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Abstract

Given a reference lattice (X,v), we define fuzzy intervals to be the fuzzy sets such that their p-
cuts are crisp closed intervals of (X,v). We show that: given a complete lattice (X,v) the collection
of its fuzzy intervals is a complete lattice. Furthermore we show that: if (X,v) is completely
distributive then the lattice of its fuzzy intervals is distributive.

Keywords: Algebra, Fuzzy Algebras, Fuzzy Lattices.

1 Introduction

The following is a small sample of the large literature on fuzzy algebras. Rosenfeld wrote the first
paper on fuzzy groups [10]; a recent review is [3]. Fuzzy rings and fuzzy ideals of rings are studied in
[19, 5, 2, 20]. Seselja, Tepavcevska and others have presented a far reaching famework of L-fuzzy and
P-fuzzy algebras [11, 12, 13].

Fuzzy lattices are a particular type of fuzzy algebras. A fuzzy lattice is a fuzzy set such that its cuts
are sublattices of a “reference lattice” (X,v). Relatively little has been published on fuzzy lattices.
Yuan and Wu introduced the concept [17] and Ajmal studied it in greater detail [1]. Swamy and Raju
[14] and, more recently, Tepavcevska and Trajkovski [15] studied L-fuzzy lattices.1.

In this note we introduce fuzzy intervals within the context of fuzzy lattices. I.e. a fuzzy interval is
defined to be a fuzzy set such that its cuts are closed intervals of a reference lattice (X,v). It appears
that fuzzy intervals (in this lattice theoretic sense) have not been studied previously. A special case
which has been extensively studied is that of fuzzy intervals with the reference lattice (X,v) being a
set of real numbers [7]. Some connections between this special case and the more general case studied
here will be discussed briefly in Section 5..

As mentioned, our study of fuzzy intervals is lattice theoretic. We establish some basic properties
of fuzzy intervals and we show the following: given a complete lattice (X,v), the collection of its fuzzy
intervals is a complete lattice; if (X,v) is completely distributive then the lattice of its fuzzy intervals
is distributive.

1Two additional senses of the term “fuzzy lattice” should also be mentioned. Kaburlasos and Petridis use fuzzy

inclusion measures [6, 8, 9] to introduce a concept of “fuzzy lattice” which is different from the one used in the previously
mentioned works; however there is an interesting connection between the two approaches through the concept of fuzzy

orders. In addition, [16, 18, 21] and many others use the term “fuzzy lattice” to denote a quite different mathematical
concept, namely a completely distributive lattice with an order reversing involution.
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2 Preliminaries

In what follows, the closed unit interval is denoted by L
.
= [0, 1] ⊆ R. The usual order of real numbers

is denoted by ≤; the maximum (resp. minimum) of x, y is denoted by x ∨ y (resp. x ∧ y). Given a
set P ⊆ L, ∨P (resp. ∧P ) denotes the supremum (resp. the infimum) of P . (L,≤,∨,∧) is a totally
ordered set.

The reference lattice is denoted by (X,v,t,u) and it is assumed to be complete. Hence, for every
Y ⊆ X the elements uY , tY exist; in particular, there exist uX (the minimum element of X) and tX
(the maximum element of X), hence we can write X = [uX,tX].

Definition 2.1 A fuzzy set is a function M : X → L. The collection of all fuzzy sets (from X to L)
will be denoted by F(X,L) or simply by F.

In a standard manner, we introduce an order on F using the “pointwise” order of (L,≤,∨,∧). The
symbols ≤,∨,∧ will be used without danger of confusion.

Definition 2.2 For M,N ∈ F we write M ≤ N iff for all x ∈ X we have: M(x) ≤ N(x).

Definition 2.3 For M,N ∈ F: we define the fuzzy set M ∨ N by: (M ∨ N)(x)
.
= M(x) ∨ N(x); we

define the fuzzy set M ∧ N by: (M ∧ N)(x)
.
= M(x) ∧ N(x).

It is well known [7] that ≤ is an order on F and that (F,≤,∨,∧) is a complete and distributive
lattice with sup(M,N) = M ∨ N , inf(M,N) = M ∧ N .

Definition 2.4 Given a fuzzy set M : X → L, the p-cut of M is denoted by Mp and defined by
Mp

.
= {x : M(x) ≥ p}.

We will need some properties of p-cuts, summarized in the following propositions. Their proofs can
be found in [7].

Proposition 2.5 Take any M ∈ F with p-cuts {Mp}p∈L
and N ∈ F with p-cuts {Np}p∈L

. Then
M = N iff for all p ∈ L we have Mp = Np.

Proposition 2.6 Take any M ∈ F with p-cuts {Mp}p∈L
. Then we have the following.

(i) For all p, q ∈ L we have: p ≤ q ⇒ Mq ⊆ Mp.
(ii) For all P ⊆ L we have: ∩p∈P Mp = M∨P .
(iii) M0 = X.

Proposition 2.7 Consider a family of sets {M̃p}p∈L which satisfy the following.

(i) For all p, q ∈ L we have: p ≤ q ⇒ M̃q ⊆ M̃p.

(ii) For all P ⊆ L we have: ∩p∈P M̃p = M̃∨P .

(iii) M̃0 = X.

Define the fuzzy set M(x) = ∨{p : x ∈ M̃p}. Then for all p ∈ L we have Mp = M̃p.

We will also need some well-known properties of (crisp) closed intervals in a lattice.

Definition 2.8 Given x1, x2 ∈ X, with x1 v x2, the closed interval [x1, x2] is defined by [x1, x2]
.
=

{z : x1 v z v x2}.
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We consider the empty set ∅ to be a closed interval, the so called empty interval. This can also
be denoted as [x1, x2] with any x1, x2 such that x1 6v x2. Denote by I the collection of (crisp) closed
intervals of X (including the empty interval). The structure (I,⊆) is an ordered set. In fact it is a
lattice, as the following propositions show (proofs are omitted for brevity; they follow from the fact
that being a closed interval is a closure property on (I,⊆) [4]).

Proposition 2.9 Given any nonempty interval A = [a1, a2] ⊆ X, we have a1 = uA, a2 = tA.

Proposition 2.10 Given any family of closed intervals J ⊆ I the set ∩[a1,a2]∈J[a1, a2] is a closed in-
terval; more specifically, we have

∩[a1,a2]∈J[a1, a2] = [t[a1,a2]∈Ja1,u[a1,a2]∈Ja2]

and this is the largest closed interval contained in every member of J.

Definition 2.11 Given A,B ∈ I, define S(A,B)
.
= {C: C ∈ I, A ⊆ C,B ⊆ C}. Then we define

A
.
∪ B

.
= ∩C∈S(A,B)C.

Proposition 2.12 The structure (I,⊆,
.
∪,∩) is a lattice with respect to the ⊆ order (i.e. set theoretic

inclusion). Given any intervals A = [a1, a2] ∈ I, B = [b1, b2] ∈ I, sup(A,B) = A
.
∪B = [a1ub1, a2tb2],

inf(A,B)= A∩ B = [a1 t b1 , a2 u b2].

Remark. In other words, given any intervals A = [a1, a2], B = [b1, b2], [a1 u b1, a2 t b2] is the
smallest closed interval which contains both A and B and [a1 t b1 , a2u b2] is the largest closed interval
contained in both A and B.

We define fuzzy sublattices and fuzzy convex sublattices in terms of their p-cuts; this is different
from, but equivalent to Ajmal’s approach [1].

Definition 2.13 We say M : X → L is a fuzzy sublattice of (X,v) iff ∀p ∈ L the set Mp is a
sublattice of (X,v).

Definition 2.14 We say M : X → L is a fuzzy convex sublattice of (X,v) iff ∀p ∈ L the set Mp is
a convex sublattice of (X,v); (i.e. ∀p ∈ L,∀x, y ∈ Mp we have [x u y, x t y] ⊆ Mp).

Proposition 2.15 M : X → L is a fuzzy sublattice of (X,v) iff

∀x, y ∈ X : M(x u y) ∧ M(x t y) ≥ M(x) ∧ M(y).

Proof. See [15].

Proposition 2.16 Let M : X → L be a fuzzy sublattice of (X,v). It is a fuzzy convex sublattice of
(X,v) iff

∀x, y ∈ X,∀z ∈ [x u y, x t y] : M(z) ≥ M(x u y) ∧ M(x t y) = M(x) ∧ M(y). (1)
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Proof. (i) Assume M is a fuzzy convex sublattice. Choose any x, y ∈ X. Set p1 = M(x u y),
p2 = M(x t y); then x u y, x t y ∈ Mp1∧p2

. Take any z ∈ [x u y, x t y]. Since M is a fuzzy convex
sublattice: z ∈ Mp1∧p2

⇒ M(z) ≥ p1 ∧ p2 = M(x u y) ∧ M(x t y). Since x, y ∈ [x u y, x t y] we have
M(x) ≥ M(xuy)∧M(xty), M(y) ≥ M(xuy)∧M(xty); and so M(x)∧M(y) ≥ M(xuy)∧M(xty).
On the other hand, since M is a fuzzy sublattice, from Proposition 2.15 we have M(xuy)∧M(xty) ≥
M(x) ∧ M(y). Hence M(x u y) ∧ M(x t y) = M(x) ∧ M(y).

(ii) Conversely, assume (1) holds. Take any p ∈ L. If Mp is empty, then it is a convex sublattice. If
Mp is not empty, take any x, y ∈ Mp. Set p1 = M(x), p2 = M(y). We have x ∈ Mp ⇒ p1 = M(x) ≥ p,
y ∈ Mp ⇒ p2 = M(y) ≥ p. From (1) we have M(x u y) ≥ M(x) ∧ M(y) = p1 ∧ p2 ≥ p ⇒ x u y ∈ Mp.
Similarly x t y ∈ Mp and so Mp is a sublattice. Set q1 = M(x u y), q2 = M(x t y). Now take any
z ∈ [x u y, x t y]. From (1) we have M(z) ≥ q1 ∧ q2 = p1 ∧ p2 ≥ p ⇒ z ∈ Mp. Hence Mp is a convex
sublattice for all p ∈ L, i.e. M is a fuzzy convex sublattice.

3 The Lattice of Fuzzy Intervals

We now introduce fuzzy intervals.

Definition 3.1 We say M : X → L is a fuzzy interval of (X,v) iff

∀p ∈ L : Mp is a closed interval of (X,≤).

The collection all fuzzy intervals will be denoted by Ĩ(X,L) or simply by Ĩ.

The following proposition will be often used in the sequel. It states that an arbitrary intersection
of fuzzy intervals yields a fuzzy interval.

Proposition 3.2 For all J̃ ⊆ Ĩ we have: ∧
M∈J̃

M ∈ Ĩ

Proof. Choose any J̃ ⊆ Ĩ ⊆ F. The fuzzy set ∧
M∈J̃

M is well defined, in view of the fact that
(F,≤,∨,∧) is a complete lattice. Choose any p ∈ L. It is easy to show that (∧

M∈J̃
M)p = ∩

M∈J̃
Mp.

Then for every M ∈ J̃ , the cut Mp will be a closed interval (perhaps the empty interval). From
Proposition 2.10, an arbitrary intersection of closed intervals yields a closed interval. Hence, for every
p ∈ L the set (∧

M∈J̃
M)p is a closed interval, i.e. ∧

M∈J̃
M is a fuzzy interval.

Since Ĩ ⊆ F, it follows that (̃I,≤) is an ordered set. We now establish (using Proposition 3.2) that
(̃I,≤) is a lattice.

Definition 3.3 For all M,N ∈ Ĩ we define M
.
∨ N as follows. We define S̃(M,N)

.
= {A : A ∈ Ĩ,

M ≤ A,N ≤ A} and then define

M
.
∨ N

.
= ∧

A∈S̃(M,N)A.

Proposition 3.4 (̃I,≤,
.
∨,∧) is a complete lattice.

Proof. (i) M ∧ N is the infimum in F of M and N . From Proposition 3.2 we have M ∧ N ∈ Ĩ,
hence M ∧ N is also the infimum of M and N in Ĩ.

(ii) For all A ∈ S̃(M,N) we have M ≤ A and so M ≤ ∧
A∈S̃(M,N)A = M

.
∨N ; similarly N ≤ M

.
∨N .

Furthermore, if there is some B ∈ Ĩ such that M ≤ B, N ≤ B, then B ∈ S̃(M,N). Hence M
.
∨ N =
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∧
A∈S̃(M,N)A ≤ B. Finally, since S̃(M,N) ⊆ Ĩ, we have M

.
∨ N = ∧

A∈S̃(M,N)A ∈ Ĩ. Hence M
.
∨ N is

the supremum in Ĩ of M and N .
(iii) To establish completeness of (̃I,≤,

.
∨,∧) we must show that any J̃ ⊆ Ĩ has an infimum and a

supremum in Ĩ. We have already remarked (Proposition 3.2) that, for any J̃ ⊆ Ĩ, the set ∧
M∈J̃

M is a

well defined fuzzy interval. Since ∧J̃ = ∧
M∈J̃

M is the infimum of J̃ in F, it will also be the infimum of

J̃ in Ĩ ⊆ F. Regarding the supremum, we must define appropriately
.
∨J̃. Define a set S̃(J̃) = {A ∈ Ĩ :

∀M ∈ J̃ we have M ≤ A}. Define
.
∨J̃

.
= ∧

A∈S̃(J̃)A. Then
.
∨J̃ ∈ Ĩ (as an intersection of fuzzy intervals),

and it is easy to show that: ∀M ∈ J̃ we have M ≤
.
∨J̃, ∀A ∈ S̃(J̃) we have

.
∨J̃ ≤ A. Hence

.
∨J̃ is the

supremum of J̃ and completeness has been established.
The following propositions establish some properties of fuzzy intervals.

Definition 3.5 For every fuzzy set M we define LM
.
= {p : Mp 6= ∅}.

Proposition 3.6 (i) Let M be a fuzzy convex sublattice. If we have

∀p ∈ LM : M(uMp) ≥ ∧x∈Mp
M(x), M(tMp) ≥ ∧x∈Mp

M(x), (2)

then M is a fuzzy interval.
(ii) If M is a fuzzy interval, then it is a fuzzy convex sublattice and we have

∀p ∈ LM : M(uMp) ≥ ∧x∈Mp
M(x), M(tMp) ≥ ∧x∈Mp

M(x).

Proof. (i) Assume (2) holds. Choose any p ∈ LM . Now, by completenes of (X,v), uMp and
tMp exist. Clearly Mp ⊆ [uMp,tMp]. On the other hand, from (2), M(uMp) ≥ ∧x∈Mp

M(x) ≥ p ⇒
uMp ∈ Mp, i.e. Mp contains its infimum. Similarly M(tMp) ≥ ∧x∈Mp

M(x) ≥ p ⇒ tMp ∈ Mp. Since
Mp is a convex sublattice and uMp,tMp ∈ Mp, it follows that [uMp,tMp] ⊆ Mp. Hence for all p ∈ LM

we have that Mp = [uMp,tMp]. Further, for all p ∈ L−LM , Mp is the empty set, which is considered
a closed interval. Hence for all p ∈ L the set Mp is a closed interval, i.e. M is a fuzzy interval.

(ii) If M is a fuzzy interval then for all p ∈ LM we have Mp = [uMp, tMp], which is a closed interval
and a fortiori a convex sublattice. Hence M is a fuzzy convex sublattice. Furthermore, Mp = [uMp,
tMp]⇒ uMp ∈ Mp ⇒ M(uMp) ≥ ∧x∈Mp

M(x). Similarly, tMp ∈ Mp ⇒ M(tMp) ≥ ∧x∈Mp
M(x) .

Corollary 3.7 If M is a fuzzy interval, then ∀p ∈ LM we have M(uMp) ∧ M(tMp) = ∧x∈Mp
M(x).

Corollary 3.8 Let X be finite. Then every fuzzy convex sublattice is a fuzzy interval and conversely.

Proposition 3.9 If M is a fuzzy interval, then ∀p ∈ LM we have Mp = Mp1∧p2
, where p1 = M(uMp),

p2 = M(tMp).

Proof. Choose any p ∈ LM . Since M is a fuzzy interval, we have Mp = [uMp,tMp]. Set
p1 = M(uMp) ≥ p, p2 = M(tMp) ≥ p. Then M(uMp) = p1 ≥ p1 ∧ p2 and so uMp ∈ Mp1∧p2

.
Similarly tMp ∈ Mp1∧p2

. Since M is a fuzzy interval (and so a fuzzy convex sublattice) it follows that
[uMp,tMp] ⊆ Mp1∧p2

. On the other hand p1 ∧ p2 ≥ p ⇒ Mp1∧p2
⊆ Mp = [uMp,tMp]. Hence Mp1∧p2

= Mp.
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4 Distributivity

In all of this section we assume (X,v,t,u) to be completely distributive according to the following
definition.

Definition 4.1 The lattice (X,v,t,u) is said to be completely distributive, iff for every set Y ⊆ X
we have x t (uy∈Y y) = uy∈Y (x t y), x u (ty∈Y y) = ty∈Y (x u y).

Let M,N be fuzzy intervals. Our first task is to establish some properties of the cuts (M ∧ N)p
and (M

.
∨N)p. From Proposition 3.4 we see that M ∧N and M

.
∨N are fuzzy intervals; hence ∀p ∈ L

the cuts (M ∧ N)p and (M
.
∨ N)p are (crisp) closed intervals.

Definition 4.2 For all M,N ∈ Ĩ and for all p ∈ L we define Cp(M,N) = Mp ∩ Np.

Proposition 4.3 For all M,N ∈ Ĩ and for all p ∈ L we have: (M ∧ N)p = Cp(M,N).

Proof. Take any M,N ∈ Ĩ, any p ∈ L. We have x ∈ (M ∧ N)p ⇔ (M ∧ N) (x) ≥ p ⇔ M(x) ∧
N(x) ≥ p ⇔ (M(x) ≥ p and N(x) ≥ p) ⇔ (x ∈ Mp and x ∈ Np) ⇔ x ∈ Mp ∩ Np = Cp(M,N).

Proposition 4.4 Take any M,N ∈ Ĩ. We have:
(i) ∀p, q ∈ L : p ≤ q ⇒ Cq(M,N) ⊆ Cp(M,N),
(ii) ∀P ⊆ L: ∩p∈P Cp(M,N) = C∨P (M,N).
(iii) C0(M,N) = X.

Proof. These properties follow from the fact that for all p ∈ L we have Cp(M,N) = (M ∧ N)p,
i.e. the family {Cp(M,N)}p∈L is a family of cuts.

Hence we have characterized the cuts of M ∧ N in terms of the cuts of M and N . We will now do
the same for the cuts of M

.
∨ N . However, before proceeding we need some auxiliary definitions and

propositions.

Definition 4.5 For every M ∈ Ĩ, we define the functions M : L → X, M : L → X as follows. For
p ∈ LM , M(p)

.
= uMp, M(p)

.
= tMp; for p ∈ L − LM , M(p)

.
= tX, M(p)

.
= uX.

Remark. Hence we can write Mp = [M(p),M (p)] for every p ∈ L. Because: if p ∈ LM , then Mp

= [uMp,tMp] = [M (p),M(p)]; if p ∈ L − LM , then Mp = ∅ = [tX,uX] = [M(p),M (p)].

Proposition 4.6 Take any M ∈ Ĩ and for all p ∈ L set Mp = [M(p),M (p)]. Then
(i) ∀p, q ∈ L : p ≤ q ⇒

(
M(p) v M(q),M (p) w M(q)

)
.

(ii) ∀P ⊆ L : tp∈P M(p) = M(∨P ), up∈PM (p) = M(∨P ).

Proof. (i) Since {Mp}p∈P
are cuts, from Prop.2.6.(i) we have: p ≤ q ⇒ Mq ⊆ Mp ⇒ [M(q) ,

M(q)] ⊆ [M (p) , M(p)]⇒ (M (p) ≤ M(q) , M(p) ≥ M(q)). Note in particular that: if q /∈ LM , then
M(p) v M(q) = tX and M(p) w M(q) = uX.

(ii) Since {Mp}p∈P
are cuts, from Prop.2.6.(ii) we have: ∩p∈P Mp = M∨P . But M∨P = [M (∨P ) ,

M(∨P )] and (Proposition 2.10) ∩p∈P Mp= [tp∈P M(p) , up∈P M(p)] which yields the required result.
Note in particular that: if there exists some q ∈ P such that q ∈ L − LM , then Mq = ∅, ∩p∈P Mp = ∅,
and M∨P = ∅ = [M(∨P ),M (∨P )] with M(∨P ) = tX, M(∨P ) = uX. Also, in this case M(q) = tX,
tp∈P M(p) = tX, M(q) = uX, up∈P M(p) = uX.
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Proposition 4.7 (i) Take any P ⊆ L and any functions F : L → X, G : L → X which satisfy

p ≤ q ⇒ F (p) v F (q), tp∈P F (p) = F (∨P ),

p ≤ q ⇒ G(p) v G(q), tp∈P G(p) = G(∨P ).

Then tp∈P (F (p) u G(p)) = F (∨P ) u G(∨P ).
(ii) Take any P ⊆ L and any functions F : L → X, G : L → X which satisfy

p ≤ q ⇒ F (p) w F (q), up∈P F (p) = F (∨P ),

p ≤ q ⇒ G(p) w G(q), up∈P G(p) = G(∨P ).

Then up∈P (F (p) t G(p)) = F (∨P ) t G(∨P ).

Proof. For (i), take any p ∈ P . Then F (p)uG(p) v F (p). Hence tp∈P (F (p) u G(p)) v tp∈PF (p)
= F (∨P ). Similarly tp∈P (F (p) u G(p)) v tp∈P G(p) = G(∨P ). It follows that

tp∈P (F (p) u G(p)) v F (∨P ) u G(∨P ). (3)

On the other hand, using complete distributivity, we have tp∈P,q∈P (F (p) u G(q)) = tp∈P (F (p) u (tq∈P G(q)))
= tp∈P (F (p) u G(∨P )) = (tp∈P F (p)) u G(∨P ) = F (∨P ) u G(∨P ). In short

F (∨P ) u G(∨P ) = tp∈P,q∈P (F (p) u G(q)) (4)

Finally, since (L,≤) is totally ordered, P is a sublattice of (L,≤); so for any p, q ∈ P we have p∨q ∈ P .
Then (p ≤ p ∨ q, q ≤ p ∨ q) ⇒ F (p) u G(q) v F (p ∨ q) u G(p ∨ q). So tp∈P,q∈P (F (p) u G(q)) v
tp∈P,q∈P (F (p ∨ q) u G(p ∨ q)) v tr∈P (F (r) u G(r)). Hence

tp∈P,q∈P (F (p) u G(q)) v tp∈P (F (p) u G(p)) (5)

From (3), (4), (5) follows that tp∈P (F (p) u G(p)) = F (∨P ) u G(∨P ) and (i) has been proved; (ii) is
proved dually.

Now we return to the cuts of M
.
∨ N .

Definition 4.8 For all M,N ∈ Ĩ and for all p ∈ L we define Dp(M,N) = Mp

.
∪ Np.

Proposition 4.9 Take any M,N ∈ Ĩ . We have
(i) ∀p, q ∈ L: p ≤ q ⇒ Dq(M,N) ⊆ Dp(M,N),
(ii) ∀P ⊆ L : ∩p∈P Dp(M,N) = D∨P (M,N).
(iii) D0(M,N) = X.

Proof. (i) Assume p ≤ q. Then (Mq ⊆ Mp, Nq ⊆ Np) ⇒ Mq

.
∪ Nq ⊆ Mp

.
∪ Np ⇒ Dq(M,N)

⊆ Dp(M,N).
(ii) Take any P ⊆ L and any p ∈ P . We have Dp(M,N) = [M(p) u N(p),M (p) t N(p)], hence

∩p∈P Dp(M,N) = [tp∈P (M(p) u N(p)),up∈P (M (p) t N(p))]. (6)

Also

D∨P (M,N) = [M(∨P ) u N(∨P ),M (∨P ) t N(∨P )]. (7)
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Use Proposition 4.7.(i) with F (p) = M(p) and G(p) = N(p). Then

tp∈P (M (p) u N(p)) = M(∨P ) u N(∨P ). (8)

Use Proposition 4.7.(ii) with F (p) = M(p) and G(p) = N(p). Then

up∈P (M (p) t N(p)) = M(∨P ) t N(∨P ). (9)

Eqs.(6–9) yield the required result.
(iii) D0(M,N) = M0

.
∪ N0 = X

.
∪ X = X.

Proposition 4.10 For all M,N ∈ Ĩ and for all p ∈ L we have: (M
.
∨ N)p = Dp(M,N)

Proof. From Proposition 4.9 follows that {Dp(M,N)}
p∈L

is a family of cuts. Hence, if we define
a fuzzy set (M Y N) by setting

∀x ∈ X : (M Y N)(x)
.
= ∨{p : x ∈ Dp(M,N)}

then ∀p ∈ L we will have (M YN)p = Dp(M,N) (Proposition 2.7). From this also follows that (M YN)
is a fuzzy interval (since ∀p ∈ L we have (M Y N)p = Dp(M,N) = Mp

.
∪Np). Now choose any p ∈ L ;

we will show that (M
.
∨ N)p = (M Y N)p.

First, (M
.
∨ N)p is a (crisp) closed interval. Also, x ∈ Mp ⇒ (M

.
∨ N)(x) ≥ M(x) ≥ p ⇒

x ∈ (M
.
∨ N)p. So Mp ⊆ (M

.
∨ N)p. Similarly Np ⊆ (M

.
∨ N)p. Hence (M

.
∨ N)p ∈ S(Mp, Np) which

implies that (M Y N)p = Dp(M,N) = Mp

.
∪ Np = ∩A∈S(Mp,Np)A ⊆ (M

.
∨ N)p.

Second, choose any x ∈ X and set p = M(x). Then x ∈ Mp ⊆ Dp(M,N) = (M Y N)p. Hence
(M Y N)(x) ≥ p = M(x); similarly (M Y N)(x) ≥ N(x). Since M

.
∨ N = sup(M,N), it follows that

(M Y N)(x) ≥ (M
.
∨ N)(x) and so (M Y N)p ⊇ (M

.
∨ N)p.

So we have (M Y N)p = (M
.
∨ N)p which (Proposition 2.5) implies M Y N = M

.
∨ N .

Proposition 4.11 (̃I,≤,
.
∨,∧) is a distributive lattice.

Proof. We must show that for any A,B,C ∈ Ĩ we have (A
.
∨ B) ∧ C = (A ∧ C)

.
∨ (B ∧ C) and

(A ∧ B)
.
∨ C = (A

.
∨ C) ∧ (B

.
∨ C). We will show this by showing equality of the p-cuts.

Indeed, choose any p ∈ L and set Ap = [a1, a2], Bp = [b1, b2], Cp = [c1, c2] (in case any of these
intervals is empty, denote it by [uX,tX]). Now

(
(A

.
∨ B) ∧ C

)
p

= (A
.
∨ B)p ∩ Cp = (Ap

.
∪ Bp) ∩ Cp =

([a1, a2]
.
∪ [b1, b2]) ∩ [c1, c2] = [a1 u b1, a2 t b2] ∩ [c1, c2] =

[(a1 u b1) t c1, (a2 t b2) u c2] = [(a1 t c1) u (b1 t c1), (a2 u c2) t (b2 u c2))] =

[a1 t c1, a2 u c2]
.
∪ [b1 t c1, b2 u c2] = ([a1, a2] ∩ [c1, c2])

.
∪ ([b1, b2] ∩ [c1, c2]) =

(Ap ∩ Cp)
.
∪ (Bp ∩ Cp) = (A ∧ C)p

.
∪ (B ∧ C)p =

(
(A ∧ C)

.
∨ (B ∧ C)

)
p
.

Since for all p ∈ L we have
(
(A

.
∨ B) ∧ C

)
p

=
(
(A ∧ C)

.
∨ (B ∧ C)

)
p

, it follows that (A
.
∨ B) ∧ C =

(A ∧ C)
.
∨ (B ∧ C). Dually we show that (A ∧ B)

.
∨ C = (A

.
∨ C) ∧ (B

.
∨ C).
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5 Discussion

In this paper we have introduced fuzzy intervals and obtained some of their basic properties. The
method we have used is rather standard in the study of fuzzy algebras – in particular we have obtained
several properties of fuzzy intervals by studying their p-cuts. This method can be used to obtain further
properties of fuzzy intervals.

In our analysis we have made several assumptions, the most prominent ones being that: (a) L is
[0, 1] and (b) X is complete and completely distributive. To what extent can these assumptions be
relaxed?

Regarding L, the analysis remains unchanged if (L,≤,∨,∧) is simply a chain. But it does not seem
obvious how to generalize our results to L-fuzzy lattices, because Proposition 4.7 requires that for every
P ⊆ L, and for all p, q ∈ P , we have p ∨ q ∈ P ; for this to be true for arbitrary P ⊆ L, (L,≤) must
be a chain.

The completeness of (X,v,t,u) is also essential. Obviously, if (X,v,t,u) is not complete, there
is no guarantee that an infinite union of fuzzy intervals will be a fuzzy interval. Regarding complete
distributivity, it has only been used in Section 4, but there it plays an essential role in the proof
of Proposition 4.7. Let us note that in the important special case where X has finite cardinality,
completeness is automatically satisfied and complete distributivity is equivalent to distributivity (which
clearly is a minimum requirement for the lattice of fuzzy intervals to be distributive).

Finally, let us discuss briefly the important special case when (X,v,t,u) = (R,≤,∨,∧). In this
case we obtain the “classical” notion of a fuzzy interval, i.e. a fuzzy set such that its p-cuts are
closed intervals on the real line (compare [7, p.37, p.48]. It is worth noting that, taking X = Rn, the
notion of a fuzzy convex sublattice also specializes to that of a “classical” convex fuzzy set [7, p.41].
Fuzzy intervals and convex fuzzy sets in this “classical” sense have been studied extensively. It appears
worthwhile to study “classical” fuzzy intervals from the lattice theoretic point of view. Conversely, they
can serve as a source of inspiration for generalizations (especially of convexity results) in the context
of a general lattice (X,v,t,u).
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