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Abstract

We use Stochastic Recurrent Networks of the type introduced in
[Keh91a] as models of finite-alphabet time series. We develop the
Mazximum Likelihood Prediction Algorithm and the Maximum A Pos-
teriori Classification Algorithm (which can both be implemented in
recurrent PDP form). The prediction problem is: given the output up
to the present time: Y1, ..., Y? and the input up to the immediate fu-
ture: U1, ..., U™, predict with Maximum Likelihood the output Y+
that the SRN will produce in the immediate future. The classification
problem is: given the output up to the present time: Y1, ..., Y* and
the input up to the present time: U',...,U?, as well as a number of
candidate SRN’s: My, Mo, .., Mg, find the network that has Max-
imum Posterior Probability of producing Y1, ...,Y*. We apply our
algorithms to prediction and classification of speech waveforms.
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NOTATION

Given a finite set A, we denote the number of elements in A by |A|. E.g.,
for A = {ay,...,an}, |A] = N. The alphabet A of a stochastic process
{7}2, is the set of all possible values that Z* can take for any t. E.g. we
could have a binary stochastic process {Z'}2°, where Z* equals either 0 or
1 for every t. In that case the alphabet is A = {0,1}. Or, we could have a
vector-binary process {Z'}2°,, where Z' = [Z}...7%,] and Z! is either 0 or 1
for every ¢, n = 1,..., N. In that case the alphabet is AY = {[a;...ay] : a, €
An=1..,N}

We use capital letters X,V 7 etc. for stochastic processes and small
letters z, v,z for the values of the processes (characters of the alphabet).
For instance we write Prob(X" = z) for the probability that X* equals the
character z € A; we write P?"ob(XtJrl =z! ..., X" = z7) for the probability
that Xt“...XHT equals z'..27 € A", Say T = [T1...Zm], Yy = [y1...yn]; then
the concatenation of x,y is xy = [#1...ZnY1...Yn].

We will often consider probabilities that depend on the Value of a certain
parameter, say P. Then we write, for instance, Prob(X'™! = z! .. X" =
x7;P). Also, some times we denote a SRN by a letter such as ./\/l and we
want to talk about probabilities of events related this SRN. Then we use
notation such as Prob(X"™! =z ... X" =27, M).

We often consider a set S = {1,...,N} and vector x = [z7..zy]|. We
sometimes write zg in place of x. Similarly, for a set R = {ry,...,7as} C S

we write zg in place of [z,,...z.,,]. Obviously, if z;, € A for s € S, then
Tg € AlSI,

1 Introduction

In [Keh91la] we introduced Stochastic Recurrent Networks (henceforth,
SRN) as a model for finite-alphabet stochastic processes. In this paper we
develop prediction and classification methods for such SRN’s. In what
follows we use the term Time Series as a synonym for Stochastic Process.
We will develop algorithms for prediction and classification of finite alphabet
stochastic processes and will apply them to speech data problems.

The subject of time series prediction has received considerable attention
in the connectionist literature [LF87, MD88, Sut88, WZ88]. All of these
works deal with continuously valued time series. Here we deal with time
series that can take values in a finite alphabet; however, using quantization
of continuous-valued waveforms we can solve approximately the continuous-
valued case as well.

Roughly, the prediction problem is: given the past history Y! = ¢ Y2 =
y?, ..., Y" = y' of a time series (and, when appropriate, the input history up
to present U=t . UM =y compute a value Yt which is close to
the actual value YtH. The problem will be described in a mathematically



precise form in Section 3.

Classification of static patterns is a standard problem of Connectionism.
However, classification of time series has not received similarly wide atten-
tion. There is one significant exception to this statement: Speech Recog-
nition. In particular, phoneme recogntion is obviously a case of dynamic
patterns classification. This problem has been attacked using both feedfor-
ward, static classifiers [W+89a, W+89b] and feedback, dynamic classifiers
[BW88, BWS89, Rob&8, Rob89, Be+90a, Be+90b]. The general classifica-
tion problem is, roughly, the following: given several candidate SRN models:
My, ./\/l2, .., My, find the SRN that (given the input up to the present time:
Ul = !, ...,U" = u') is most likely to have produced Y! = ¢! ... V! = ¢".
Once agaln, we postpone a mathematically precise formulation to Section 5.

Our point of view is the following. For prediction, we assume the sample
y',y?, ... is produced by a known SRN M = ((S,N), P) with input uy, us, ...
(this is the modelling step, considered in [Keh9la]). Then we proceed to
compute the conditional probability of V! = q given Y! = ¢! ... Yt = 4!
Ul =l U = gt

Prob(YtH:a]Yl:yl,...,Y =y U =o', U™ =o' M) a€ A
(1)

Our prediction of Y+ is obtained by maximizing (1):

ytt = argmax Prob(Y™H —a | Y =y' . Y' =¢" U =o', UM = uT M)

@)
This computation is updated for every ¢t and can be implemented in recursive
form by a recurrent PDP network.

Similarly, for the classification problem, we assume N models My, ..., My
with known parameters and we compute Prob(M, | Y1 .. Y for n =
1,2,...,N. We classify the signal as being produced by model My, where

N is defined by
Nt = argmax Prob(M, | Y' =y', . .Y =y U =u', ..U =u') (3)

Once again, this computation is updated for every ¢ and can be implemented
in recursive form by a recurrent PDP network.

The motivation for our methods comes from stochastic control. As pointed
out in [Keh91la], any SRN can be implemented as a network of input/output
units, with hidden unit state vector X' and output unit state vector Y7,

t =1,2,.... The equations these vectors satisfy are:
XU = fXL UV, @)
Yi= (XU W) (5)

where U" is the input vector, and V?, W' are white noise inputs. The formal
similarity of (4), (5) to the equations of control systems [May82] suggests that
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we apply modified versions of standard control /estimation algorithms such as
Kalman filtering for prediction [Kal60] and the Lainiotis Partition algorithm
algorithm for classification [Lain69,Lain71]. The treatment of continuous
state time series as stochastic dynamical systems is standard; see for instance
[Aok87, BD8T].

We should point out that all the algorithms presented in the following
sections apply equally well to global Hidden Markov Models, of which SRN
are a special case (see also [Keh91b]). Both the prediction and classification
algorithm require the specification of global transition and emission proba-
bilities. In the SRN context these are readily computed in trems of the local
conditionals (see [Keh9la]); in the HMM context they are given to us (the
HMM is specified in terms of the transition and emission matrices).

2 The SRN Model

In this section we briefly review the Stochastic Recurrent Network (SRN)
model introduced in [Keh9la]. A more detailed presentation can be found
in [Keh9la]. Consider a SRN with M; input units, M; hidden units and
M, output units, all of them taking states from a finite set A. Call U? the
M;-long state vector of input units at time ¢, X* the M,-long state vector
of hidden units at time ¢, Y? the M, -long state vector of output units at
time t. The components of these vectors all come from the same finite set
A=1{0,1,..., K — 1}. The sequences {U"}°;, {X"}?°; and {Y'};°, are the
input, hidden and output stochastic processes, respectively.

We want a specification of a SRN which, together with the initial state
X and the input process {U’}°,, will describe the hidden process {X*}2°,
and the output process {Y*}2°,. The processes {U'}3°;, { X'}, {Y'}2,
all take values in finite alphabets (AM: AMr = AMo respectively). Hence they
are fully described by their probability functions:

pr(ut..u™) = Prob(U' = u'...U,, =u™) Ym, Vu', ... u™ e AM:

px(xt..z™) = Prob(X' = 2'.. X, = 2™) Vm, Vo', ... 2™ e AMr,
py (Yt y™) = Prob(Y, = y'...Y,, = y™) Vm, vy, .. y™ € AMe,

The SRN will be specified in terms of a directed graph G and a set of
local conditional probabililies P. Thus, a stochastic recurrent network is a
pair (G, P); given (G,P), pr and an initial condition X° we can compute
px (2, ... ™), py (v, ..., y™) for all m, 2!, ... 2™ ot . y™.

The directed graph G is itself a pair G = (S,N), where S = {s1,...,su}
is the collection of units (or nodes, to use the graph theoretic term). The
unit set S is partitioned into three mutually exclusive sets: S = S;U S, US,,
where S; is the set of input units, Sj is the set of hidden units, S, is the



set of output units. We have |S;| = M;, |Sy| = My, |S,| = M,. Note that
M = Mz + Mh + Mo-

Take any two units r, s € S. If s reads the state of r before changing its
own state then there is a directed edge from unit 7 to unit s. In such a case
we say that r is a parent of s. A unit s € S can have none, one or many
parents and even be a parent of itself. The set of s’s parents is indicated by
N(s) and the class of all parent sets is denoted by N = {N(s),s € S}.

(S,N) is a complete description of the topology of the net. We assume
the SRN topology satisfies the following restriction. The parent set of every
unit can be partitioned as follows:

Vs € S; N(s) =0,

Vs €S,  N(s)=N;(s)UN,(s) where N;(s) C S; and Np(s) C Sy,
Vse S,  N(s)= N;(s)UNp(s) where N;(s) CS; and Ny(s) C Sp.

In words, this means that input units receive no input, while hidden and
output units receive input only from input and hidden units. This completes
the description of the topology of the network.

The probabilistic state update mechanism is described by P, which is the
set of local conditional probabilities. The state update takes place synchro-
nously and locally for every unit. Mathematically, this is reflected in the
Markovian factorization of joint probabilities:

Prob(X'=2°| X" 1= P X2 =22 U =20U P =u LU 2 =02

H PTOb(Xﬁ = fngfﬁl(s) = 3717\/}11(5)7 Uztvi(s) = U?vi(s))- (6)

s€Sy

Similarly,

Prob(Yi =40 XM =2l X'=2 X' =21 UM =" U' =°U" =0

H Pmb(yf = yg’thvh(s) = aT?vh(s)a U]t\/'i(s) = U?vi(s))- (7)

S€ES,

The process {X'}2°, is obviously Markov, not only in time, but also
locally within the network. Therefore, if we define the local conditional
probabilities for all s € S, U S;, a € A, b€ AN ¢ ANG)

ps(alb,c) = Prob(X! = a]X]tV;l(s) = b, U]t\/'i(s) =¢)

we can compute the probability Prob(X*| X' ! U?) in terms of the local con-
ditionals:

Prob(X' =2 X" = L X" 2 =02 U =2 U P =ul ) =

H p5<a72’37]7\/;11(s)7u?\7i(5))'

s€ESH

g e

)



Similarly we can compute
Prob(Y' =0 XM =2l Xt =2 X" =21 UM =4 U =20 =0t

H p5<y2’$?vh(5) ) U?Vi(s))'

sES,

The set P is the set of all the local conditionals:

P = {ps(a]b,c), SESLUS,,a€ Abe ANE) ¢ ¢ A‘No(s)‘}.

This model can be fully implemented by a network of nonlinear input/output
units with additional white noise input:

Xt — f(Xtil, Ut, Vt),
Y= g(X U WH.
This is proven in [Keh91la]. Deterministic behavior can be obtained as a spe-
cial case, when the noise has zero variance. There is a formal similarity of the
equations above with the equations of a continuously valued stochastic con-
trol system. This formal similarity suggests that we apply stochastic control
methods to solve connectionist problems such as prediction and classifica-

tion. This approach has already been introduced in [Dre90, Keh90, Ruc89,
Sin&9).

3 Prediction

The problem considered here is the following: given a sample sequence of

inputs U! = »',U? = «2,..., U™ = u'*! and outputs Y! = 31 V2?2 =

y?,....Y" = y' generated by a SRN M = ((S,N),P), find a “reasonable”

prediction of Y"1, Repeat for ¢t = 1,2, ... The prediction is written as
Yt+1<y1 oyt utt)

I

to stress the dependence on the past samples. For the rest of the discussion
assume the y’s, the u’s and the SRN M to be fixed.

We choose our “reasonable” prediction such that it maximizes the Like-
lihood function. For ¢t = 1,2, ... and y € AMe, define

Yi(y) = Prob(Y™ =y | V1.V =yl UL U™ = ™ M),

(The dependence of v, on ', ... y', u', ..., u'™! is suppressed from the notation
because the u’s and y’s are fixed for the rest of this discussion.) Now the

Maximum Likelihood Prediction is defined by:

Yyt utth) = arg max 7y (y).
yc AMo

P



For fixed sample ¢! ....y", u!, ... u'™! and fixed M, we have Prob(Y!'..Y' =
yloyt, ULLU™ = ol '™ M) is fixed. Then:

arg max (P?"ob(YtJrl =y | YL Y =yl UL U =t /\/l)) =

yc AMo

arg max (P?"ob(YtJrl =y | YL.Y =9l UL U =ttt M)

yc AMo
Prob(Y'.Y'=y' o |UL..UM =o' /\/l)) =
arg max (Prob(YL. Y'Y =yl yfy | UL U = ulaft M)) . (8)

Define for t =0,1,2,..., y € AMe
Sei1(y) = PTOb(Yl...YtYHl = yl...yty | Uit — ul...qu; M).

The prediction problem is now reduced to finding an efficient way to compute
6i(y) for all y € AM>. As soon as that is accomplished, we can find the value
of y that maximizes ¢,(y) by exhaustive search. This is the same y that
maximizes y(y) and hence we have obtained the ML prediction. We will
now develop a recursive algorithm to compute the ¢’s.

The following definitions are from [Keh9la]: The transition matrix is
defined for all 2,2 € AMr fort =1,2,...:

Po(t) = Prob(X'=x | X" 1 = 2, U" = vy M).

This can be computed in terms of the p’s:

Po(t) = [ pol@s | 2nus)s Uiny(s))- (9)

seS
The emission matrix is defined for all z € AM» y € AMe fort =1,2,...,T:
Quy(t) = Prob(Y' =y | X' = 2,U" = u'; M). (10)

This can also be computed in terms of the p’s:

Ty = s\Ys Ny ()5 2]t\/'z(s))
Qay(t) = I psls | 2n0), 1

S€ES,

Next we define the forward probabilities for all x € AM» ¢t =12, ...}

a(z) = Prob(Y'..Y' = ¢!y X' = 2|U'.U" = u' ..y M),

!Note that this definition is slightly different from the one given in [Keh91a] (as well as
in the Hidden Markov Models literature [Jel+83]) in that the terminal time t is not fixed
but variable; also there is no conditioning on the initial state X°.



Now we will obtain an evolution equation for the forward probabilities. This
evolution equation in most cases is only approximately true. It is exactly true
under the assumption that the input stochastic process {U*}2, is a sequence
of independent random variables. In that case the forward probabilities obey
the forward evolution equation for all x € AM» { =0,1,2,...:

a1 (@) = Y u(2) Pt + 1)Quyeer (L +1); (11)

ze AMn

Further, if we assume all initial states to be equally likely, we have initial
condition ap(z) = Prob(X°® = z) = 1/|A|M» for all z € AMe.

As already mentioned, the evolution equation holds true only if U', U2, ...
are independent of each other (or, trivially, if there is no input process). In
many cases we have no reason to expect the input process to be independent
but we also have no information about the nature of correlation across time.
In that case the assumption of independence is a natural one and in most
cases we can expect the evolution equation to hold up to a reasonably good
approximation.

Given oy we can easily compute 6;:

ber1(y) = Z () Pro ( + 1)Quy (L + 1) Yy € AMe

This completes the solution of the prediction problem. Putting all the pieces
together we get:

Maximum Likelihood Prediction Algorithm

Given a sample sequence of inputs u',u?,...,u'* and outputs y', 4?2, ...,y
generated by a SRN M = ((S,N),P), find the Maximum Likelihood Pre-
diction defined by:

Yt+1<y17 "'Jytuuly ---;ut+1) = arg max fyt(y)
yc AMo

where Yy € AMe
Yi(y) = Prob(Y'H =y | Y.V =4t ot ULLU = ottt M.
To find the ML prediction, first set
ao(x) = 1/|A[M» Vo € AMk,
Then for every t = 1,2,..., x,2 € AM» y € AMe compute

Pzﬂ?(t) = H p5<x5 ’ ZNh(S)7u§Vi(S))'

seS



me(t) = H ps<ys ’ ajNh(s)uuljtvi(s))'

S€ES,

a1 (x) = Z at(2)Poy(t 4+ 1)Quye1 (E 4+ 1).

ze AMn

Finally, for all y € AM» ¢ = 1,2, ..., compute

Sev1(y) = D (@) Poz (t + 1)Qy(t + 1)

and find the maximizing y by exhaustive enumeration; é:41(y) and y41(y)
are maximized at the same value of y.

This completes the description of the recursive prediction algorithm. A
few remarks are in order:
Remark: The procedure we just outlined is a recursive procedure for com-
puting the maximum likelihood estimate of Yt given Y ... Yt UL ... UL,
As such, it is completely analogous to Kalman filtering [Kal60] of continuous
valued stochastic processes.
Remark: Following Kalman’s classification of Estimation problems, we
note that the prediction problem discussed here is only one of several pos-
sible problems. A general class of problems is the following. Given Y1 ... Y,
U', ..., U compute the Maximum Likelihood estimate of Z""™ (where {77},
is some stochastic process that is (¥, U)-measurable).

1. When 7 > 0 we have a problem of prediction.
2. When 7 = 0 we have a problem of filtering.

3. When 7 < 0 we have a problem of smoothing.

In our case {Z"}:°, is the process {Y*}2°, itself so problems (2) and (3)
are trivial, because {Y*}2°, is fully observable. An interesting case for which
(1)-(3) are nontrivial is state estimation, where {Z"}?°, is the hidden process
{X*}2¢,. The problem can be solved in exactly the same way as the Y
prediction problem.

Remark: The ML prediction algorithm applies equally well to the predic-
tion of global HMM’s. In that case we need not compute the transition and
emission matrices (P and (J) as they are given to us directly. The corre-
sponding computation in the algorithm is omitted; the rest of the algorithm
is applied in exactly the same manner.

Remark: Essentially the same technique that we apply here has been
proposed by Bucy [Bu69, Bu7l] for the estimation of continuous valued,

10



Fig.1 about here

Figure 1: Plot of Quantized Speech Waveform - [ah]

nonlinear stochastic systems. The problem in that case is the so called curse
of dimensionality. the computation of the forward probabilities has to be
performed for a continuous set of values; of course this can only be done by
an approximation of the state-space by a discrete grid. However, say the
hidden process is a K-dimensional vector; then even a gross discretization
implies a computational load that is exponential in K. Hence the method is
untenable for continuous valued stochastic processes of high dimensionality.

4 An Example of Prediction

In this section we present an example application of the prediction algorithm
of the previous section. We will predict future values of a speech waveform.
The waveform we will use is a preprocessed steady state segment from an
utterance of the phoneme [ah] in the word “one”. So as to be able to apply
our methods we have to convert this waveform to a finite alphabet stochas-
tic process. We do so by using a 4-level quantized version of the original
waveform; this quantized waveform is plotted in Fig.1. We repeat the exact
same experiment with a similar waveform, extracted from the steady state
segment from an utterance of the phoneme [ou] in the word “one”. The
4-level quantized version is plotted in Fig.2.

In Figs.3 and 4 we plot the results of the application of the prediction
algorithm; namely we plot the predicted and actual value at every time step ¢.
Let us note that: (a) the SRN model of the phoneme [ou] has been obtained
in accordance to the methods of [Keh91a], using the local BF algorithm and
(b) in this case we have only an output stochastic processes, but no input;
this can be easily accommodated by the prediction algorithm by dropping
all 4 dependence in the prediction algorithm.

11



Fig.2 about here

Figure 2: Plot of Quantized Speech Waveform - [ou]

Fig.3 about here

Figure 3: Plot of Predicted vs. Actual Speech Waveform

12



Fig.4 about here

Figure 4: Plot of Predicted vs. Actual Speech Waveform

We see that the predicted values lie quite close to the actual ones and
hence the algorithm is quite accurate. It is also very fast as it can be imple-
mented in a Parallel Distributed Processing form; for more details see Section

7.

5 Classification

The classification problem is as follows. Suppose we have N SRN’s, M, =
(G1,P1)y .oy My = (Gn,Pn). We also have a sequence of input/output data
ul u?, . ut, gyt 2, .yt which we know to have been generated by one of the
SRN’s, but we do not know whether it was My, My, ... or My. We must
form a “reasonable” guess as to which SRN model actually produced these
observations. This guess, which may be changing with time, is described
by a stochastic process N which takes values in {1,2,...,N}. For instance,
if N* = n then our guess (at time ?) is that the y observations have been
produced by M,, with input w.

We formulate the problem as follows: introduce a new variable 7 which
takes values in {1,2,..., N}. The data have been produced by My; e.g. if
7 = n, then the sequence u', ..., u’ y' ..., y" was produced by SRN M,,.
Notice the difference between Z, which is fixed for all time, reflecting the
fact that the observed data u!,u?, ..., y' 92, ... are indeed produced by a
fixed SRN, and N, which changes in time as more data is collected, and
reflects our opinion as to which is the “true” SRN model. This opinion may
change over time, so the value N™ may be different from that of N* for ¢ #T.

Now we adopt a Bayesian point of view. 7 is a random variable. Once it
takes a value, this value will remain fixed. However, our prior knowledge as
to what the value of Z is, is not complete; it is described in terms of a prior

13



probability distribution p® = Prob(Z = n), n = 1,2,..,N. As we collect
more data, our knowledge about the value of Z will change and this will
be reflected on the posterior distribution pf (y',...,y", u!, ..., u") (sometimes
denoted simply by pf,) which is defined by:

phyt oyt ut o ut) = Prob(Z =n | Y=yt Y=t U =l L U = db).

Given pf (y',...,9" ul, ... u"), we set

Nyt ooyt ul ) ut) = arg 11<naéprn(y1, oyttt

That is, at time { we claim that the data y', ...,y , u', .., ' was produced
by N ¢ which maximizes the posterior probability. This is a very reasonable
choice, usually referred to as Mazimum A Posteriori estimate. The issue
then is to find an efficient way to compute pl,, t = 1,2,....., n =1,2,.... N.
We now present a recursive algorithm to do this. Note that

3

pffl Prob(Z =n | Y=yl Vi =yt Ut =4t Ut = utﬂ) =

ProbY ' =y Z=n|Y!=y' Y=y U =o' . U =u"t")
Prob(YiHl = it [ YT =yt Y=yt Ul =ul, .. Ut+1 — utth)
Prob(Y'"™ ' =yl Z=n|Yi=yl Y=y U= .. UT =4t

SN Prob(YHl =yt Z=m | Yi=yl . YVi=yt Ul = ul, o, UL = gt 41)
(12)

Also note that
Prob(Y'" =yt Z = | Y =yl LY = U =l U = ) =

PTOb(Yt+1 — yt+1 ’ Yl — yl’ ,Y — y Ul — ’U, Ut+1 t+1,Z — n)
Prob(Z =n|Y'=9' . Y=y U =2 . U =u") =
Prob(Y ™ =y YT =yl Y =4 U = ! Ut+1 u™t Z =n)-p,

(13)
Now (12), (13) imply the recursion:
o Prob(YH =1 | Y=yl Y=y U=l .. UM =o't 7 =n).p

Pn SN Prob(YHHl =gyt | Y=gl Y=yt Ul = ul,...,U“rl =uttl Z =m). pt~

What remains to be done is finding a recursive way to compute the quantity

Prob(y' | o', .yt Ll ut ws Z =n)forn=1,2,... N, t =12 ...

Note however that if Z = n then the frue model is M,, and the probabilities

in all the equations above can be computed by using the parameter set P,,.
Prob(y™t | ot oyt utout a2 =n) =

I I

Prob(y"™ | o', b ut, Lt ut T P =

14



Prob(y™t ot .yt [t L ul Py YAl (x)
Prob(yt,...,y" | ut, ..., ut; Py) oY, a(x)

We compute the « probabilities using the following equations forn =1,2,.... N,
t=1,2,.., 2,2 € AM ¢y e AM-

PL(t) = 11 pE(xs | 2n,00), Unys))-

s€ESH

Qz,y@) = H p?(:ys ’ $Nh(5)7u§Vi(s)>‘

sES,

These are exactly the same as (9), 10) in Section 3; the n superscript implies
that we compute them using the local conditionals P,. The same holds true
for the a" probabilities which are computed according to (11), using the pa-
rameter set (local conditionals) P,. This completes the description of the
classification algorithm. Putting all the pieces together we get:

Maximum A Posteriori Classification Algorithm
(Lainiotis Classification Algorithm)

Given a sample sequence of inputs u!, 42, ..., u'™ and outputs y',%2, ...,y and

a set of SRN’s My = ((S,N)1,P1), ..., Mn = ((S,N)n,Pn), we know that
the data sequence has been produced by the SRN M, where 7 is a random
variable with probability distribution p? = Prob(Z =n), n=1,2,.... N. The
Maximum A Posteriori Classification of the data sequence !, ...,9" u!, ..., u!
is M. Here N is given by

it too1 t o1 t
N —arglrg}lagﬁpn(y s YU )

and pf forn =1,...,N, t =1,2,... is defined by
oLyt oyt ot ™) = Prob(Z =n | Y=yt Y =9 U =4t L U = ).

To obtain the Maximum A Posteriori classification we need to compute pf,
fort=1,2,..,n=1,2,..., N. To do this, first set

ag(z) = 1/| A Vo € AMh n=12.,N
then for every t = 1,2,...,n=1,2,.... N, 2,2 € AMr y e AM> compute

Pzﬁc@) = H p?(a?s ’ ZNh(S)uuljtVi(s))‘

s€ESH
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Qz,y@) = H p?(:ys ’ $Nh(5)7u§Vi(s)>‘

sES,
o (z) = Z ap (2) P, (t) ryt1
ze AMn
Prob(y™ |y, .yt o ut a2 = n) = 2 Oy (7).
) ) ) ) ) ) ) Zm a?(a’;) ?
1 Prob(YH = | Y=yl V=9 Ul =u!, .. U = Z=n). p!

Pn = SN Prob(YiHl = yttl | Y=gl | Yi=yt U=yl .. Ut =yt 7 =m). pt

Remark: This completes the description of the MAP classification algo-
rithm. This is the adaptation of the Lainiotis Partition algorithm [Lai69,
Lai71] to finite state systems. Similar methods have been used by Nowlan
[Now90a, Now90b, Now90c| for static problems.

Remark: The MAP classification algorithm applies equally well to the clas-
sification of global HMM’s. In that case we need not compute the transition
and emission matrices (P and ()) as they are given to us directly. The corre-
sponding computation in the algorithm is omitted; the rest of the algorithm
is applied in exactly the same manner.

6 An Example of Classification

For the classification problem we use the two quantized waveforms of Section
4 (Figs. 2 and 4). So we have two candidate models (N = 2) with known
SRN models (these models were computed using the local BF algorithm as
described in [Keh91lal; in particular no input process was used).

The first classification experiment involves using as !, ..., y'®? the wave-
form of Fig.1 (phoneme [ah]). Things work out exactly as expected: the
algorithm picks up the right model M, and assigns to it a posterior proba-
bility which rapidly rises to practically 1. Consequently model M is assigned
probability 0. The evolution of the p!, pl probabilities is plotted in Fig. 5.

Exactly similar results obtain in the second experiment, which is identi-
cal to the first one, except that the sequence !, ..., 4% is now the waveform
of Fig.2 (phoneme [ou]). The algorithm picks up the right model M, and
assigns to it a posterior probability which rapidly rises to practically 1. Con-
sequently model Mj is assigned probability 0. The evolution of the p!, pl
probabilities is plotted in Fig. 6.

Finally we apply the algorithm to a trickier problem. Namely, we use a
waveform which is a concatenation of the waveforms in Fig.2 and Fig.4. The
composite waveform is plotted in Fig. 7.
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Fig.5 about here

Figure 5: Evolution of pf, p}

Fig.6 about here

Figure 6: Evolution of pt, p}
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Fig.7 about here

Figure 7: Composite Waveform

Now, the derivation of our Classification algorithm was based on the as-
sumption that the waveform we have been using was produced by a single
SRN. As the assumption is obviously violated in this case, there is no theo-
retical guarantee that the algorithm should work. Still, the sample sequence
does come from a fixed SRN over long periods of time. If we could introduce
some type of forgetting factor in the algorithm, we would expect that shortly
after every model switching, the algorithm should readjust the probability
values, just because it forgets the old values of the data sequence.

The method we use to introduce forgetting of old parts of the sequence is
entirely ad hoc and we have no theoretical justification for it. On the other
hand, as we will presently show, it works satisfactorily, so there is some merit
to it.

The trick we use is pretty simple. The exact update for the forward
probabilities is given by:

o (z) = Z ap (2) P, (t) Tyt (14)

ze AMp

Instead of using this update, we use:

afya(@) = > o ()P (1)@ + ¢ (15)

ze AMp

where € is small positive constant. The result of this modification is the
following: probabilities never become extremely small. For models which,
under the observed data, have relatively high probability the small € does
not make a big difference and (14), (15) yield practically the same results.
On the other hand, when under the observed data a model M,, has very low
probability, € is a lower bound for «™. This forces the algorithm to forget
that the past observations essentially rule out model M,,. If at a later time
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Fig.8 about here

Figure 8: Evolution of p, p} superimposed on original waveform

Fig.9 about here

Figure 9: Evolution of pt, p}

the data-producing mechanism switches to a new model, the algorithm will
quickly forget the model’s incompatibility with past observations and will
concentrate on more recent values. Hence the posterior probability will soon
rebound.

Indeed, when we run the algorithm using the trick described above, we
obtain the following evolution of the conditional probabilities, plotted in
Fig.9. The same plot is superimposed to the original waveform in Fig.8,
for illustrative purposes. This is exactly the behavior we described in the
previous paragraph.
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7 Recurrent Parallel Distributed Processing

We have proposed prediction and classification algorithms for finite alphabet
time series. The derivation of these algorithms was based on the assump-
tion that the time series was produced by a Stochastic Recurrent Network.
First of all, let us point out once again, that these algorithms would apply
equally well to time series that are produced by a global model, say a Hidden
Markov Model. The local character of the SRN models comes into play only
at the initial stage of our algorithms, where we use the local conditionals
parametrization to compute the global transition and emission matrix. If
these matrices were given (which would be the case for a Hidden Markov
Model), we omit the initial stage of the algorithm and proceed as usual.

The SRN representation has certain advantages when compared to the
global HMM representation (see [Keh91la]), particularly with connection to
parallel computation and the statistical principle of parsimonious modelling.

It is a matter of some interest to note that starting with a stochastic
recurrent network, we obtain another network which computes probabilities
associcated with the original SRN. Call the new network a meta-network (as
it computes statistics of the original network) and note a certain duality:
the SRN is stochastic but the meta-network is deterministic; the SRN is
finite state but the meta-network is continuous state. Finally they both are
dynamic, recurrent networks.

As soon as we fix the model which we assume to be generating the ob-
served data, all the computations of the prediction and classification algo-
rithms can be performed on the meta-network of parallel distributed proces-
sors. For instance, the evolution of the « probabilities described by the (11)
equations in Section 3 can be implemented on a recurrent network of AM»
units, with summations and a nonlinear function of the input/output ob-
servations. The taking of maxima implicit in (8) can be implemented by a
softmax unit which is connected to the output of all these processors etc.
That parallel algorithms can be programmed on connectionist networks has
been reported by several authors [Keh90, Brid89, Kung89, V1o89]. These
networks are definitely of a different flavor than the more classical, Back-
Propagation trained ones. In our case the training is limited to the modelling
phase [Keh9lal; the meta-networks are handcrfated to implement the appro-
priate algorithms. Yet the networks are indeed recurrent, parallel distributed
processing networks and it is not unlikely that they have advantages as par-
allel implementations over sequential /global versiosn of the same algorithms.
This is a question which cannot be answered without further research.
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8 Conclusions

We have presented the ML prediction algorithm and the Lainiotis MAP
classification algorithm which apply to SRN’s as well as to HMM’s. These
algorithms can be implemented on recurrent PDP meta-networks. There
is a certain duality between the SRN and the meta-network; the SRN is
finite state and stochastic, whereas the meta-network is continuous state and
deterministic. Both are dynamic networks.

Our algorithms exhibit fast and robust behavior in practical applications
and perform their assigned tasks very succesfully. There is no training issue
here - all the training is performed at the SRN level, whereas the meta-
network is “handcrafted”. In the future we would like to apply our algorithms
to practical tasks, especially to speech recogntion. It appears that phoneme
classification could be performed succesfully by the Lainiotis algorithm.
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Speech

Fig.1 [ah] phoneme
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Speech

Fig.2 [eh] phoneme
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