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Calculation of Eddy Current Losses in Nonlinear
Ferromagnetic Materials
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Abstract—This paper presents a complex analysis of the nonlinear
diffusion problem in ferromagnetic materials under steady-state exci-
tation. The problem is solved by considering an equivalent fictitious
material where the relative permeability is assumed to be constant in
time but different from point to point and is related to the nonlinear
B-H characteristic curve with the help of the stored magnetic co-en-
ergy density. Eddy current losses are calculated in a one-dimensional
thick steel plate. A comparison made with results obtained from the
classical step-by-step method shows a good agreement.

I. INTRODUCTION

HE FIELD problems involving ferromagnetic mate-

rials are complicated by the nonlinear relationship be-
tween flux density and the magnetic field intensity. Even
in the steady-state ac operation, time has to appear as an
explicit variable in the diffusion equation. The solution
will become easier if an equivalent material with non-
time-varying permeability could be found. As a result,
time effective calculations can be made by using phasor
quantities.

The problem of introducing a new concept for the ma-
terial permeability has been approached earlier. In [1] the
average magnetic energy density has been used to obtain
a constant permeability. In [2] the flux density has been
used to obtain an rms reluctivity. However, when the sat-
uration increases the magnetic energy seems to be hardly
influenced. On the other hand, the magnetic co-energy is
a better measure of the degree of saturation.

The purpose of this work is the computation of the eddy
current losses in a one-dimensional nonlinear diffusion
problem. The finite difference method has been used to
obtain a solution and Frohlich approximation has been
used for the nonlinear B-H relation.

The results have been compared with the classical step-
by-step solution [3] and the agreement in the losses was
excellent.

II. THE PROBLEM

A classic one-dimensional eddy current problem is the
solution for a thick steel plate with a sinusoidal magnetic
field applied to its surfaces. The model shown in Fig. 1
consists of a semi-infinite plate of thickness 2d. The only
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Fig. 1. Cross section of a semi-infinite thick steel plate.

component of the magnetic field is assumed to be in the z
direction and is constrained to be a spatial function of y
alone. The z component of the magnetic field intensity in
the material is governed [4] by the diffusion equation

PH. _ 0B oH.
oy’ ~ T oH
assuming a uniform conductivity o.

In order to approximate the nonlinear B-H curve, the
Frohlich representation

(1)

H
B=——7— (2)
a+ B ‘ H ‘
seems to be the best compromise between accuracy and
simplicity.
The excitation for the plate is a sinusoidal magnetic field
intensity H,, sin wt applied to both surfaces.

III. EQuATIiONS IN THE COMPLEX DOMAIN
Sinusoidal time variation of the field quantities enables
us to substitute jw for d /dr. Thus (1) becomes
d°H
P JwopopH (3)

and this is the well-known linear diffusion equation where
H is a z-component phasor in the complex domain. How-
ever, in nonlinear problems this equation is complicated
because of the time dependence of the relative permea-
bility u,. There are two possibilities to overcome this dif-
ficulty:

1) To introduce a complex permeability x, using the
notation [S5] u = pu, — ju;.

ii) To introduce a constant permeability along the pe-
riod T.
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In both cases, the new permeability must lead to a so-
lution of the diffusion equation (3) that results in the same
value of losses that would be obtained from the solution
of the explicit form of (1).

The constant permeability approximation has been cho-
sen in this analysis because it allows the use of the clas-
sical solution methods applied in (3). Hence the problem
that has to be solved is as follows:

Assume a fictitious material with a constant unknown
relative permeability, which is a spatial function of y
alone. This permeability is related to the nonlinear B-H
characteristic curve through the unknown values of the
magnetic field intensity at every point. The condition to
be fulfilled is that the linear fictitious material has the same
eddy current average loss density as the nonlinear mate-
rial has at every point.

Using the superscript f for the fictitious material, (3)
becomes

d&*H’ :

e = joopop s (H' )H'. (4)

IV. MaAGNETIC CO-ENERGY DENSITY AND
NONLINEARITY

The existence of the two unknowns H” and p/ in (4)
leads to an iterative solution. Thus a relation must be es-
tablished between these two unknowns and the nonlinear
B-H curve of the material.

Consider a point i in the fictitious material at which the
magnetic field intensity is a sinusoidal function of time
with maximum value H/,. Since this material has a con-
stant relative permeability at this point which is equal to
u /., the maximum value of the associated sinusoidal flux
density will be

B{ni = I'LO/'L{[H{ni' (5)

In the nonlinear material neither H nor B are sinusoidal
functions of time. They are periodic functions containing
harmonics and they are assumed to be related through the
nonlinear Frohlich equation (2). This relation, using the
same maximum value H ; of the fictitious material, gives
a maximum value for the flux density

S

" w+ BH Y,

At this point, two definite integrals will be considered.
The interval for the integration is a quarter of the period
Tand it is assumed that H{(7 = 0) = 0 and Hi(r= T/4)
=H fmi~

From Fig. 2(a) it is easily seen that the magnetic co-
energy density during this quarter of period at the point i
is

Ho
0
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Fig. 2. (a) Magnetic co-energy density during a quarter of period T using
the actual B-H curve. (b) Magnetic co-energy density during a quarter
of period T using the average value of the slope dB/dH. (c) Magnetic
co-energy density during a quarter of period 7 of the equivalent fictitious
material.

Using (2) for the B-H relation and after integration, (7)
becomes

r
o x +BH,,1,. (8)

H!,
wyp = _5”” - 32 n o
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The second integral is related to the average value of the
slope dB/dH of (2) during the same time interval, that is

H}, db 3 B,

—dh = —
< > ml 0 dh H{ni

where B,, is given in (6). The magnetic co-energy density
of a material having this average slope during the same
quarter of period is, as shown in Fig. 2(b),

(9)

1
Wy = 5 BmiH{m'

and using (6) for the relation between B,,; and H'.. (10)
becomes

(10)

1 (H ml)
Wy = - —— . 11
” 2 a + BH mi ( )

Our concern is to find linear fictitious materials which lead
to upper and lower bounds for the estimation of the losses.
A ﬁctmous material, that has a constant relative perme—
ability p/; and the same maximum field intensity HY, at
point i, is related to a magnetic co-energy density during
the same quarter of the period equal to

w (12)
If this magnetic co-energy density is set equal to w,;, the
fictitious material will have a relative permeability at node
i equal to

= %MO” rl(Hnu) .

1
polae + BH‘,fm')
as it can be seen from (6) and Fig. 2(b). The eddy current

losses of a plate of a linear magnetic material, taking both
sides into account, is given in [4] by

(13)

Mfrzi =

H? sinh y — sin v

(14)

] 06 cosh v + cos vy
where y = 2d/6 and & = (1/mfopep,)'/?. From (14) it
can be seen that when u, increases the losses also in-
crease. The nonlinear material during a quarter of a period
changes its relative permeability from a maximum value
(when H is zero) to a minimum (when H is maximum).
- Since p’y given in (13) represents a minimum value of
relative permeability, we expect that the equation of w
and w,; may lead to a fictitious material having lower
losses than the nonlinear material has, i.e., we expect wy;
to be a lower bound for the loss estimation.

In order to consider a corresponding upper bound, the
magnetic co-energy density w); given by (7) seems to be
a reasonable choice. Indeed, w); takes into account the
saturation of the material, since it can be seen from Fig.
2(a), w,; increases with the increase of H{,,,. On the con-
trary, the magnetic energy density w, defined by

Bui
. S h db

w, =
0

(15)
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tends to a limit that is hardly influenced by an increase in
H, because B has a limiting saturation value for each ma-
terial.

To check the hypothesis of lower and upper bound. the
losses of the thick steel plate have been computed using
independently equations w! = wy; and wl = w,;. They
have led to a corresponding over- and underestimation,
having almost equal and opposite difference compared to
the loss value that was computed with the classical method
of [3]. So one reasonable estimation of the magnetic co-
energy density of the fictitious material is the average of
wy; and wy;, given by
f_ Wi T Wy
Wi = o (16)
as shown in Fig. 2(c).

Using (12) and (16), the relative permeability of the
fictitious material at point i is

7 Wy owy

Kyi = — 2
p‘O( H{ni)

and it is a function of HZ, alone for a given Frohlich
curve, as can be easily seen using (8) and (11).

(17)

V. THE ITERATIVE PROCEDURE

The solution of (4) is based on an iterative procedure,
since both p £ and H / are unknowns. This procedure con-
tains six steps that will be explained in detail.

Step 1: The diffusion equation (4) is solved for the un-
known values of H”. In the first iteration the relative
permeability uf, of the fictitious material is set equal to
the initial slope of the Frohlich curve, i.e.,

{zL

Mo

w

and hence it has the same value at every point. For all the
next iterations u £ will be obtained from step 6 and it will
be generally different from point to point.

Step 2: Using the values of H/, from the solution at
step 1 and (5), the maximum flux densities B!, are cal-
culated.

Step 3: Using (12), magnetic co-energy densities w!
are calculated at every point.

Step 4: Using (6) and the same values of H . from step
1, maximum flux densities B,,; are calculated at every
point.

Step 5: Using (8) and (11), magnetic co-energy densi-
ties w,; and w», are obtained, respectively, and the average

_owy towy

w; =
2
is computed.
Step 6: At every point of the material, the values of w;
and w7 are tested whether they differ more than a small
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quantity we,. If |w; — w {l < w,, at every point, the
iteration procedure is terminated. If |w; — w/{| > wg, at
point i, a new relative permeability is related to this point,
equal to
wl = 2w
ri = 2
Ho (H {ni)
This new value will be used at step 1 of the next iteration.
The value of w,,, is related to the precision of the com-
putation and it is a function of the-applied field H, on the
surface of the plate.

VI. REsULTS

The problem of the thick steel plate has been solved
over a wide range of geometrical and physical data and
comparison is made with the universal loss chart of [3].
In order to make a right comparison, the same numerical
method of finite differences and the same B-H approxi-
mation of (2) were used. In all cases, the agreement of
the two methods was excellent and the differences were
between 0.5 and 2 percent.

In order to illustrate the validity of the new method, a
case with the data shown in Table I is examined here in
detail. In Figs. 3 and 4 the eddy current density and the
relative permeability are shown as functions of time ¢ at
a distance y = 0.5 mm from the plate surface. In Figs. 5
and 6 the eddy current density and the relative perme-
ability are shown as functions of distance y at a time ¢ =
2.5 ms, equal to the eighth of the period T. In all cases,
solid lines refer to the nonlinear material solved with the
classical step-by-step method of [3] while dashed lines
refer to the equivalent fictitious material proposed in this
paper.

The step-by-step method of [3] gives a total value of
losses

P = 1360.68 W/m’

taking into account both sides of the plate. The complex
solution method proposed in this paper gives a total value
of losses

P/ =1385.17 W/m’.

The difference of the two values is therefore 1.8 percent,
but 1/12 of the computing time was needed for the so-
lution of the problem.

The value of w,,, used was

Wer = 0.001w,

and the magnetic co-energy density w;, chosen as a refer-

ence was
2
W = 1Hm
b - .
2 @«

The convergence of the new method is very fast, as it can
be seen from Table II. In all cases tested, after the fourth
iteration the computed value of losses had an acceptable
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TABLE I
PHYSICAL AND GEOMETRICAL DATA FOR
THE THICK STEEL PLATE

o = 156 m/H
B =0.59 1/T
0=5x10° S/m
T=20 ms
d=25 mm
H, =26441 A/m
5.0
J{10%A/m?)
25 J'
TN
/ N\
0 T
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-50-

Fig. 3. Eddy current density J versus time at a distance y = 0.5 mm from
plate surface.
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Fig. 4. Relative permeability u, versus time at a distance y = 0.5 mm from
plate surface.
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Fig. 5. Eddy current density J versus distance at a time 1 = 2.5 ms.
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Fig. 6. Relative permeability p, versus distance at a time 7 = 2.5 ms.

TABLE II
CONVERGENCE OF THE METHOD (P = 1360.68 W /m*)
P/ -P
. P ) x 100
Iteration P/(W/m%)
1 3171.76 133.10
2 1626.36 19.53
3 1445.30 6.22
4 1402.00 3.04
5 1389.81 2.14
6 1386.06 1.87
7 1385.38 1.82
8 1385.17 1.80
TABLE III
Average Values of the Loss Density
2
17 IJ()” f)| )
{u(y)) = o dr computed with the classical method of 3]
1] a
2
17| ‘
(uf( y)) = 5 computed with the new complex method
g
Distance from
Surface y Cu(y)) Cul(y)) Difference
(mm) (W/m?) (W/m*) (%)
0.5 555853 563157 1.3
1.0 236380 230098 -2.7
1.5 70886 71679 1.1

difference of 3 percent with the corresponding value of
losses given by the loss chart of [3].

Finally, the average loss densities for a period of time
T were computed with both methods and at three different
points of the steel plate. The results are shown in Table
III and it can be seen that the new complex solution
method introduces a material that has at every point the
same average losses as the nonlinear material.
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VII. CONCLUSIONS

The iterative procedure presented in this paper leads to
accurate eddy current loss computations, using a complex
analysis of the nonlinear diffusion equation in a one-di-
mensional thick steel plate problem.

An equivalent material with non-time-varying perme-
ability is introduced and it is related to the nonlinear
B-H curve of the steel with the help of the stored mag-
netic co-energy at every point. This equivalent material
has the same time average losses as the nonlinear material
at every point.

The use of phasor quantities for the solution of the
problem makes this new method considerably faster than
the classical step-by-step solution. Therefore, it may be
applied to eddy current problems in nonlinear ferromag-
netic materials, when the computation of the losses and
not of the actual field is of importance.
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