergence of the iterative 
procedure is very fast. 

6 Conclusions 

The computation of the coupled magneto-thermal field in 
a three-phase gas insulation cable based on a finite 
element formulation is the main purpose of this paper. 
Real geometry of the cable and real electromagnetic and 
thermal properties of the involved materials are taken 
into account. I single conduction based thermal diffusion 
equation is used for the thermal problem based on the 
calculation of an equivalent thermal conductivity of the 
SF6. The coupled problem is solved using an iterative 
procedure based on temperature convergence at every 
nodal point. Given the current flowing through each 
conductor, both the electromagnetic and thermal field can 
be calculated. 

Appendix I 

Basic formulae for first-order triangular elements 

Consider the typical first-order triangular dement e 
shown in Fig. 3, with local MVP nodal values 

~A1 el 
Ae = ]A2e/ (A1) 

LA~J 

and local temperature nodal values 

F xe] 
T e : / r ; /  (12) 

Lr~j 

using the first-order shape functions 

I [al + b~x + cxy] 
Ne(x,y)= ~ a2+b2x +c2y I (13) 

a3 + bax + c3yJ 

where the coefficients ai, bi and c~ are well known from the 
literature [15] and S e is the area of element e, we shall have 
the space approximation of the MVP as a phasor in the 
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complex domain 

Ae(x, y) = NetA e :- Areal(X, y) -}- jdimag(X, y) (A 4 a) 

and the space approximation of the temperature 

Te(x, y) = NetT e (A 4 b) 

where the superscript t means the transposed vector. 
Suppose the element e lies in the conductor i, at which 

the source current density is J~. Because Js~ is a constant 
over the cross-section of the conductor, the phasor of the 
element e source current density will be 

JS e = J s i  (A 5) 

Assembling the element contributions over the whole 
domain, the space approximation for the vector potential 
will be obtained as in (3a). Likewise, assembling the 
conductor contributions, the space approximation for the 
source current density will be obtained as in (3 b). 

Assembling also the element contributions over the 
whole domain, the space approximation for the tempera- 
ture will be obtained as in (12). 

The elementary matrices K1 e and K2 e of (13b) are 
given by 

ke [( bi2 q- Ci 2) 

KI~ = ~ [[_symmetric 

and 

K2 e :  h ~ - I Ni2 

c3 Lsymmetri c 

(bibi + cicj) (bibk + CiCk)] 
(b/ + c/)  (b~b~ + ~)[ (A6) 

(bk 2 + Ck 2) J 

NiNj NiNk] 
Nj 2 NiNk I dC (A7) 

Nk 2 J 

where k ~ is the thermal conductivity of element e and h is 
the heat transfer coefficient on curve C3, on which we have 
supposed that the convection boundary relation (11) 
applies. 

Finally, the elementary vectors of (13 c) are given by 

PI~ = I~ 0 Net dS (18) 
S e 

p 2 e =  I q sNet dC (A9) 
c2 

and 

P3 e = ~ hTooN et dC (A10) 
C3 

where (19) and (A10) correspond to the boundary 
relation (10) and (11), respectively. 

Appendix II 

The effective thermal conductivity of the insulation gas 

Explicit ampacity equations can only be derived when the 
radial temperature drops are proportional to heat flux, as 
in thermal conduction. Because the heat must be trans- 
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ferred across two surfaces in series, i.e. the outside of the 
conductor and the inside of the sheath, both free convec- 
tion and radiation are important. So the ampacity must be 
determined by successive approximations. Conduction is 
the dominant mode of heat transfer from the sheath 
outward. 

In order to calculate the thermal resistivity (based on 
both free convection and radiation) from conductor 
surfaces to sheath, the following formulae were used. 

The temperature drop (Tc - T~)~ across a concentric 
fluid gap, in the case where one conductor is located inside 
a sheath, may be expressed as 

2~ko~f(r~- rs) _ ( r ~ -  rs) 
( 2 =  

In (Ri/Re) 

where 

R 

Q: heat flow per unit length [W/m] 
keff: effective thermal conductivity [W/m ~ 
T~: mean conductor temperature [~ 
T~: mean sheath temperature [~ 
Ri: inner sheath radius [m] 
R~: outer conductor radius [m] 
R: thermal resistivity [m ~ 

(A 11) 

The effective thermal conductivity keff, including the 
effects of free convection and radiation, may be calculated 
from (A 11) as 

in (Ri/Re) 
keff - (A 12) 

2rcR 

The problem here is related to a three-phase gas cable. 
So a simplifying assumption has to be made about the 
heat transfer through the gas insulation. For this reason 
we consider an imaginary cylindrical heat dissipation 
surface of radius Re (Fig. 1). This is an envelope of the 
three conductors and should be considered to consist of 
the same material as the conductors, from which the Joule 
loss of the three conductors emanates uniformly around 
the periphery. 

The problem now is to find an effective thermal 
conductivity across this annulus gap. Fukuda [17] and 
Doepken [18] have discussed the heat transfer across 
a horizontal annulus gap. Based on their analysis and on 
the previous assumptions, a three-phase cable generalisa- 
tion is accomplished. Let us first consider radiation. If 
G and ~c are the emissivities of the cylindrical surfaces of 
sheath and conductor, respectively, the Stephan-Boltz- 
man law for a coaxial line is 

Q~ = 5.67x 10-12 x2~zRe~'(rc 4 - r~ 4) [W/m] (A13) 

strength aluminium alloy, it is recommended [19] to use 
the values ~c = 0.3 and G = 0.8. 

On the other hand, the convective heat transfer 
depends on the gas density and therefore on its pressure 
and temperature. For an SF6 insulated cable that has been 
filled to 50 psi at 20 ~ which is typical for isolated phase 
systems, Doepkens [18] recommends the following for- 
mula for convection 

3.75 x 10-3(re - -  r s )  1"2 (Ri - -  Re) ~ 
Qc= [W/m] (115) 

in (Ri/Re) 

Finally, the overall heat flow Q per unit length of 
cable is 

Q = Q , + Q c  [W/m] (116) 

After calculating this overall heat flow, the thermal 
resistivity R and finally the effective thermal conductivity 
k~ff of the gap may be calculated from equations (A 11) and 
(A 12), respectively. 

In Fig. 4 the effective thermal conductivity keff of SF 6 is 
shown vs. different conductor and sheath temperatures. 
The calculation was based on the equations stated above, 
using the following typical values for a three-phase gas 
cable: 

Ri = 0.3429 [m] 

R~ = 0.2365 [m] 
Cs = 0.8 (A 17) 

~ =0.3 

As shown in Fig. 4, the variations of the two tempera- 
tures lead to significant changes of the value of keff. 
Finally, in Figs. 5 and 6 the effective thermal conductivity 
keff of SF6 is shown vs. mean sheath temperature T~ and 
for a constant mean conductor temperature T~ = 80~ 

0.80 

0.75 ~ ~  

i 0.70 : ~  ~ ~ ~. 

0.65 " - - .  ",  
, \ " , \ \ \  

90 oC 95oC 

\ , o ,  _~ 85 oC 
7 C 80 oC 

0.50 To: 70 oC 

In this equation the temperatures are in [K] and Re is in 
[m], while for diffuse reflection the effective emissivity 4' is 

~c~s 
r = (A 14) 

~s + (Re/Ri) (1 - ~s) ~c 

The emissivity of a metal depends on its electrical 
conductivity. Assuming that the conductors are made of 
EC aluminium and the enclosure pipes of some high- 

0.45 

0.40 
50 55 60 65 70 75 80 85 90 95 100 

Ts [~ 

Fig. 4. Effective thermal conductivity kofe of SF6  a s  a function of 
mean sheath temperature T~ for seven different mean conductor 
temperatures T~. The cable geometry and the emissivities of the 
materials are given by (A t7) 

23* 
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Fig. 5. Effective thermal conductivity keff of S F  6 as  a function of 
mean sheath temperature T, for nine different sheath emissivities G. 
The conductor emissivity ~ is 0.3 and the mean conductor tempera- 
ture T~ is 80 ~ 
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Fig. 6. Effective thermal conductivity kef f of SF6 as a function of 
mean sheath temperature T~ for nine different sheath emissivities ~. 
The conductor emissivity ~c is 0.9 and the mean conductor tempera- 
ture T~ is 80~ 
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In Fig. 5 the c o n d u c t o r  emiss ivi ty  r is cons t an t  and  equal  
to 0.3 while in Fig. 6 ~c is cons t an t  and  equal  to 0.9. The  
p a r a m e t e r  in these two figures is the shea th  emissivi ty  G, 
which varies  f rom 0.3 to 0.9. The  range  of values  of  k e f  f for  
a typical  mean  sheath  t e m p e r a t u r e  T~ = 65 ~ is be tween  
0.59 W / m  ~ (Fig. 5 wi th  G = G = 0.3) and  1.12 W / m  ~ 
(Fig. 6 with ~s = ~c = 0.9), i.e. an increase  in the emissivi ty  
values  f rom 0.3 to  0.9 leads  to  an  a lmos t  100% increase  of 
the effective t he rma l  conduc t iv i ty  of the insu la t ion  gas. 
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