Stochastic Recurrent Networks Training
by the Local Backward-Forward Algorithm

Athanasios Kehagias
Division of Applied Mathematics
Brown University

Providence, RI 02912

e-mail: st401843@brownvm.brown.edu

May 31, 1997

Abstract

We introduce Stochastic Recurrent Networks, which are collections
of interconnected finite state units. At every discrete time step, each
unit goes into a new state, following a probability law that is condi-
tional on the state of neighboring units at the previous time step. A
network of this type can learn a stochastic process, where “learning”
means maximizing the probability Likelihood function of the model.
A new learning (i.e. Likelihood maximization) algorithm is intro-
duced, the Local Backward-Forward Algorithm. The new algorithm is
based on the Baum Backward-Forward Algorithm (for Hidden Markov
Models) and improves speed of learning substantially. Essentially, the
local Backward-Forward Algorithm is a version of Baum’s algorithm
which estimates local transition probabilities rather than the global
transition probability matrix. Using the local BF algorithm, we train
SRN’s that solve the 8-3-8 encoder problem and the phoneme mod-
elling problem.

Contents

=

C a ®w »

Introduction

The SRN Model

Learning a Stochastic Process

The Local Backward Forward Algorithm
Applications

Conclusions

SRN’s with polynomially nonlinear units
EM and the Boltzmann Machine

SRN: a Species of Hidden Markov Models

Alternative Viewpoints

12

13

22

31

40

42

43

45

amstex
NOTATION

Given a finite set A, we denote the number of elements in A by |A|. E.g.,
for A = {ay,...,an}, |A] = N. The alphabet A of a stochastic process
{7}2, is the set of all possible values that Z* can take for any t. E.g. we
could have a binary stochastic process {Z'}2°, where Z* equals either 0 or
1 for every t. In that case the alphabet is A = {0,1}. Or, we could have a
vector-binary process {Z'};°,, where 7' = [ZL...Z}] and Z! is either 0 or 1
for every t, n = 1,..., N. In that case the alphabet is {0,1}" = {[a;...an] :
a, € {0,1},n =1,...,N}. In general, given a finite alphabet A, we define
AN ={ay...ay]:a, € An=1 . N}

We use capital letters X,V 7 etc. for stochastic processes and small
letters z,y, z for the values of the processes (characters of the alphabet).
For instance we write Prob(X" = xz) for the probability that X’ equals the
character z € A; we write Prob(X'™ = z! ... X" = 27) for the probability
that X1 X" equals z'..2™, 2!, ...,2" € A", Say z = [z'.2™], y =
[y!...y"]; then the concatenation of z,y is denoted by xy and defined by
xy = [zh.xa™ylyn].

We will often consider probabilities that depend on the value of a cer-
tain parameter, say P. To explicitly denote the dependence, we write:
Prob(X" =gl . X" =27, P).

We often consider a set S = {1,..., N} and vector z = [z'...z"]. Some-
times we write zg instead of x. Similarly, for a set R = {ry,...,7ry} C S
we write zg in place of [z,,...x,,,]. For example, suppose S = {1,2 3},
R ={1,2}, we have x5 = [11, %9, 23], Tr = [21,29]. Obviously, if z; € A for
s € S, then zg € A%l

On several occasions we use sums of the form 25:1 WnpT,. We sometimes
write these using inner product notation: < w,z >= ¥ w,x,. Finally,
Bin(m,n), where m is an integer, means the n-th digit of integer m written
in binary notation.

1 Introduction

The learning and reproduction of temporal behavior have a special place in
connectionism. A brief inspection of the connectionist literature reveals many
cases where we apply neural networks with dynamic behavior to the learning
of static input/output patterns (e.g. [Hop82, Hop85, Gro86a, Gro86b|). In
such cases we are essentially trying to shape the equilibrium behavior of the
network. Other times we use static networks (essentially nonlinear regressors)
to learn temporal behavior (e.g. [W+489a, W+489b],). The use of recurrent
networks for the learning of dynamically evolving temporal relationships is a
relatively new but fast growing area of connectionism. For some examples see

[Alm87, Alm 88, Alm89, BW88, BWS9, EIm88, Gil90, Pin88, Pol87, R+88,

Roh90, RR90, WZ88, Jo86, Sut8s].

An important example of a stochastic neural network is the Boltzmann
Machine [A485]. In this case, a stochastic network is used to learn a de-
terministic input/output relationship. This is also true of other stochastic
networks (see [Sun89, Ale89]). There is some work done on stochastic net-
works and, in particular, the modelling of probabilistic input /output relation-
ships (see [AmaT7l, Ama72, Ama83, Lin88a, Lin88b, Pea86, Sol88]) but it is
probably safe to say that stochastic networks are outside the mainstream
of connectionist research. However, note also the work of Hinton and his
group; they have produced a large number of papers dealing with stochastic
networks. [Nea90, Now90a, Now90b, Now90c| are of particular relevance to
our point of view, as will be explained later.

This is the first in a sequence of papers [Kehl, Keh2, Keh3] that develop
a theory of Stochastic Recurrent Networks (henceforth SRN). We try
to develop a general type of network that combines stochastic and dynamic
behavior. In our framework, deterministic and/or static behavior appear as
special cases. We look at SRN’s from a computational point of view. We are
not concerned with issues of biological plausibility. What we attempt here is
to develop a model that implements parallel distributed computing and can
be trained very quickly.

We will give a precise definition of SRN in the next section; informally,
a SRN is a collection of interconnected finite state units that change states
synchronously, according to a stochastic mechanism. For any particular unit,
the stochastic change of state depends on the previous state of this unit
and its parents. We only deal with finite state units; the theory for units
with continuous valued states is exactly analogous but mathematically more
involved and will be developed elsewhere. In developing the SRN theory we
rely heavily on two points of view: (a) that of Stochastic Control [May82]
and (b) that of Hidden Markov Modelling [L+83].

Stochastic Control deals mostly with continuous valued dynamical sys-
tems; the problems addressed within this context are very similar to connec-
tionist problems such as prediction and classification. In addition, Stochastic
Control is a mature discipline with a large toolkit of theoretical and applied
methods. We will try to apply some of these methods to the study of our
finite state SRN’s.

The Hidden Markov Modelling point of view is used in developing a new
fast training algorithm, the local Backward-Forward algorithm. This
is a modification of the celebrated Backward Forward algorithm of Baum
[Bau72,B+70,BE67, L+83]. Both of these algorithms are fast: convergence to
a locally Maximum Likelihood solution takes place in very few iterations (on
the order of ten). For discussions of the connections between connectionist
models and HMM’s see [Be+90a, Be+90b, W+89a, W+89b).

In [Keh2| we will prove the following equivalence results.

1. Every SRN has a HMM description (in terms of global transition and
emission matrices)

2. For every HMM there is a SRN so that they both have the same in-
put /output behavior.

3. Every connectionist network of the classical type (sigmoid units with
linear combination inputs) can be considered as a SRN.

4. Every SRN can be implemented as a network of nonlinear (but not
necessarily sigmoid) units with random input/output behavior.

Some of these facts are obvious (e.g. 1 and 3); others will be briefly
discussed in this paper as appropriate. The complete story about equivalence
of the three types of models (SRN, HMM and calssical connectionist) will
be told in [Keh2], along with certain representation results. We mention
these facts here to point out that our SRN model is a universal model which
includes both HMM and connectionist models. In particular, we can say that
SRN is a local implementation of Hidden Markov Modelling. It is local, as
will become apparent in the next section, because we specify the model in
terms of local conditional transition probabilities, instead of the traditional
description of HMM’s in terms of global transtion and emission probability
matrices (see [L+83]).

In this paper we do the following: give a precise definition of the SRN
model (Section 2), propose and discuss a basic learning task for stochastic
processes (Section 3) and finally derive the Local Backward Forward Algo-
rithm (Section 4). Then we present some training examples (Section 5) and
conclude with a discussion section (Section 6).

There are also four appendices. In Appendix A we compare the new
SRN model to the classical connectionist SRN model with sigmoidal units
and show how we can build any SRN from a collection of nonlinear units
with random input. In Appendix B we discuss the EM method [D+77]. The
EM method is a general approach to learning/estimation problems; the local
BF algorithm is a special case of EM. We show that Relaxation training (for
Boltzmann Machines) is also a special case of EM. In Appendix C we consider
SRN from the point of view of Hidden Markov Modelling. In Appendix D
we take a very brief review of disciplines (other than connectionism) which
consider objects very similar to SRN’s and consider what can be learned
from these alternative views. Generally speaking, the subject of recurrent,
finite state networks is very popular and has been examined by many differ-
ent reasearch communities outside of connectionism. These connections are
explored in much greater detail in [Keh3].

Let us also mention briefly the content of the papers following in the
SRN sequence [Kehl, Keh2, Keh3]. In [Kehl]| we develop a general theory

of estimation and classification of stochastic processes; our starting point

7

is the basic model, learning task and training algorithm introduced here.
In [Keh2] we prove certain theoretical results about representation power
of SRN’s and consistency (in the statistical sense) of Maximum Likelihood
estimation. In [Keh3] we consider similarities of our model with models used
in other research contexts and use these alternative viewpoints to motivate
some extensions of our methods.

2 The SRN Model

(We assume the reader is familiar with the concepts of a random variable
and a stochastic process.)

Here we develop a type of Stochastic Recurrent Network (SRN)
which consists of a collection of interconnected units. This network re-
ceives an input stochastic process {U*}:°, and generates a hidden stochastic
process { X*}>°, and an output stochastic process {Y*}2°,. In this paper all
stochastic processes (input, hidden and output) are vectors with their compo-
nents taking values in a finite alphabet A. Several authors have considered
very similar models (see [Sun89, Nea90]) .

The SRN model introduced here is somewhat different from classical con-
nectionist recurrent networks, in that it does not consist of units with sigmoid
input /output response. The classical model is a special case of ours; on the
other hand any SRN can be implemented as a classical connectionist model
with nonlinear units. This point is discussed in Appendix A.

Let us first give an informal description of the mechanism that generates
the hidden and output processes. (Later we will give a mathematically precise
description.) Consider a network of interconnected units. For simplicity of
presentation assume each unit is binary, that is, it can be either on or off.
When the unit is off its state is 0; when the unit is on its state is 1. Following
standard connectionist practice, the units are separated in three layers: input,
hidden and output. The state of the network can be fully described by three
vectors of 0’s and 1’s: one vector for each layer, one vector component for
each unit. At a given time ¢ — 1 every unit of the network is in some state.
At time ¢ a new epoch starts, during which the units update their state as
follows.

1. First the input units turn on or off with a probability that is inde-
pendent of the other network units and completely determined by the
external environment.

2. Then each of the hidden units receives as input the states of its “par-
ents” (which can be input or hidden units, including that same unit,
but not output units). Depending on the configuration of its parents,
there is a certain probability that each hidden unit will turn on or off.

3. Finally, each of the output units receives as input the states of its
parents (which can be input or hidden units, but not output units)
and turns on or off with a configuration-dependent probability. At this
point all units in the network have updated their state and epoch ¢ is
complete.

Let us now formulate this mechanism in a mathematically precise manner.
Call U* the M;-long state vector of input units at time ¢, X* the Mj-long
state vector of hidden units at time ¢, Y the M,-long state vector of output
units at time {. The components of these vectors all come from the same
finite set A = {0,1,..., K — 1}. The sequences {U*}:°,, {X*}>°, and {Y*}2°,
are the input, hidden and output stochastic processes, respectively.

We want a specification of a SRN which, together with the initial state
X? and the input process {U'}2°,, will describe the hidden process {X*}2°,
and the output process {Y*}2°;. The processes {U"}2°,, {X'}2,, {Y'}2,
all take values in finite alphabets (AM: AMr AMo respectively). Hence they
are fully described by their probability functions:

py(ut..u™) = Prob(U' = u'...U,, = u™) Vm,Vul, ... u" e AMi

px(xt..a™) = Prob(X' = 2'.. X, = ™) Vm, V!, ... 2™ e AMh
py(yt..y™) = Prob(Yi = y'..Y, = y™) Ym, Yy, ... y™ € AMe,

The SRN will be specified in terms of a directed graph G and a set of
local conditional probabililies P. Thus, a stochastic recurrent network is a
pair (G, P); given (G,P), py and an initial condition X° we can compute
px (2t .. 2™), py (Y, ..., y™) for all m, 2!, . 2™yt L y™.

The directed graph G is itself a pair G = (S,), where S = {s1,...,su}
is the collection of units (or nodes, to use the graph theoretic term). The
unit set S is partitioned into three mutually exclusive sets: S = S;U S, US,,
where S; is the set of input units, S; is the set of hidden units, S, is the
set of output units. We have |S;| = M;, |Sy| = My, |S,| = M,. Note that
M = M; + M, + M,,.

Take any two units r, s € S. If s reads the state of r before changing its
own state then there is a directed edge from unit 7 to unit s. In such a case
we say that r is a parent of s. A unit s € S can have none, one or many
parents and even be a parent of itself. The set of s’s parents is indicated by
N(s) and the class of all parent sets is denoted by N = {N(s),s € S}.

(S, N) is a complete description of the topology of the net. We assume
the SRN topology satisfies the following restriction. The parent set of every
unit can be partitioned as follows:

Vs € S; N(s) =0,
Vs €S, N(s)= N;(s)UN,(s) where N;(s) C S; and Np(s) C Sy,

9

Vse S, N(s)= N;(s)UNp(s) where N;(s) CS; and Ny(s) C Sp.

In words, this means that input units receive no input, while hidden and
output units receive input only from input and hidden units. This completes
the description of the topology of the network.

The probabilistic state update mechanism is described by P, which is the
set of local conditional probabilities. As already described, the state update
takes place synchronously and locally for every unit. Mathematically, this is
reflected in the Markovian factorization of joint probabilities:

Prob(X' =2 X" =2 L X" 2 =02 U =0 U = LU 2 =0 2
H PTOb(Xﬁ = 372’th1 = 3717\/}11(5)7 U]t\/i(s) = u?\/'i(s))‘ (1)

Nn(s)
s€Sh

Similarly,

Prob(Y' =0 XM =2l Xt =2 X" =21 UM =4 U' =" U =0t

H Pmb(yf = yg’thvh(s) = aT?vh(s)a U]t\/'i(s) = U?vi(s))- (2)
S€ES,
Remark: Equation (1) says that, given all the past history of the hidden
state and input, we gain no more information about the next hidden state ,
than if we knew just the immediate past. In addition, the local state of any
unit depends only on the states of its parents. Similarly, equation (2) says
that, given all the history of the hidden state and input (past, present and
future) we gain no more information about the present output, than if we
knew just the present hidden state and input. In addition, the local state of
any unit depends only on the states of its parents.
Remark: Note that (2) is a stronger statement than

Prob(Y' = /| X' =2 Xt =gt U =20 U P =0t) =

Sg Prob(Y; = yg’thvh(s) = aT?vh(s)a U]t\/'i(s) = U?vi(s))- (3)

Equation (3) says that knowledge of all the past and present of hidden state

and input gives no more information on the value of the present output.

But (2) says that even knowledge of past, present and future gives no more
information.

The process {X'}:°, is obviously Markov, not only in time, but also

locally within the network. Therefore, if we define the local conditional

probabilities for all s € S, U S,, a € A, bc ANG) ¢ AN
ps(alb, c) = Prob(X! = a]X]tV;l(s) = b, Uys) = ©)

we can compute the probability Prob(X*| X' ! U?) in terms of the local con-
ditionals:

Prob(X'=2°| X" =t X" 2 =22 U =20U P =0t) =

10

P

I po(alzn, o) Uniis)-

s€ESH

Similarly we can compute

Prob(Y' =0 XM =2l Xt =2 X" =21 UM =4 U' =" U =0t

P

H p5<y2’$?vh(5)) U?Vi(s))'

sES,

The set P is the set of all the local conditionals:
P = {pu(alb,c), s € S, U S, a € Abe AN ¢ e AN,

Now suppose ((S,N),P), pr, Prob(X°) are known. We will first compute
px(z'...2™). We have

px(rt..2™) = Prob(X'..X™ = z'. .2™) =
> Prob(X°. X" =20 2™ U..U" =u'..u™) =

x0c AMr yl, . umec AM:

Z (H H ps(afg]aﬁvhl(s),uﬁvi(s))) po(ut..u™)Prob(X° = 2°).

20 AMh yl .. ume AM: \t=1s€S,

Similarly we can compute py (y'...y™):
py (¥t ™) = Prob(Y1..Y™ =yl y™) =
> Prob(YL.Y™ =yt gy X0 X" =20 2™ UL U™ = u'.u™) =

20,21 amec AMn ul . ume AM;

m
Z (H H ps(a:fg]atﬁvhl(s),uﬁvi(s))) pr(ut.. ™) Prob(X° = z°).
20,21, ome AMr ul, .. ume AM: \t=1s€8,US,

This completes the computation of px (y'...y™) and py (y'...y™). This com-
putation can be done for any m, ¥*,,y™, 2!, ...,2™. Hence we have shown

that (G,P), pr and Prob(X°) are sufficient to determine px, py.

Remark: This model can be fully implemented by a network of nonlinear

input /output units with additional white noise input:

Xt — f(Xtil, Ut, Vt),
Y= g(X" U W").
This is proven in Appendix A. Deterministic behavior can be obtained as a
special case, when the noise has zero variance. There is a formal similarity
of the equations above with the equations of a continuously valued stochas-
tic control system. This formal similarity suggests that we apply stochastic
control methods to solve connectionist problems such as prediction and clas-

sification. This is discussed briefly at the end of the next section and in more

detail in [Kehl].

11

3 Learning a Stochastic Process

“Learning” a stochastic process {Y*}>°,, in the context of SRN, can mean
several different things.

1. Modelling the process, i.e. building a SRN (G, P) such that its output
{Yt}fil is the “same” as the original process {Yt};'il,

2. Prediction, i.e. building a network (G,P) which receives the values
., YLV a5 input and produces Y as output.

3. Classification, i.e. building a network that receives the values ..., Y1 Y
as input and produces as output a guess as to which of several candidate
models actually produced the observations.

Also, we need not be limited to a single, “output” process. Many times we
are interested in learning an input /output relationship between two processes.
Consider two processes {U'}3°; and {Y*}?°,. Take the modelling problem: it
consists in finding a network (G, P) that will take input {U*}?°; and produce
output {Y*}2, which is “close” to {Y*}2°,. We can similarly redefine the
prediction and classification problem. In fact we can consider the “output-
only” problem as a special case of the input/output problem, assuming the
input layer of the network to be empty. This will be clarified by the phoneme
modelling example of Section 5.

In this paper we will only consider the modelling problem. This is useful
in itself, as we will show by applications to the encoder problem, modelling of
phonemes etc. (Section 5). But it is also useful as a stepping stone in solving
the prediction (more generally, estimation) problem and the classification
problem. However these two problems will be tackled in a future paper
[Kehl].

In particular we will consider Maximum Likelihood modelling. Given a
graph topology G, an initial condition X° = 2°, a sample u!, ..., 4™ from an
input process {U}2°, and a sample 3!,..., " from an output process {Y*}°,
we want to find a set of local conditionals P such that

L(P) = P?"ob(Y1 =g .Y = y"]XO =22 U =ut, . U = u™; (G,P))

is maximized at P = P. Note that we assume some fixed G = (S,N) on
which P lives. We choose P by Maximum Likelihood training; the local BF
algorithm provides a rather easy solution to this problem. The choice of
(S,N), on the other hand, is much harder; in [Keh2] we will consider this
question in somewhat more detail, but there are essentially no easy answers.

This completes the mathematical specification of the modelling problem.
The reader may want to skip to Section 5 where he can study a few examples
of modelling problems. Before we finish this section, let us mention briefly

12

how we intend to use modelling for prediction and classification (in [Kehl])
and how our methods are different from classical connectionist method.

Take for example the prediction problem. Prediction in connectionism
is usually done by nonlinear regression. One builds a model that at time ¢
receives as input past values ..., Y* ! Y and produces Vit as a prediction
of the next value Y**!. This is an essentially static (feedforward) estimator,
very similar to FIR filters in Signal Processing, and is not necessarily the
best solution to the prediction problem. In stochastic control [Aok87], Sig-
nal Processing (IIR filters) as well as in Statistics [BD87], much improved
estimates are obtained by the use of dynamical (feedback) estimators, most
notably the Kalman filter [Kal60]. Probably the most attractive characteris-
tic of the Kalman filter is its recursive nature. In the context of continuous
valued stochastic processes, the recursive computation of Kalman filtering
only applies to linear systems. However, as we will show in [Kehl], for
discrete valued processes we can implement a recursive analog of Kalman
filtering for any SRN.

Similarly, consider classification. In the connectionist literature classifiers
typically perform a nonlinear regression on the observables ..., Y ! Y. Even
when we are dealing with an essentially dynamic problem, such as speech,
it is not unusual to use static networks ([W+89a, W+89b] - but see also
[Rob88, Rob89, BW88, BW89] for dynamic networks). However, in Stochas-
tic Control Theory, especially in System Identification and Adaptive Control
dynamical methods of classification, are available, most notably the Lainiotis
algorithm [Lai71]. In [Kehl] we use the Lainiotis algorithm for classification
of discrete state SRN’s. Note that the Lainiotis algorithm is (for dynamic
processes) the analog of Nowlan’s competing experts method | Now90b.

4 The Local Backward Forward Algorithm

In this section we develop the Local Backward-Forward algorithm (henceforth
local BF) to solve the Maximum Likelihood learning problem for SRN’s.
This algorithm is a modification of the Baum Backward-Forward algorithm
[Bau72, BE67] used in Speech Recogntion [L+83, Rab88]. It is an alternative
to Back-Propagation [Alm87, Alm88, Alm89, ANS89, Pin88] or Relaxation
type methods (used in training Boltzmann Machines - e.g. see [A+85]) and
its basic advantage is great speed of learning.

Recall the Maximum Likelihood Learning problem. We are given an

O input sample u!, u?

initial condition ,...,u’ and output sample ', 32, ..., y*
which will be considered fixed for the rest of the discussion. We are also given
a fixed network topology G = (S,). Now we want to select a set of local

conditionals P such that the Likelihood function L(P) is maximized; where

13

L(P) is defined to be:
L(P) = Prob(Y' =y, . YT =97 | X =20 U =, ... UT =u";(G,P)).

To solve the Maximum Likelihood Learning problem, we will now develop
the local BF algorithm. First define some useful quantities:

Prob(Y' =y . YT =97 X1 =2' . XT =2"|X=2°U' =4, ... U" =" (G, P)).
Note that we have 3,1 ,7c 4m, Up(x!..z?) = L(P). We also define:

P, = > Up(a, .., z")log Uz, ..., xT). (4)

xl..2Te AMn

Now we will prove the following theorem:

Theorem 1 (Baum’s Theorem - [BE67]) Suppose (P, Q) > ®(P,P). Then
L(Q) > L(P).

Proof:
L(Q) Uo(z!.a”) Up(zh.aT) Vo(zl.z?)
Ty XTI N T mean O

Now, we have 3,1 o7 Up(z'..zT)/L(P) =1 so (5) is a convex combination;
also log(.) is a concave function. Hence (by Jensen’s Theorem):
Uo(zh.2T) 1

log% B méT quéaE’P)aj) log \I/p<$1--a7T) B L('P) <(I)<7D’ Q) — (I)<,P7,P)) > 0.
(6)

This completes the proof. °

Baum’s Theorem forms the basis of a class of ML algorithms (see [BE67,
Bau72|). Choose Py arbitrarily, then maximize ®(Py,P) with respect to
P; call the maximizer P;. Obviously ®(Py,P1) > P(Po,Po), hence also
L(Py) > L(Py). Now maximize ®(P;,P) with respect to P; caal the max-
imizer Py. Obviously ®(Py,P2) > ®(Py,P1), hence also L(Ps) > L(P1) >

L(Py). Proceeding in this manner we get a sequence Py, Py, ... such that

L(Po) < L(Py) < L(Py) < ...

This is an iterative, greedy algorithm: at every iteration the value of the
Likelihood is increased. It has been proven [Wu83| that this procedure guar-
antees convergence to a local maximum. Convergence to the global maximum
is not guaranteed. In all these respects the algorithm is similar to a steepest
ascent procedure. However there is one important difference: at every step

14

m we can explicitly compute the maximizer p7" (as we will show presently)
and hence are not confined to a small step |[p™ — p™ .

We want to minimize the function ®(P, Q) with respect to Q, where
P ={ps,s € SLUS,}, Q = {gs,s € SLUS,} are two sets of local conditionals.
So we want to minimize ®(P, Q) with respect to gs(alb,c), s € S, a € A,
be AN ¢ e AINi) | These are real variables in the range [0, 1]; however

they are not independent. They must satisfy:

S qabc) =1 Vs€Sbe AMO e AN, (7)
acA

We incorporate these constraints to the Likelihood function by using La-
grange multipliers p,(b,c), s € S, b € ANE) ¢ e AN

(P, Q) =d(P, Q)+ Y, > 1s(b,¢) > qs(alb, c).

$€5,US0 pe AINR () cc AIN; ()] acA

Maximization of ®(P, Q) under the constraints (7) is equivalent to maxi-
mization of ®*(P, Q) without constraints. To maximize ®* we apply the
usual necessary condition that the partial derivatives with respect to the ¢’s
equal zero. The partial derivatives are given by:

0P*

I A

S e Prob(YL.YT =yt oyt XTXT =2l a” | ULUT = ulo o, X0 = 2% P)lap (a4, 2y, (o) Uiy (s))
gs(a | b,c)

(8)
Here the function 1,,.(x, z,u) equals 1 when z = a, 2 = b and u = ¢; it is
zero otherwise.
Suppose now that s is a hidden unit. Setting (8) equal to 0 we obtain
that
Sttt _ Prob(YL.YT =yl gyt X0 =a, XL o =0 | ULU" =u'. ", X0 = 2f)

O

Zt:uj\fts):c PTOb<Y1"YT = yl"yTquVh(S) =0 ’ Ul..UT = U,l..U,T7X0 = ,170)

gs(a | bc) =

Remark: Note that the summation is taken only over these times ¢ such
that ’U,gvz(s) = C.
Now we have the following reestimation iteration:

prt i (a] be) =

Zt:uﬁvfl(— Prob(Y1.YT =yl o7 X1 = a, Xy, ="?]l UL.UT = vl X0 = 2% Pm)
Zt:“ﬁﬁs):c Prob(Y1.YT = yl..yT,X]ch(s) =0 |ULUT =ul.ul X0 = 20, Pm)
(9)

15

We can compute the terms in the fraction entirely in terms of the p™’s
However to do so we must sum out all possible X!, ..., X7 configurations,
the number of which grows exponentially with I". This renders direct com-
putation impractical. To overcome this difﬁculty we modify the algorithm
slightly. First, assume U = u!, ..., UT = 4T, X® = 20 are fixed for the rest of
this dlscusswn and define some auxﬂlary quantltles. The transition matrix
is defined for all 2,7 € AM» fort =1,2,..,7T:

PR(t) = Prob(X' =z | X'™H = 2,U" = u'; P™),
This can be computed in terms of the p™’s

Pm H ps ,175 ’ ZNh(S)JuN (s))

s€Sy

The emission matrix is defined for all z € AM» ¢y € AMe fort =1,2,...,T:
Qr(t) = Prob(Y' =y | X' = z,U" =u"; P™).

This can also be computed in terms of the p™’s

Quy() = 11 ps(ys | T, (0)> Unis))-

S€ES,

Next we define the forward and backward probabilities for all z € AM»,
t=1,..,T

a"(z) = Prob(Y..Y' = ¢! o, X! = 2|U.UT = u? X0 = 2°P™),

B (z) = Prob(Y" =1 YT = yT| X! = 2, UL.UT = u' u”, X0 = 2% P™).

The «o’s are called forward probabilities and the 3’s backward probabilities.
Now we will obtain an evolution equation for the forward probabilities. This
evolution equation in most cases is only approzrimately true. It is exactly true
under the assumption that the input stochastic process {U*}2, is a sequence
of independent random variables. In that case the forward probabilities obey
the forward evolution equation for all z € AM» ¢ =0,....T — 1:

o (@)= D o ()Pt + DQen (t + 1)
z€ AMp
with initial condition af'(z°) = 1, of*(z) = 0 for all z # 2°. The backward
probabilities satisfy the backward evolution equation: for all x € AMr ¢ =
1 T—-1:

g eeey

Bl (x) = > PR+ 1)Q%m(t+1)87(2)

ze AMn

with final condition 3L (z) =1, Vo € AMh,

16

As already mentioned, the evolution equations hold true only if U' U2, ...
are independent of each other (or, trivially, if there is no input process). In
many cases we have no reason to expect the input process to be independent
but we also have no information about the nature of correlation across time.
In that case the assumption of independence is a natural one and in most
cases we can expect the evolution equation to hold up to a reasonably good
approximation.

Now, using the forward and backward probabilities we can write the fol-
lowing relationship:

Prob(Y'. YT =yl .yt XM = a, X}, (o = 0UN.UT =l a”, X = 2° P™) =

> QA (@) Pl (t+ 1) QM ir e (E 4+ 1) BT (2H).

t 1.t t _
xt,x (g 7a,:z:Nh(s)7b

Similarly, we have:

Prob(Y'.YT =y y" X}, o = 0ULUT = vl u” X0 = 2% P™) =

> o @)s ().

t.pt _
T 'mNh(s)*b

Now we can rewrite the fraction in (9) as

Z:t:utJrl th,mt+1:m§+1:a,mt =b Oégn (ajt)PaTa:“fl (t + 1)Q§:n£+1yt+1 (t + 1>ﬂtn47:1 <$t+1)

=c —
pm+1<a ’ b C) — N;(s) Ny, (s)
’ 7 Zt:uf{}s):c th:mﬁ\,h(s):b 04” (ajt)ﬂgn (ajt)

(10)
Once again, note that summation is not over all ¢, just the ones which have
appropriate input: ufvi(s) =c.

The reestimation formula (10) holds for all hidden units s € S,. If s is
an output unit (s € S,), we can follow similar reasoning as before to get:

Zt:uﬁvi(s):c,ygza th:mt h(s):b Oégn (ajt)ﬂtm (ajt)

m+1 b — =
prlalbe) = — St of (x) 3 (=)

ot _ ot _
'uNi(s)*C 'mNh(s)*b

Note that, once again, the summation is not over all ¢, just over the ones
where the appropriate restriction of u', 4" equals ¢, a, respectively.

This completes the description of the local BF algorithm. Putting all the
pieces together, we have:

The local BF algorithm:

17

Given a sample 7', 12,....,y7 and u',u?,...,u", and a network topology

G = (S,N), we want to find a set of local conditionals P that is compatible
with (S, N) and maximizes the Likelihood

L(P) = Prob(Y' =y', ... YT =7 U =4, .. .U =u";(G,P)).
We obtain P as the limit of P°, P!, ... which are obtained as follows:
1. Choose P? arbitrarily.
2. ..

3. Given P™ compute P™(t), Q™(t), t =1,...,T with:

P;Z(t) = H p?(‘% ’ ZNh(S)uuljtVi(s))‘

s€Sy
Z?y(t) = H p5<y5 ’ $Nh(5)7u§Vi(s)>‘
S€ES,
Given P™(1),Q™(t), t =1,2,...,T, compute &™(t), f™(t) (t =1,...,T)

with:
aM(x%) =1, o"(r) =0 Vax #2°

afi (z) = > al'(2) PRt + 1)Q e (t + 1)

ze AMn

Ar(r) =1 Vo € AMh
Gl x) = > Prt+1)QnLm(t+1)87(2)

ze AMn

4. Given o™, ™ compute P™H by:
Vs € 5, p"a]|b,e) =

Z. t+1 Z toptt+1.pttl g, ot
t'uNi(s)*C Ttz Ty 7a,:z:Nh(S)

=b Oégn (ajt)P::?a:t*l (t + 1)Q§:n£+1yt+1 (t + 1>ﬂtn47:1 <$t+1)

Zt;u“fl th:mﬁv ():b a?('ajt)ﬂgn(ajt)
h s

Ny(s)™°¢
vse S, p™ia]b,e)=
Zt:ut ‘(S):c,ygza th:mﬁvh(s):b Oégn (ajt)ﬂtm (ajt)

m+1 b — N
(e fbe) Sataty oy OF (@) ()

Zt:ut

_ t.pt
=C T
N;(s) Ny (s

We have proven rigorously that our algorithm will increase the Likelihood
at every step. Convergence to a local maximum can also be rigorously proven

[Wu83].

18

Now we will present a complementary point of view, where the algorithm
is derived heuristically, from a general principle known as the FM method
[D+77]. Suppose we did not know the actual values of the py’s. However we
could assume some arbitrary values Py and using these proceed to compute
various statistics of the network. In particular let us take some unit s (say it
is a hidden unit) and, given the observed input and output, let us compute
the expected number of times that unit s is state a and its parents were (one
time epoch ago) in states b, c. The actual number of such configurations is:

T-1
;)]—a,b,c <X§+17 X;Vh(s)u U]ﬁft(ls)) (12>

Now the expectation of this quantity, with respect to the probability measure
Prob(. | YL.YT =4l g7 UL.UT = u' u? X0 = 2% ; P%) (the probability
conditional on the input and output) is itself a probability:

T—-1
B (z Lone (XE XY o, U;tép) _ (13)

t=0

Y. Prob(XiM =a, X}, =0V YT =yl gyt ULUT =l u” X0 =20, PY)
t:uﬁ\fis):c

Similarly we can compute the expected number of times the parents of s were
in state bc. The actual number is:

T-1
> Lo XN, 9 Uni(sy)- (14)
t=0

Now the expectation of this quantity, with respect to P(. | YL..YT = 4! yT,
UL UT =u') X0 = 2% P (the probability conditional on the input and
output) is in fact a probability:

T—1
B (Z 1b,c<thvh(s)aUztvf(15)>> =
t=0

Y. Prob(Xpy,) =bY'.YT =yl y" ULUT = u'u” X0 = 2" PY)
t:uﬁvi(s):c
(15)
Now, a reasonable re-estimate p!(a|b, ¢) would be the ratio of the two expec-
tations in (13),(15):

S, Prob(X!H = a, Xy, () = DIYLYT =yl oyt UL UT =l X0 = 2% PY)
Sy Prob(Xyy, o = bYL.YT =yt oyt UL.UT = ul.ul, X0 = 20, P0)

pi(alb,c) =

19

Multiplying both numerator and denominator by Prob(Y1.YT = y' 47 |
ULUT =yl al, X0 = 2% P% we get

S Prob(YL.YT =yl gyt XM = a, X§ () = bULUT = u' .’ X0 = 20 P°)

1
b =
pa(alb,c) >, Prob(YLYT =y o7 Xt = b|UL.UT = ul.ul, X0 = 20, PY)

Ni(s)

(16)
Using the same reasoning we can get the same reestimation formula for every
s € S, and a similar one from every output unit s (s € S,). Applying this
reestimation for all s € S; U S, we get a new set of local conditionals, P!.
Now we can use this new estimate P! to recompute (16) and then compute
another P? estimate etc. However, the reestimate (16) is simply (9). The
analogy works out in exactly the same way for the output units.

This heuristic discussion illuminates the mathematical derivation of the
local BF. The heuristic is a special case of the EM method [D+477] which is
used for ML estimation of parameters of random phenomena. The general
idea is: assume the parameters to have some values, use these values to com-
pute some statistics of the random phenomenon and use these statistics to
recompute the parameters. We keep iterating until convergence is achieved.
In many cases (e.g. BF, local BF) convergence can be proven. In Appendix
B we show the Relaxation method used for Boltzmann Machine training is
a special case of EM as well. Convergence can be proven when the training
takes place under certain conditions (simulated annealing). Furthermore,
both Relaxation and BF are greedy ascent methods. Similarly, Back Prop-
agation, is a greedy descent method. (We want to minimize square error.)
However, there is an important difference between Boltzmann Machine and
Back Propagation learning and the local BF. BF has automatic step selection:
given P™ we compute P! by (10) and the difference ||P™* — P™|| need
not be small. BP and Relaxation require that ||[P™"! — P™| is small. This
implies that they have to move slowly towards the optimum of the objective
function. This is not the case for local BF, indeed there is a considerable
speedup of convergence, as we will see in the next section.

Remark: The local BF algorithm is essentially a version of the BF algo-
rithm that estimates local conditional probabilities, rather than the global
transition matrix which is estimated by the Baum BF algorithm [L+83]. A
point that is important to note is that the computational effort is of the
order O(T - |A|*M»). The linear rate in the sample length T is of course very
satisfactory from the computational point of view. The M, exponential does
not look good at first sight, but recall that a network with M hidden units
has |A|M» states, so what we really have here is the usual result for HMM’s:
the computational effort is O(T - K?), where K is the number of states. Of
course this analysis of computational complexity does not take into account
the fact that BF-type algorithms converge in fewer iterations than, say, Back
Propagation.

Remark: Even though the local BF algorithm has been developed for

20

application to recurrent networks, it can be used equally well for the training
of static, feedforward networks. To see this, start with the observation that
a recurrent network in ¢ = 1,...,T", unfolded in time, can be considered as a
T-layer feedforward network (see [Keh90]). This feedforward network can be
trained by the local BF algorithm. It is a special type of feedforward network,
in that (a) every layer has the same number of units and (b) groups of units
across layers are constrained to have the same local conditionals. Both of
these constraints follow from the fact that the ¢-th layer is a time-shifted copy
of the (¢ — 1)-th layer. A more general type of feedforward network consists
of several layers of probabilistic units, where each layer has an arbitrary
number of units and each unit has a distinct local conditional. The local BF
algorithm applies equally well to such a network with small modifications.
The basic requirement for the algorithm to work is that the ¥ function in
(4) can be written as a product of probabilities. (Why this is necessary
becomes apparent from inspection of Baum’s theorem and the maximization
step - for a more general discussion see [BS68].) In a feedforward net, we
will typically have a set of L input/output pairs: (u1,%1),..., (ur,yz). The
Likelihood function will be a product of probabilities:

L(P) = ﬁProb(Yl =o' |U" =), (17)

because we can consider the sequence of input presentations as a sequence
of independent random experiments. Starting from (17), we can obtain the
local BF algorithm for feedforward networks in exactly the same way as
before. This will be pursued in a later paper.

Remark: Another modification of the local BF algorithm is necessary
when we do not have enough data to reliably estimate a large number of
local conditionals (problem of overfitting). One way to deal with this, is by
assuming certain units to have the same local conditionals. Obviously this
limits the number of free parameters, hopefully to a level where we have
enough data for reliable estimation. Say that units sq,$9,..., sp have the
same local conditionals (this implies they also have the same size of parent
sets). Call the local conditional probability of this group p, (or g, etc.).
Then, when computing the partial derivative of Q(P, Q) with respect to g,
as in (8), we have to add up the contribution of all sites s;, d = 1,..., D.
This is the only change in the algorithm; the rest goes as previously and the
details are omitted. This is the equivalent of “tied” transition probabilities
discussed in [Jel83] and can result in substantial decrease of the number of
parameters that need to be estimated.

21

5 Applications

In this section we will use the local BF algorithm to solve two problems:
(a) the 8-3-8 encoder and (b) phoneme modelling. These are rather simple
problems used to illustrate the most important features of the algorithm and
also to introduce some practical tricks that improve its efficiency.

(a) 8-3-8 Encoder: This is a “static” problem discussed in [A+85] and
elsewhere. We have a set of input/output pairs (u!,y'),..., (u® 3®) and we
want to build a network that takes input u" and produces output y" for
n =1,...,8. The input/output pairs are the following 8-long binary vectors:
u! =y = 10000000, v?> = y* = 01000000, ..., v® = »* = 00000001. The
network has three hidden units. Hence the name “8-3-8 encoder”.

The network consists of: 8 binary input units (call them ig, iy, ...,i7), 3
binary hidden units (call them hy, h, h3) fully connected to each other and
to all the input units and 8 binary output units (call them oy, 01, ..., 07) fully
connected to the hidden units. This completes the topology description. For
specifying the local conditionals we will use the local BF algorithm.

However, we change the local BF algorithm somewhat so as to facilitate
the learning process. Namely, we will only estimate the local conditionals
of the hidden units; the local conditionals of the output units will not be
estimated but “hand-picked” as follows. For n = 0,...,7:

1 iff a4+ 2294+ 420 =n
0.0 0y 1 2 3
puttiatgs) = { o 2

In words, the n-th output unit turns on if n is equal to the binary number
that corresponds to the activation pattern of the hidden units.

So the learning problem is to find a set of local conditionals for the hidden
units: {pp, (z | W3u..d), n=1,23, z,4,...,ud € {0,1} }.

We want to teach a static input/output relationship to a recurrent net-
work. We need to convert the static problem to a dynamic one. We do so
by inventing an appropriate time evolving input/output sequence. There are
many ways to achieve this. We use the following input/output sequence. The

input sequence is u',...,u?% and the output sequence is y', ..., %% we take

u' = g = 10000000 for t = 1,...,25, u* = y* = 01000000 for ¢t = 26, ..., 50
etc. In other words, for every type of constant input we want the SRN to
settle down to the appropriate deterministic steady state. It is not easy to
plot an 8-long binary vector vs. time; instead we plot in Fig.1 the number of
the active output unit (there is only one active output at any given time t).
We can see immediately that there is at least one set of hidden local
conditionals that will realize the desired input/output behavior:

| o o
pMmﬁﬂm:{g i for some m € {0,.., 7} uf, = 1 and Bin(m.n) =1

else.

(18)

22

Fig.1 about here

Figure 1: Plot of Input vs. Time

It is easy to check that for any legal input (all but one input units are off!)
the output activation pattern will be exactly the sane as the input one. To
see this, take any legal input to the network - only one input unit will be on at
any given time. Take this unit’s number and write it out in binary notation.
The corresponding binary number will reflect the activation pattern of the
hidden units and this in conjunction with (18) will give the correct output.
It is easy to check there are many other possible sets of local conditionals
that will produce the desired behavior (the problem is underdetermined) but
(18) is, in an obvious sense, the best solution. The question is whether the
local BF will pick up this solution and how fast.
We initialize the hidden units for completely random output: py, (1]ud...u?) =

B5,n=0,1,..,7,Vz,u),...,ud € {0,1}. After 5 iterations of the BF algorithm
(seven minutes on a Sun/4) we arrive to the following solution:

1—¢ iff for some m € {0,...,7} v, =1 and Bin(m,n) =1
€ else.

phn(llug...uo) = {

The € varies for each n = 1,2,3, z,u),...,u2 but is always less than .001.
The SRN behaves almost deterministically and the solution is almost perfect
solution. Of all the sets of conditional probabilities that solve the learning
task, the local BF algorithm picks up the “best” solution very quickly.

It is clear that finding a good solution of the encoder problem is extremely
easy using our model and algorithm. There are many possible sets of condi-
tional probabilities that solve the learning task; in this sense the problem is
underdetermined. What is remarkable is that the local BF algorithm picks
up the best solution very fast.

(b) Phoneme Model: Now consider a dynamic problem. We will take a
sample speech waveform and build a SRN model that will reproduce this
waveform.

23

Fig.2 about here

Figure 2: Steady State, Continuous Valued Speech Waveform of [ou]

This task is essentially the same as Hidden Markov Modelling of a phoneme,
much in the spirit of [L483]. See Appendix C for a discussion of the connec-
tion between SRN and HMM. However, there are some important differences
from [L.+83]. First of all we estimate local conditional probabilities, not global
ones (namely, the probability transition matrix). Second, we model the raw
speech waveform rather than the LPC coeflicients or some such parametric
model. Such raw signal models of phonemes are relatively rare - for a more
extensive treatment of this problem see [Keh91]. In [Keh91]| we develop global
HMM’s; here we will develop a local HMM, in the sense that we estimate the
local conditionals. Once again, we solve this problem as an example of the lo-
cal BF and do not make any conclusive claims about the practical usefulness
of such models. We do believe they may have important practical applica-
tions and we pursue them further in [Keh91] and [Kehl]. Still, both [Keh91,
Kehl] are rather theoretical - there is need for more applications-oriented
work.

Consider a typical steady state speech waveform (Fig.2). This is the
waveform corresponding to the steady state part of phoneme [ou], from the
utterance “one”. It is a continuous valued waveform; on the other hand our
SRN’s produce output from a finite alphabet. We have to “preprocess” the
original phoneme waveform; in particular we quantize it to four levels to get
the waveform of Fig.3, which still retains the characteristic [ou] shape. In
Fig.4 we plot the original and quantized waveform together. Now we want
to build a model that “reproduces” the waveform of Fig.3.

We have to be careful about the meaning of “reproduction”. Before we
proceed with the network description, let us describe our modelling objective.

Once we fix the network topology, we will choose the values of the local
conditionals in such a way that Likelihood is maximized; this is a well defined
criterion. However, a poor choice of topology may result in the Maximum

24

Fig.3 about here

Figure 3: Steady State, Quantized Speech Waveform of [ou]

Fig.4 about here

Figure 4: Continuous and Quantized Speech Waveform of [ou]

25

Fig.5 about here

Figure 5: Steady State, Quantized Speech Waveform of [ah]

Likelihood model for this specific topology not being very good. Clearly,
some topologies will be better than others; at least we intuitively expect
bigger networks (more units) to do better. We need some absolute criterion of
goodness of modelling, independent of topologies. There are several possible
points of view. Here we will mention only two.

The first point of view is that the original speech waveform is a stochastic
process, and so is the output of the SRN model. Hence we want to develop
a measure of distance of stochastic processes and check that in our case
the distance from original to model is small. This approach is explained in
more detail in [Keh91] and [Keh2]. There we develop and discuss several
appropriate distance measures. All of these measures depend on the joint
probabilities (for the original and model processes) of finite length outputs.
This approach is theoretically important and is used in [Keh91, Keh2] to
prove consistency of ML estimation. However, it is not appropriate for prac-
tical application in the case of speech waveforms, because of the following
reason. The important information about speech appears in fairly long term
dependencies, e.g. in the fact that the waveform of Fig.3 is quasi-periodic
with approximately the same pattern being repeated every sixteen or so time
steps. Now, for these dependencies to appear in the joint probability distri-
butions Prob(X" .. X*"™) we must look at n big enough to capture the
periodicity, e.g. » = 16. And to compute distances between two such 16-th
order joint probabilities, we must compute their values for all possible values
of 16-long quaternary strings X'*!... X*"16 But there is several billions of
these! So this approach is not very practical for computation.

An alternative approach, which we will follow here, is to concentrate on
the shape of the speech waveforms. For different phonemes we get charac-
teristically different shapes; compare Fig. 3 (an [ou] phoneme) with Fig.5
(an [ah] phoneme). The visual tezture of the two waveforms is strikingly

26

different. This corresponds to different audio texture, because the visual ap-
pearance depends on the number and location of the formants (see [Gra76))
which can be used to discriminate between different phonemes. Therefore,
in this example we will consider our model succesful if it produces an output
processes which “looks similar” to the original. This will be called the visual
similarity criterion. It is admittedly a vague criterion, but in practice it
works quite well, in other words it is pretty clear when the visual texture of
a waveform is captured. A further confirmation of the validity of our model
will appear in [Keh1], where it is used succesfully as the starting point of our
prediction and classification algorithms.

Let us now return to the description of our SRN model. We use a net-
work with no input units (since there is no input process correlated with the
speech waveform), four binary hidden units (hy, ..., hs) (fully connected to
each other) and one four-valued output unit (call it o), fully connected to
the hidden units.

The local BF algorithm can be modified to accomodate the lack of input
units; just drop the input dependence from local and global conditionals. It
is more natural to use one four-valued output unit than two binary ones;
this can also be easily accommodated in the algorithm. The fact that we use
a four-valued alphabet causes no increase in computation, (no exponential
explosion) because the output values are observed and fixed.

Just like in the previous example, we adopt a hybrid approach in choos-
ing the local conditionals. We will once again “handpick” the emission ma-
trix. In this case the emission matrix is the same as the local conditional
Do, (y|29...23). The reason for using handpicked emission matrix is that a ju-
dicious choice can force the local BF algorithm to search in the right region
of the parameter space. Before we elaborate on the choice of the emission
matrix consider again the waveform of Fig.3.

Looking at the quantized speech waveform, we realize that it is quasi-
periodic, with one quasiperiod being about 16 time steps long. In particular,
it is approrimately composed of prototype elements like the one shown
in Fig.6. By “approximately” we mean the following: take a sequence of
deformations of the element in Fig.6 (e.g. dilations and compressions of time
scale) and string them together. What we will get is a waveform like the one
of Fig.7, that satisfies the criterion of visual similarity that we postulated in
the previous paragraphs. So the question is: how to build a SRN that creates
this type of output, with local time scale deformations.

We can think of every time step ¢ (t=0,1,...,15) in one prototype as cor-
responding to one state of the SRN. Recall that every state of the SRN is
a 4-long binary vector. The sixteen four-long binary vectors correspond to
the sixteen states of the protoype. We can number each vector/state by the
binary number that corresponds to this vector. There are sixteen states (0-

27

Fig.6 about here

Figure 6: Prototype Waveform

Fig.7 about here

Figure 7: “Deformed Prototypes” Waveform

28

15).: 0, 1, ..., 15. ! Suppose the SRN changes states as follows: if at time
t — 1 it is in state t-1, at time ¢ it will go deterministically to state t (state
15 goes to state 0). At the same time it produces output y*. Therefore, for
§s=0,..,15,t =1,2 ... we have

1 iff3ke{0,1,2,..} andt=s-k+1

0 else

Prob(Y' = y*| X") = { (19)
In this way we have specified the global transition and emission probabilities.

With a little reflection it should be clear that, if we start with a prototype
10, ...,y from Fig.6, and the network we described above, we will get a model
that produces perfect copies of the original prototype. Call this Model 1.
Now, Model 1 satisfies the visual criterion, but it is a poor Maximum Likeli-
hood model, because our sample also has sections which are slightly different
from the first quasiperiod/prototype and these will be assigned (under this
deterministic model) probability zero.

To rectify this weakness of the model, we relax the deterministic state
transition hypothesis and allow for random transitions between states. Say
we allow every state two options: either move on to the next state (with
high probability) or loop back to itself (with low probability). This model
will be called Model 2. It is still a pretty simple model, but will allow
every possible state path and will reproduce deformed copies of the prototype
element of Fig.6. This model has higher Likelihood than Model 1. However,
it is conceivable that a more general transition model will do even better
(higher Likelihood, better visual texture).

Now, both of the models discussed so far, are “handcrafted” models, in
that we handpick the global emission and transition conditionals. Theoret-
ically, we should do at least as well if we implement the model using local
conditionals estimated by the Maximum Likelihood method. However, there
are many practical considerations (e.g. will the local BF yield a globally
maximizing set of local conditionals?). Hence we will take a slightly differ-
ent, hybrid approach to obtain Model 3.

1. We retain the emission matrix already described, namely

100110001000000017"
~10000000O0COO0CO1T1O0T1T1
Q_0000011100000100
01100000O011O000O00O0

"What would happen if the prototype was not sixteen time steps long? Say it was
twelve time steps long. If we use binary units we need four of them and the SRN will have
sixteen states anyway. We have four superfluous states; we need to take them out out of
the game. One way to do this is to have the extra states emit an extra output character
that has never been observed. This guarantees that Maximum Likelihood estimation of
the local conditionals will assign zero probability to these states.

29

Comparing this matrix with the prototype waveform of Fig. 6 we see
that it implements (19). We can implement this global output matrix
in terms of local conditionals because there is only one output unit,
which is fully connected to all hidden units. So in this case, emission
matrix and local conditional are identical. In other words, we have
handpicked the emission local conditionals.

2. It is not so obvious how to “handpick” the hidden local conditionals.
First of all, it is not obvious how to choose local conditionals that
implement our Model 2 transition matrix. Secondly, maybe there is
a “better” (higher Likelihood) set of hidden local conditionals to use
with our emission matrix. We will trust that the local BF algorithm
will find this set of hidden local conditionals.

It is obvious that we have used a hybrid approach of estimation. We
have a good guess for the emission matrix and so we use this guess, rather
than estimating the emission matrix. We also have some idea of what the
global transition matrix should look like, but do not know much about the
local conditionals. So we let the local BF algorithm search the parameter
space for the Maximum Likelihood local conditionals. Hopefully, our choice
of emission matrix “forces” the BF algorithm to go quickly to the relevant
regions of the parameter space.

Now let us test our method by using local BF to determine the para-
meters of Model 3. We initialize the hidden units as follows (completely
randomly): py, (zl]2%.29) = 5, n =1,2,3,4, Vz! 29,29 € {0,1}. After
30 iterations of the BF algorithm (twenty minutes on a Sun/4) we get a
convergent solution; the actual values of the local conditionals are not very
illuminating, but the global transition matrix we get from them is what we
expect to be a “good” solution: most state transitions are completely impos-
sible, every state has high probability of going to the next state and a low
probability of looping back into itself. This “good” global transition matrix
was derived from local conditionals which the local BF algorithm discovered
quickly, starting from random initial values. So it appears that the local
BF does indeed converge to the appropriate region of the parameter space
quickly, even when it starts far away from it. Of course, the judicious choice
of the emission matrix has helped things considerably.

We do not list the transition matrix here; it is big and would be awkward
to represent. At any rate, more important than the parameter values, is the
degree to which our model reproduces faithfully the sample waveform. To
test this we run the SRN model to produce a new output sample and we get
the waveform of Fig.8. It is intuitively obvious that the model captures the
general shape of the original sample and should be a very good model. The
succesful use of this model for prediction and classification (see [Kehl]) will
confirm our intuition.

30

Fig.8 about here

Figure 8: SRN Model Produced Waveform

6 Conclusions

We have developed a new SRN model and a Maximum Likelihood algo-
rithm to train it. We have used these to model static as well as dynamic
input/output relationships. We get accurate and easy to train models. Ex-
tensions to training of feedforward networks are easy to obtain.

We can prove that our SRN can model a very large class of stochastic
processes and input /output relationships. This will be done in [Keh2] where
we study the representation power of SRN models. We have presented two ex-
amples where we model an input/output relationship by an SRN. We showed
that a static input /output relationship can be captured as the steady state of
a SRN (encoder problem). We also built a SRN that reproduces a dynamic,
continuously evolving stochastic process (speech waveform). Once we have a
model of a stochastic process we can use it for more advanced learning tasks
such as prediction and classification. This will be done in [Kehl].

Of all the various points of view on SRN (see Appendix D for a very brief
review) two are particularly promising. Using the nonlinear input/output
system approach puts us our model in the context of stochastic control; this
is a mature discipline with a history of several decades of theory and appli-
cations. Many estimation and learning methods that have been developed in
stochastic control can be applied to connectionist problems. We will pursue
this direction in [Kehl]. The other interesting approach is to consider the
SRN as an inhomogeneous Hidden Markov Model; this is briefly explained
in Appendix C. Clearly, this has been our motivation in developing the local
BF algorithm. The advantage of the HMM approach is the speed and ease
of training. On the other hand, using the SRN formulation we enjoy the
advantages of parallelism and parsimonious modelling.

The SRN model we developed is more general than the classical connec-

31

tionist model with sigmoidal units. On the other hand, our model can be
implemented as a connectionist network of stochastic nonlinear (but not sig-
moidal) units (see Appendix A). So there is a certain equivalence between
our SRN and more traditional connectionist models.

The local BF algorithm is a special case of the EM method. EM is a very
pervasive heuristic; in Appendix B we point out that we can view Boltzmann
Machine training as another special case of EM. However the BF algorithm
has an additional characteristic which gives it a speed advantage: it self-
selects optimal step size. This is not the case with relaxation learning, or
with Back Propagation for that matter. Both of these are small step steepest
ascent/descent algorithms. This explains their relative slowness.

In conclusion, we have developed a powerful and easily trainable model.
We believe that the combination of HMM and Stochastic Control methods
will help further development of SRN theory and application to many difficult
problems of learning temporally evolving relationships.

Acknowledgement: I want to thank Nick Chater, Steve Nowlan and Ah
Tsung Tsoi for useful suggestions on how to improve the notation and the
organization of this paper.

32

References

[A+85]

[AleS9]

[Alm87]

[AImSS]

[Alm89]

[AmaTl]

[AmaT72]

[Ama83]

[ANSY]

[Aok87]

[Barg9]

[BASS5]

[Bau72]

D.H. Ackley et al. A learning algorithm for Boltzmann machines.
Cognitive Science, 9, 1985.

I. Aleksander. The logic of connectionist systems. In I. Aleksander,
editor, Neural Computing Architectures. MIT, 1989.

L.B. Almeida. A learning rule for asynchronous perceptrons with
feedback in a combinatorial environment. In Proc. of 1st Int. Conf.

on Neural Networks, S. Diego. IEEE, 1987.

L.B. Almeida. Backpropagation in perceptrons with feedback.
In R. Eckmiller and C.v.d. Malsburg, editors, Neural Computers.
Springer, 1988.

L.B. Almeida. Backpropagation in nonfeedforward networks. In
I. Aleksander, editor, Neural Computing Architectures. MIT Press,
1989.

S.I. Amari. Characteristics of randomly connected threshold ele-

ments and network systems. Proc. of the IEFE, 39:33-47, 1971.

S.I. Amari. Learning patterns and pattern sequences by self-
organizing nets of threshold elements. IEFEE Trans. on Compulers,
21:1197-1206, 1972.

S.I. Amari. Field theory of self-organizing neural nets. IEEFE Trans.
on Systems , Man and Cybernetics, pages 741-748, 1983.

L.B. Almeida and J.P. Neto. Recurrent backpropagation and Hop-
field networks. In F. Fogelman-Soulie, editor, Neurocomputing, Al-
gorithms Architectures and Applications. Springer, 1989.

M. Aoki. State Space Modelling of Time Series. Springer, Berlin,
1987.

A.G. Barto. Connectionist learning for control:an overview. Tech-
nical Report TR 89-89, COINS Dept., Un. of Mass. at Amherst,
1989.

A.G. Barto and P. Anandan. Pattern recognizing stochastic learn-
ing automata. I[IFEFE Trans. on Systems , Man and Cybernetics,
SMC 15(3), June 1985.

L.E. Baum. An inequality and associated maximization technique
in statistical estimation. Inequalities, 3:1-8, 1972.

33

[B+70]

[BE67]

L.E. Baum et al. A maximization technique occurring in the sta-
tistical analysis of probabilistic functions of Markov Chains. Ann.

of Math. Stat., 41(1):164-171, 1970.

L.E. Baum and J.A. Eagon. An inequality with applications to sta-
tistical estimation for probabilistic functions of Markov Processes.

Ann. of Math. Stat., pages 36-363, 1967.

[Be+90a] Y. Bengio et al. A hybrid coder for Hidden Markov Models using

a recurrent neural network. Proceedings of the International con-
ference on Acoustics, Speech and Signal Processing, Albuquerque,
NM, April 1990, pp.537-540.

[Be+90b] Y. Bengio et al. Global optimization of neural network-HMM hy-

[Boo67]

[BS68]

[BWSS)

[BWS89)

[BDS7]

[D+77]

[Dob65]

[Dob70]

[dL8g]

brid. Technical Report TR-SOCS-90.22. McGill University, School

of Computer Science. December 1990.

T. Booth. Sequential Machines and Automata Theory. Wiley, New
York, 1967.

L.E. Baum and G.R. Sell. Growth transformations for functions on

manifolds. Pac. J. of Math., 27(2):211-227, 1968.

H. Bourlard and C.J. Wellekens. Links between Markov models
and multilayer perceptrons. Technical Report, Phillips Research
Lab, 1988.

H. Bourlard and C.J. Wellekens. Speech dynamics and recurrent
neural nets. In Proc. of the ICASSP. IEEE, 1989.

P.J. Brockwell and R.A. Davis. Time Series: Theory and Methods.
Springer, New York, 1987.

A.P. Dempster et al. Maximum Likelihood estimation via the EM
algorithm. J. of the Stat. Roy. Soc. B, 39(1):1-38, 1977.

R.L. Dobrushin. Existence of a phase transition in two-dimensional
and three-dimensional ising models. Th. of Prob. and its Appl.,
10(2):193-213, 1965.

R. L. Dobrushin. Prescribing a system of random variables by
conditional distributions. Th. of Prob. and its Appl., 15(3):459-
486, 1970.

D. d’Humieres and P. Lallemand. Fluid dynamics with lattice gases.
In R. Livi et al., editors, Chaos and Complexity, pages 279-301.
World Scientific, Singapore, 1988.

34

[Dre90]

[E1185)

[Elm88]

(elel

[GidS5]

[Gil90]

[GraT76]

[Gro86a]

[Gro86b]

[Hop82]

[Hop85]

[HSS6]

[Jel83)

[Jor86]

S.E. Dreyfus. Artificial neural networks backpropagation and the
Kelly-Bryson gradient procedure. J. Guid. Cont. Dyn., 13(5):926—
928, Sept.-Oct. 1990.

R. S. Ellis. FEntropy, Large Deviations and Statistical Mechanics.
Grundlehren der Math. Wissenschaften. Springer, New York, 1985.

J. L. Elman. Finding structure in time. Technical Report CRL TR
8801, Center for Research in Language, University of California at
San Diego, 1988.

S.Geman and D. Geman. Stochastic relaxation Gibbs distributions
and the bayesian restoration of images. [IEEE PAMI-9:721-741,
1984.

B. Gidas. Nonstationary Markov Chains and convergence of the

annealing algorithm. J. Stat. Physics, 39:73-131, 1985.

C.L. Giles. Higher order recurrent networks and grammatical in-
ference. In D. Touretzky, editor, Advances in Neural Information
Processing, San Mateo California, 1990. Morgan Kauffman.

AH. Gray, Jr. and J.D. Markel. Linear Prediction of Speech.
Springer, Berlin, 1976.

S. Grossberg. The Adaptive brain:I Learning, reinforcement, moti-
vation and rhythm. Wiley, 1986.

S. Grossberg. The Adaptive brain:1l Vision, Speech, Language and
Motor Control. Wiley, 1986.

J.J. Hopfield. Neural nets and physical systems with emergent
collective computational properties. Proc. Nat’l Acad. Sci. USA,
1982.

J.J.Hopfield and D.W.Tank. Neural computation of decisions in
optimization problems. Biol. Cyb., 52, 1985.

G. Hinton and T. Sejnowski. Learning and relearning in Boltzmann
machines. In Parallel Distributed Processing, volume 1. MIT, 1986.

F. Jelinek et al. A Maximum Likelihood approach to continuous

speech recognition. IEEE PAMI-5(2), pp.179-190.

M.I. Jordan. Attractor dynamics and parallelism in a connectionist
sequential machine. In Proc. of the 8th Ann. Conf. of Cog. Sci. Soc.,
1986.

35

[K*69)]

[Kal60]

[Keh90]

[Keh91]

[Keh1]

[Keh?2]

[Keh3]

[Lai71]

[1.+89)

[Leb90]

[L+83)

[Lig85]

[Lin88a)]

R.E. Kalman et al. Topics in Mathematical System Theory.
MecGraw-Hill, New York, 1969.

R.E. Kalman. A new approach to linear filtering and prediction
problems. ASME J. Bas. Eng., pages 35—45, 1960.

A. Kehagias. Optimal control for training: the missing link between
Hidden Markov Models and connectionist networks. Math. Comp.
Mod., Vol. 14, pages 284-289, 1990.

A. Kehagias. Approximation and Estimation of Stochastic
Processes by Hidden Markov Models. PhD thesis, Division of Ap-
plied Mathematics, Brown Un., Providence, Rhode Island, May
1991.

A. Kehagias. Stochastic Recurrent Networks: Prediction and Clas-
sification of Time Series. Technical Report, Division of Applied
Mathematics, Brown Un., Providence, Rhode Island.

A. Kehagias. Stochastic Recurrent Networks: Representation Prop-
erties. Technical Report, Division of Applied Mathematics, Brown
Un., Providence, Rhode Island, — In preparation.

A. Kehagias. Stochastic Recurrent Networks: Unification and
Extension. Technical Report, Division of Applied Mathematics,
Brown Un., Providence, Rhode Island, — In preparation.

D.G. Lainiotis. Optimal adaptive estimation: Structure and pat-

tern adaptation. IFEE AC, 16(2):160-170, 1971.

J. L. Lebowitz et al. Probabilistic cellular automata: Some statis-
tical mechanical considerations. Technical report, Dept. of Mathe-
matics, Rutgers Un. New Brunswick NJ, 1989.

J.L. Lebowitz. Statistical mechanical porperties of probabilistic

cellular automata. J. Stat. Phys., 59(1/2):117-170, 1990.

S.E. Levinson et al. An introduction to the application of the theory
of probabilistic functions of a Markov Chain. The Bell Sys. Tech.
J., 62(4), April 1983.

T. Ligget. Interacting Particle Systems. New York. Springer, New
York, 1985.

R. Linsker. How to generate ordered maps by maximizing the mu-
tual information between input and output signals. Technical Re-
port RC 14624(Nr.65530), IBM Research Division - T.J. Watson
Research Center, Yorktown Heights NY, 1988.

36

[Lin88b] R. Linsker. An application of the principle of maximum in-

[M*53]

[May82]

[NTS9]

[Nea90]

formation preservation to linear systems. Technical Report RC
14195(Nr.63478), IBM Research Division - T.J. Watson Research
Center, Yorktown Heights NY, 1988.

N. Metropolis et al. Equations of state calculations by fast com-

puting machines. J. Chem. Physics, 21(1087-1092), 1953.

P.S. Maybeck. Stochastic Models Estimation and Control. Mathe-
matics in Science and Engineering. Academic, New York, 1982.

K.S. Narendra and M.A.L. Thathachar. Learning Automata: an
Introduction. Prentice-Hall, Englewood Cliffs New Jersey, 1989.

R.M. Neal. Learning Stochastic Feedforward Networks. Technical
Report CRG-TR-90-7, Dept. of Computer Science, Un. of Toronto,
November 1990.

[Now90a] S.J. Nowlan Maximum Likelihood Competition in RBF Networks.

Technical Report CRG-TR-90-2, Dept. of Computer Science, Un.
of Toronto, February 1990.

[Now90b] S.J. Nowlan. Competing Experts: An Experimental Investigation

of Associative Mixture Models. Technical Report CRG-TR-90-5,
Dept. of Computer Science, Un. of Toronto, September 1990.

[Now90c] S.J. Nowlan. Maximum Likelihood Competitive Learning. In Ad-

[Pea86]

[Paz71]

[Pin88§]

[Pol87]

[R8S]

vances in Neural Information Processing Systems 2, ed. D. Touret-
zky. Morgan Kauffman, 1990.

B.A. Pearlmutter and G. Hinton. Learning state space trajectories
in recurrent neural nets. In Proc. of IJCNN. IEEE, 1986. In J.S.
Denker, editor, Neural Networks for Computing, pages 333—-338.
American Institute for Physics, 1986.

A. Paz. An Introduction to Probabilistic Automata. Academic, New
York, 1971.

F. Pineda. Generalization of backpropagation to recurrent and
higher order neural networks. In D. Anderson, editor, Neural In-
formation Processing Systems, 1988.

J. B. Pollack. Cascaded back propagation on dynamic connectionist

networks. In Proc. of the 9th Ann. Conf. of the Cog. Sci. Soc., 1987.

Riedel et al. Temporal sequences and chaos in neural networks.

Phys. Rev. A, 36:1428, 1988.

37

[Rob8s]

[Rob89]

[Roh90]

[RR90]

[Rue69]

[Rab8s]

[Sol88]

[Sun89]

[Son90]

[Sut88]

[Vas69]

[W*89a]

[W89b)]

(WZss]

Anthony J. Robinson. A dynamic connectionist model for phoneme
recognition. Technical report, Cambridge University Engineering
Department, Cambridge, England, 1988.

Anthony J. Robinson. Dynamic Error Propagation Networks. PhD
thesis, Cambridge University Engineering Department, Cambridge,
England, 1989.

R. Rohwer. The moving targets training algorithm. In Proc. of the
FEURASIP, 1990.

S. Renals and R. Rohwer. A study of network dynamics. J. Stat.
Phys., In Press, 1990.

D. Ruelle. Statistical Mechanics. Mathematical Physics Mono-
graphs. Addison-Wesley, Reading Mass., 1969.

L.R. Rabiner. A tutorial on HMM and selected applications in
speech recognition. Proc. of the IEEE, 1988.

S. Solla. Accelerated learning experiments in layered neural net-
works. Complex Systems, 2, 1988.

R. Sun. The discrete neuronal model and the probabilistic discrete
neuronal model. In Neural and Intelligent System Integration, (ed.
B. Soucek). Wiley, 1991.

E. D. Sontag. Feedback stabilization using two-hidden-layer nets.
Technical Report SYCON-90-11, Rutgers Center for Systems and
Control, Rutgers Un. New Brunswick New York, 1990.

R.S. Sutton. Learning to predict by the methods of temporal dif-
ference. Machine Learning, 3:9-44, 1988.

L.N. Vasherstein. Markov processes over denumerable products of
spaces describing large systems of automata. Problemy Peredachi
Informatsii, 5(3):64-72, 1969.

A. Waibel et al. Modularity and scaling in large phonemic neural
networks. IEEE ASSP, ASSP-37(12):1888-1898, December 1989.

A. Waibel et al. Phoneme recognition using time-delay neural net-

works. IEEE ASSP, 37(3):328-339, March 1989.

R.J. Williams and D. Zipser. A learning algorithm for continu-
ally running fully connected recurrent neural networks. Technical

Report ICS-8805, Un. of California at San Diego, 1988.

38

[Wol86] S. Wolfram. Theory and Application of Cellular Automata. World
Scientific, Singapore, 1986.

[Wu83] C.F.J. Wu. On the convergence properties of the EM algorithm.
The Annals of Probability, 11(1):95-103, 1983.

39

A SRN’s with polynomially nonlinear units

The local conditional formulation used in Section 2 does not conform fully
to classical connectionist models. These are usually built from units with a
nonlinear (sigmoid) input/output response function. That is, unit s receives
a deterministic input Z" and a white noise input V} and produces output X?.
We have the following relationships:

Zﬁz Z wSTXffl—l— Z wSTUf,.

reNp(s) reN;(s)
Xo= [z = V).

where [is a nonlinear function, w,, are connectivity weights and V! is a
random number uniformly distributed in some appropriate range. For de-
terministic response we take V! to be a fixed number, usually called the
threshold of the unit s.

The two models are not incompatible. Trivially, a recurrent network
of sigmoidal units has local conditional probabilities (possibly concentrat-
ing all probability mass on one output, if the units have a deterministic
input/output response) and can be specified in terms of a (G,P) pair. In
the rest of this section we will show that, conversely, any (G,P) SRN can
be built from units with nonlinear (but not necessarily sigmoidal) random
input /output response function.

Consider for simplicity a SRN (G, P) where the units are binary (i.e. the
alphabet A = {0,1}). We will design a network of nonlinear units that has
the same graph /topology (S, ') and the same local conditional P.

We retain the topology of (S,). We use input/output units s € S has
deterministic input U, random input V! and output X!. To express the
relationship between these quantities, use an intermediate vector Z¢ with:

Zh= > we X+ Y wsUL

reNp(s) reN;(s)

Then we have:

Xo=H(fu(Z5) = V{).

and V! is a random number uniformly distributed in the interval [0,1]. Also,
ws, are connectivity weights, H(.) is the Heaviside step function and f; is a
nonlinear function specific to unit s. That is, every unit has its own response
function. We take all of these functions to be polynomials:

fo(2) = a0 + @12 + oo + Qg 2"

Now the output X! will be 0 if f5(Zf) is less than V and 1 otherwise. Then
we have the following probabilities:

Prob(X! = 1]X]t\;11(5) = 2, U, = u) = Prob(fo(< ws,zu >) > V) =

40

Qg0+ Qg1 < We, TU > oo + Qg < W, TU >7° .

On the other hand we want Prob(X! = 1]X]t\;11(5) =1z, Uﬁ,i(s) = u) to be equal
to the local conditional ps(1]z,u). So we must find as,., s,7 € S such that
for all s € S, Vo € ANG) 4 € AN we have

Qso + Qg1 < We, TU > Fooo + Qgp, < Wy, xU >""= py(1|z, u). (20)
This is a linear equation in the a’s. The following conditions are sufficient
to guarantee the existence of a solution:

1. The degree ng of the polynomial in (20) is large enough,

2. The matrix [< w, 2t >"] e AMy+M; 1< <y, 18 NONsingular.

If conditions 1, 2 are satisfied, the solution to (20) is easy to compute.

We can choose ng as large as we please; to ensure that the matrix is
nonsingular, choose the connectivity weights as follows: wg, = 27, for all
se S, r=1,..,ns. Then 1, 2 are satisfied and we have obtained the desired
values for the local conditionals ps(1|z,u). As ps(0|z,u)=1 — ps(1|z,u), it
follows that ps(0|x,u) also have the desired values. So we have reproduced
the local conditionals exactly and we have built the specified network (G, P)
from polynomial units. Note that we can write the evolution equations for
the hidden and output vectors as

X = g(X UV, (21)

Y= (X" U WH. (22)

This representation will be useful (we use it in [Kehl], [Keh3]) because of the
analogy with control systems [May82]. The case of non-binary alphabet A is
more complicated, but can be solved similarly. The details will be reported
elsewhere [Keh2].

We have two network descriptions: one is in terms of local conditionals,
the other in terms of nonlinear functions and connection weights. In either
case, a certain list of numbers has to be remembered by every unit (we can
think of the unit as a small processor with a limited amount of memory);
these numbers are either the local conditionals or the polynomial coeflicients.
In a certain sense the really important quantities are the local conditionals,
because these can be computed (via the local BF algorithm, see Section
4) much faster than the weights. However, once the local conditionals are
known, several representations are possible. We have a choice of storing the
full set of local conditionals, or a full set of « coeflicients that represent
exactly the local conditionals, or finally, a reduced set of coefficients that
correspond to a lower order polynomial. A low order polynomial can be
chosen that approximates the local conditionals. We can use a least squares

41

approximation; the problem is linear in in the « coefficients and can be solved
easily. We have to be careful that we do not get negative probability values
as a result of the approximation. The robustness of Markov chains to small
perturbations should minimize the degradation of performance because of
approximation.

B EM and the Boltzmann Machine

The Boltzmann machine is an example of a recurrent stochastic network. In
the classical paper [A+85] by Ackley, Hinton and Sejnowski it is described as
follows: “... The machine is composed of primitive computing elements called
units that are connected to each other by bidirectional links. A unit is always
in one of two states, on or off, and it adopts these states as a probabilistic
function of the states of its neighboring units and the weights on its links to
them. ... The units of a Boltzmann machine partition into two functional
groups, a nonempty set of visible units and a ... set of hidden units ... 7.
Ackley et al. proceed to set up the 8-3-8 encoder problem as follows: “Two
groups of wvisible units, designated as Vi and Vy represent two systems that
want to communicale their states. ... Fach enviromental vector in turn was
clamped over the visible units ... If the energy gap between the on and off
states of the k-th unit is AE) then regardless of the previous state set sp=1

with probability
1

Pe = T AR (23)

bl

where I s a parameter that acts like temperature...”. They proceed to de-
scribe a rather complicated parameter estimation scheme, which will be dis-
cussed presently.

Let us place their model in the framework of stochastic recurrent net-
works. Translating their terminology to ours, Vi = S;, Vo = S,, H = 5},
(where H is the set of hidden units). Our conditional probability function is
in their case expressed by (23); this is a relatively simple form where A is a
function of the state of the neighbors and the weights (network parameters).
To be more explicit, we rename their node k to s, with an input neighborhood
Np(s) UN;(s). Then the py in (23) is in our notation ps(1 | zn,(s), Un,(s)) and
is given by

1
1 _I_ e(E(OamNh(s)7uNi(s))7E(17$Nh(s)7uNi(s)))/T

Ps(1 | 2, (s), Uni(s) = (24)
where F)(.) is an appropriate energy function. Thus (24) is the translation of
(23) in our notation.

Now let us consider the connections between the classical training of the
Boltzmann machine, the EM method and our local BF algorithm.

42

We have explained the general EM idea in Section 4. Let us see how the
classical Boltzmann Machine estimation procedure, as presented in [A+85]
fits in this scheme. This procedure is outlined by Ackley et al. as follows:

@

1. Estimation of p;;: Fach enviromental vector in turn was clamped over
the visible units ... Statistics about how often pairs of units were both
on together were gathered at equilibrium...

2. Bstimation of pl;: The network was left completely unclamped and al-
lowed to reach equilibrium ... Statistics about cooccurences were then
gathered for as many annealings as were used Lo estimate p;;.

3. Updating the weights: All weights in the network were incremented or
decremented by fixed weight step, with the sign of the increment being
determined by the sign of py; — pi;. ...”

The EM character of this procedure should be obvious. Steps 1 and
2 correspond to the expectation phase (the expectations are computed by
thermodynamic relazation and collection of empirical statistics) and Step
3 corresponds to the optimization phase: Ackley et al. show in their Ap-
pendix that the gradient of their cost function with respect to weight w;;
is proprtional to p;; — pj;. Therefore their update rule in Step 3 points to
approximately the steepest descent direction.

So, BM training by Relaxation, as well as our local BF training are both
special cases of EM method. Comparison of local BF training for the encoder
problem (Section 5) with the corresponding section from [HS86] shows the
clear superiority of local BF, especially in speed of learning. On the other
hand Boltzmann training by simulated annealing is guaranteed to arrive to
the global maximum of the cost function if a slow annealing schedule is used.
No such claim can be made for local BF. However, considering the standard
practice of speeding up annealing schedules, this point becomes somewhat
moot.

C SRN: a Species of Hidden Markov Models

As we have already pointed out, the motivation for SRN training comes
from the field of Hidden Markov Models (HMM) [BE67, L+83]. The local
BF algorithm is a modification of the Baum BF algorithm. Another point
that is quite obvious is that the SRN model is special case of a HMM; in this
appendix we discuss this point in more detail.

A HMM involves two stochastic processes {X'}?°, and {Y*}2°,. The
hidden process {X*}?°, is Markov, that is:

Prob(X'| X" 1 X"% .) = Prob(X"| X"). (25)

43

The output process {Y*}?°, depends “instantaneously” on the hidden process.
That is:
Prob(Y').. X" X' X1) = Prob(Y'|X"). (26)

On the other hand, we know that the hidden and output processes of a SRN
satisfy:

Prob(X'| X" X"72 UL U L) = Prob(X'| X1 U (27)

Prob(Y'|.. X" X' X1 Ut Ut Ut L) = Prob(YH X, U (28)

It is obvious that, if we consider the (given) input U* as a parameter, (25),(26)
is exactly the same as (27),(28). So SRN is a HMM. The only difference from
traditional HMM’s, is that here the processes are not time invariant but vary
in time according to the value of input U? at time ¢. For instance, say that
the input U! = u!, U? = u?, ... is fixed. Now the Markov Chain {X*} is not
homogeneous, but inhomogeneous, since

Prob(X! = z| X"t = 5, U' = u') = P,(t).

In other words the transition probability matrix is time varying. The same
is true of the emission probability matrix:

Prob(Y'=y|X' = z;U" = u') = Quy (1)
Note that, any pair of processes that satisfy the equations
Xt = g(X1, U8, V), (29)

Yi=n(X" U, W, (30)

is a HMM. This and the discussion in Appendix A provide another point of
view that places SRN as a special case of HMM. The representation above is
also very common in the context of stochastic control [May82]. The methods
of stochastic control and HMM are quite different, but both are well devel-
oped and it appears that a combination of methods from the two fields will
provide new powerful techniques for the study of SRN such as described by
(29),(30).

One last point with respect to modelling. As we have already pointed out,
we can think of local BF as a HMM estimation algorithm that computes local
transition probabilities, rather than the global transition matrix of the sys-
tem. Now, remember that a SRN of A, hidden binary units has 2+ states.
So we can implement large HMM’s (many states) with relatively small net-
works (few units). This allows powerful modelling. On the other hand, using
a SRN with M, units we cannot get every HMM with 2*» states. 2 The

2We will prove in [Keh2] that we can get every HMM with 2¥# states using SRN’s
with more than M}, binary hidden units.

44

reason is that the global transition matrix P of a SRN cannot be of the most
general form possible; it is constrained by the fact that every element [P],,
of the transition matrix has a special form ([P],. = [, ps (%’Z’Nh(s)))- Count-
ing of parameters shows that there are fewer local conditionals ps(xs|Tw, (s))
than global transition probabilities [P],,. In other words we have a limited
number of variables at our disposal. This is not necessarily a bad thing,
however. In fact it is a way to deal with the problem of overfitting (i.e. too
many parameters must be estimated from too few datapoints). In statistical
terminology, the local HMM is more parsimonious than the global HMM.

D Alternative Viewpoints

This appendix is a very brief tour of some alternative points of view on the
object of our study, namely SRN’s. Many disciplines, outside of Connection-
ism, have dealt with the same object (although calling it different names):
a collection of randomly operating interconnected finite state units. We re-
view very briefly the work done along these lines. We make no claim for
completeness; we are considering here several very well developed research
programs with extremely voluminous literature. Our aim is to just point out
some of the connections. In [Keh3] we will try to synthesize them into a more
coherent picture.

There is a certain interchangeability between our SRN model and the
more classical connectionist network with nonlinear input/output units (see
Appendix A); the Boltzmann Machine also fits in our formulation very natu-
rally (see Appendix B). There is also a number of not-so-standard connection-
ist models which have even more obvious resemblances to ours: see [Pea86,
Ale89, Gil90, Sung9, Nea90] etc. Another group of researchers study Learn-
ing Automata [BA85, NT85|, an area which intersects with Connectionism
but is, in fact, a discipline in its own right.

Another discipline with its own history and research program, which
strongly reminds us of connectionism in general and SRN’s in particular,
is the study of Cellular Automata (CA) [Wol86]. In particular, probabilistic
cellular automata are essentially identical to SRN’s. The tasks which are
usually performed by CA are, however, quite different from those of con-
nectionist networks. An area of particular interest for CA researchers is
hydrodynamics and chaos [dL.88] which are studied at a microscopic level by
looking at the evolution of small finite state units (“molecules” 7).

This leads to another group of researchers, most of them mathematical
physicists, who try to develop statistical physics from microscopical foun-
dations [ElI85, M+53, L+89, Leb90, Lig85, Rue69, Vas69]. Terms such as
Ising model, simulated annealing etc. have entered connectionist mainstream
from the work of this group. This work is strongly connected to the study
of Markov Random Fields [Dob65, Dob70, Gid85]. And Markov Random

45

Fields theory has in turn some very striking applications in Image Process-
ing [GG84]. [GG84] is an oft-quoted paper in connectionism and this is not
an accident: the convergence analysis of simulated annealing presented there
applies equally well to Relaxation methods [Ack+83] used for Boltzmann
Machine training. So we have come full circle back to connectionism.

In fact, all the objects we have mentioned above are special cases of finite
state, probabilistic machines [Paz71, Boo67|; such machines are in turn a
special case of machines in the algebraic sense, as considered by Kalman and
Arbib in [Kal69].

Now, the abstract development of [Kal69] is impressively general, but
when we look for specific examples of their theory we have a rather limited
choice. We are basically looking at models of the form:

X' =g(X"1 U VY, (31)

Y= n(X' U, WY. (32)

Here X is a hidden process and Y is the output process. U? is the “control”
process and V* W' are white noise that adds (optional) randomness to the
system. As already pointed out in Appendix A, the SRN model presented
here fits in the framework of (31), (32). Another set of models that fit in
this framework, are control systems [May82]; however, practically all systems
studied in control theory until very recently involved processes in continuous
spaces (very often the state space R"). Apart from that difference, control
theory deals with many problems that are extremely similar to those of con-
nectionism, e.g. producing a desired input/output relationship, predicting
future signals, classifying (“identifying”) signals etc. This suggests that we
try to combine the points of view of control and connectionism. Some work
already exists that combines Control and Connectionist points of view; see
[Bar89, Dre90, Keh90, Son90]. There is still, however, ample scope for an ap-
plication of the control theoretic point of view to connectionism. A strategy
that seems particularly promising, is the use of stochastic control methods

in the study of SRN’s. This is pursued in [Kehl].

46

u(t)

Fig.l

100 120 140 160 180 200

Time

Y(o)

Y(o)

(03]

Fig.2

N

N w
W H= OIN DWW OTAwW i1 o N

=

o

1
=]

o

80

100 120 140 160 180 200

Time

Fig.2

200

180

160

140

120

J
|

: k, k, , , k ,k ,k
85.-465.5345.322511
< ™ o —

08F
0

MR

Time

44444

44444

44444

44444

