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Abstract

We investigate properties of the Nakano superlattice (H,t,u), where
t,u are the Nakano hyperoperations x t y = {z : x ∨ z = y ∨ z = x ∨ y},
xuy = {z : x∧z = y∧z = x∧y}. We study properties of the congruences
on the Nakano superlattice as well as the quotients which such congruences
generate. Some new hyperoperations are introduced on the quotients and
related to the quotients.
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1 Introduction

Mittas and Konstantinidou have introduced superlattices in [5]. A superlattice
is a partially ordered set (H,≤) equipped with two hyperoperations (i.e. op-
erations which to every pair of elements from H correspond a set of elements
from H) which satisfy appropriate properties; alternatively, a superlattice is
defined in terms of two hyperoperations which satisfy certain properties; these
properties can be used to introduce a partial order ≤ on H.

Jakubik [2] studies several aspects of the theory of superlattices and defines
congruences on superlattices (s-congruences) as a generalization of classical con-
gruences (l-congruences). He shows that, in general, the quotient of a superlat-
tice with respect to a s-congruence fails to be a superlattice; then he poses the
following natural question: what are necessary and sufficient conditions for the
quotient of a superlattice to also be a superlattice?
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In this paper we specialize the above question in th econtext of the Nakano
superlattice. This is a special type of superlattice, defined in terms of a hyper-
operation u first studied by Nakano [7] and its dual hyperoperation t (we call
these Nakano hyperoperations). The Nakano hyperoperations are defined on a
lattice (H,≤) which is assumed in the remainder of the paper to be modular. In
Section 2 we explore some properties of the Nakano superlattice (H,t,u) and
its quotient H/R with respect to a s-congruence R; if R is a s-congruence, then
one can define certain hyperoperations g,f on the quotient H/R. In Section 3
we find conditions which are necessary and sufficient for (H/R, g,f ) to be a
superlattice. In Section 4 we examine some order relationships on H/R.

2 Fundamental Concepts

Consider a modular lattice (H,≤), with sup and inf operations denoted by ∨
and ∧ respectively. We define the Nakano hyperoperations t,u on H.

Definition 1 For all x, y ∈ H we define:

x t y
.= {z : z ∨ x = z ∨ y = x ∨ y}; x u y

.= {z : z ∧ x = z ∧ y = x ∧ y}.

Remark. To the best of our knowledge, the u hyperoperation was first intro-
duced by Nakano in [7], which is an investigation of hyperrings (multirings, in
the author’s terminology). Evidently, t is the dual hyperoperation of u. The t
hyperoperation has also been studied in [3, 6] and it plays a central role in the
theory of Boolean hyperrings and Boolean hyperlattices [4].

The hyperstructure (H,t,u) is a superlattice, i.e. t,u satisfy the conditions
of the following proposition (note that in this proposition ≤ is the order of the
original modular lattice). We will call (H,t,u) the Nakano superlattice, since
it makes use of the Nakano hyperoperations.

Proposition 2 (H,t,u,≤) satisfies the following for all x, y, z ∈ H.

S1 x ∈ (x t x), x ∈ (x u x).

S2 x t y = y t x , x u y = y u x.

S3 (x t y) t z = x t (y t z), (x u y) u z = x u (y u z).

S4 x ∈ (x t y) u x, x ∈ (x u y) t x.

S5 x ≤ y ⇒ y ∈ x t y, x ∈ x u y.

S6 If y ∈ x t y or x ∈ x u y, then x ≤ y.

Proof. S1, S2 are obvious. The proof of S3 appears in [7] and also in [1].
Regarding S4 let us prove that x ∈ (xt y)u x = {z : z = uu x, u ∈ xt y }.

In other words, we must show that exists some u ∈ x t y such that x ∈ u u x.
But this is easy. Taking u = x ∨ y one obtains immediately that x ∨ y ∈ x t y ;
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and since (x ∨ y) ∧ x = x ∧ x = (x ∨ y) ∧ x, it follows that x ∈ (x ∨ y) u x. One
can prove dually that x ∈ (x u y) t x and this completes the proof of S4.

x ≤ y ⇒ x ∧ y = x, x ∨ y = y and these yield S5 immediately. Regarding
S6: y ∈ x t y ⇒ x ∨ y = y ∨ y = x ∨ y ⇒ x ≤ y; it can be proved dually that
x ∈ x u y ⇒ x ≤ y.

Proposition 3 (H,t,u) satisfies the following for all x, y, z ∈ H.

S6′ y ∈ x t y ⇔ x ∈ x u y.

S7′ x, y ∈ x t y ⇔ x = y.

S8′ y ∈ x t y, z ∈ y t z ⇒ z ∈ x t z.

Furthermore, we have: (S1− S6) ⇔ (S1− S4, S6′ − S8′).

Proof. The proof that (S1−S6) ⇔ (S1−S4, S6′−S8′) appears in [5]. The
first part of the proposition then follows from Proposition 2.

As shown in [5], Proposition 3 is true for any superlattice, not only the
Nakano one. In fact a superlattice can be defined in two alternative ways [5]: one
may assume the underlying order ≤ and require that the two hyperoperations
satisfy properties S1− S6; or one may assume that the hyperoperations satisfy
S1−S4, S6′−S8′ and then define an order on H in terms of the hyperoperations,
in which case the resulting order satisfies S5, S6.

In the remainder of the paper we will use extensively the concepts of equiv-
alence and congruence. Let us first give the following well known definitions for
the sake of completeness.

Definition 4 An equivalence on H is a relationship R which satisfies the
following ∀x, y, z ∈ H:

(i) xRx, (ii) xRy ⇒ yRx, (iii) xRy, yRz ⇒ xRz.

Definition 5 Let R be an equivalence on H. For all x ∈ H the class of x is
denoted by x and defined by x

.= {y : xRy}.

Definition 6 Let R be an equivalence on H. The quotient of H with respect
to R is denoted by H/R and defined by H/R

.= {x : x ∈ H}.

Notation. We use the following notation: for all A ⊆ H we write A
.= {x : x ∈

A}
Remark. It follows from the above notation that for any A,B ⊆ H such that
A = B we have:

(i) ∀x ∈ A ∃y ∈ B such that x = y, (ii) ∀y ∈ B ∃x ∈ A such that x = y.

Let us now turn to the concept of congruence. In classical lattice theory,
congruence is defined in terms of operations; since here we will make use of both
operations and hyperoperations, we will need two concepts of congruence. We
use the term l-congruence to describe what is commonly called “congruence”
(with respect to the operations ∨,∧) and the term s-congruence to describe the
analogous property with respect to the hyperoperations t,u.
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Definition 7 An equivalence R on H is called a l-congruence on a lattice
(H,∨,∧) iff for all x, y, z ∈ H we have

x = y ⇒
{

x ∨ z = y ∨ z
x ∧ z = y ∧ z

Definition 8 An equivalence R on H is called a s-congruence on a superlattice
(H,t,u) iff for all x, y, z ∈ H we have

x = y ⇒
{

x t z = y t z
x u z = y u z

.

In the remaining part of this work we will use the expression “s-congruence
R on H” instead of the more correct, but also longer, “s-congruence R on a
Nakano superlattice (H,t,u)”.

We now define two new hyperoperations g,f on the quotient H/R.

Definition 9 Given a s-congruence R on H we define hyperoperations g,f
as follows: for all x, y ∈ H

xgy
.= x t y; xfy

.= x u y.

Remark. The above definition makes sense only if R is a s-congruence. Be-
cause, if for some x, y ∈ H such that x = y we had some z ∈ H such that
x t z 6= y t z, then we would have the following contradiction: ygz = xgz =
x t z 6= y t z = ygz.
Remark. If the hyperoperations g, f are well defined, then an s-congruence
can be equivalently defined as follows.

Definition 10 An equivalence R on H is called a s-congruence on H iff for all
x, y, z ∈ H we have

x = y ⇒
{

xgz = ygz
xfz = yfz

.

It is worth noting that (H/R,g,f) is in general a proper hyperstructure,
i.e. the g,f hyperoperations yield non-singleton sets. This is seen from the
following proposition.

Proposition 11 Let (H,∨,∧) have either a maximum or a minimum element
and R be a s- congruence on H. If card(H/R) ≥ 2, then (H/R,g,f) is a
proper hyperstructure.

Proof. Assume H has maximum element denoted by 1. Then 1 t 1 = {z :
z ≤ 1} = H and 1 t 1 = {z : z ∈ H} = H/R. Hence card(1 t 1) ≥ 2 and
so H/R is a proper hyperstructure. The same can be proved dually if H has
minimum element denoted by 0.

Proposition 12 Let R be a s-congruence on H, then (H/R,g,f) satisfies for
all x, y, z ∈ H the following:
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T1 x ∈ ( xgx), x ∈ ( xfx);

T2 xgy = ygx, xfy = yfx;

T3 (xgy)gz = xg(ygz), (xfy)fz = xf(yfz);

T4 x ∈ ( xgy)fx, x ∈ ( xfy)gx.

Proof. It appears in [2].
Remark. In other words, if R is a s-congruence, then (H/R,g,f) satisfies
the first four properties of a superlattice. A natural question is the following:
what are necessary and sufficient conditions for (H/R,g,f) to actually be a
superlattice? This question can be formulated more precisely in terms of the
following properties (T6′ − T8′).

T6′ y ∈ ( xgy) ⇔ x ∈ ( xfy).

T7′ x, y ∈ ( xgy) ⇒ x = y.

T8′ y ∈ ( xgy), z ∈ (ygz) ⇒ z ∈ ( xgz).

Question. What conditions must R satisfy so that (T6′ − T8′) hold?
If (T6′−T8′) hold, then (H/R,g,f) is a superlattice and we can define the

order relationship - as follows.

Definition 13 Let R be a s-congruence on H, such that (T1− T4, T6′ − T8′)
hold. We write x - y iff y ∈ xgy.

Furthermore, if we prove that (T1−T4, T6′−T8′) hold, then we will know
that the following conditions also hold.

T5 x - y ⇒ y ∈ ( xgy), x ∈ ( xfy).

T6 (y ∈ ( xgy) or x ∈ ( xfy) )⇒ x - y.

3 Convex Congruences

We now explore the connection between convexity and conditions (T6′ − T8′).
Let us first give two definitions of convexity on ordered sets.

Definition 14 Given A ⊆ H, we say that A is w-convex iff: ∀x, y ∈ A with
x ≤ y and ∀z such that x ≤ z ≤ y, we have z ∈ A.

Definition 15 Given A ⊆ H, we say that A is s-convex iff: ∀x, y ∈ A and ∀z
such that x ∧ y ≤ z ≤ x ∨ y, we have z ∈ A.

Remark. In other words, s-convexity is a stronger property than w-convexity:
A is s-convex if it is a w-convex sublattice of H.

Let us now define convexity of congruence relationships.
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Definition 16 Let R be an s-congruence on H. We say that R is w-convex
iff ∀x ∈ H we have that x is w-convex.

Definition 17 Let R be an s-congruence on H. We say that R is s-convex iff
∀x ∈ H we have that x is s-convex.

We will now show that: R is w-convex iff (H/R,g,f) is a superlattice. To
this end we will first prove the auxiliary Propositions 18 - 21.

Proposition 18 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H
we have:

(i) x ∈ xgy ⇔ x = x ∨ y; (ii) y ∈ xfy ⇔ y = x ∧ y.

Proof. We only prove (i), since (ii) is proved dually.
Suppose that x ∈ xgy = x t y. This implies that exists some z such that z ∈

x t y and z = x. Since z ∈ x t y it follows: z ∨ x = z ∨ y = x ∨ y ⇒ z ∨ x =
z∨x∨y = x∨x∨y ⇒ x∨y ∈ ztx ⇒ x ∨ y ∈ z t x = x t x. Now x ∨ y ∈ x t x
implies that exists some w such that w ∈ xt x and w = x ∨ y. Since w ∈ xt x
it follows: x ∨ w = x ∨ x = x ⇒ w ≤ x. Hence we have w ≤ x ≤ x ∨ y; since
w = x ∨ y, by w-convexity of R it follows that x = x ∨ y.

Conversely, suppose x = x ∨ y; we also have x∨ y ∈ xt y and hence x ∨ y ∈
x t y = xgy. It follows that x ∈ xgy.

Proposition 19 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H
we have:

x ∈ xgy ⇔ y ∈ xfy.

Proof. By Proposition 18 we have: x ∈ xgy ⇒ x = x ∨ y. Now, it is
easy to check that for all u, w ∈ H we have u ∧ w ∈ u u w. In particular,
y = (x ∨ y) ∧ y ∈ (x ∨ y) u y ⇒ y ∈ (x ∨ y) u y = (x ∨ y)fy = xfy. So we
have shown that x ∈ xgy ⇒ y ∈ xfy. It can be shown dually that y ∈ xfy ⇒
x ∈ xgy.

Proposition 20 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H
we have:

(i) x, y ∈ xgy ⇒ x = y; (ii) x, y ∈ xfy ⇒ x = y.

Proof. We only prove (i), since (ii) is proved dually. From Proposition 18
we have

x ∈ xgy ⇒ x = x ∨ y
y ∈ xgy ⇒ y = x ∨ y

}
⇒ x = y.

This completes the proof.

Proposition 21 Let R be a w-convex s-congruence on H. Then for all x, y, z ∈
H we have:

(i) y ∈ xgy, z ∈ ygz ⇒ z ∈ xgz; (ii) x ∈ xfy, y ∈ yfz ⇒ x ∈ xfz.
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Proof. We only prove (i), since (ii) is proved dually. From Propositions 19
and 18 we have: (a) y ∈ xgy ⇒ x ∈ xfy ⇒ x = x ∧ y and (b) z ∈ ygz ⇒ z =
y ∨ z. Now y ∨ z = (x∧ y)∨ (y ∨ z) ∈ (x∧ y)t (y ∨ z). Using this and (a) and
(b) we have z = y ∨ z ∈ (x ∧ y) t (y ∨ z) = x t z = xgz.

When R is a s-congruence, Property T7′ implies Properties T6′, T8′, as can
be seen from the next proposition.

Proposition 22 Let R be a s-congruence on H. Then T7′ ⇒ T6′, T8′.

Proof. We will first prove the following: if T7′ holds (i.e. for all x, y ∈ H we
have: x, y ∈ xgy ⇒ x = y) then ∀x ∈ H we have that x is w-convex. To show
this, take any x ∈ H and any y, z ∈ H such that: (a) x ≤ z ≤ y and (b) x = y.
We have: z = x ∨ z ∈ x t z ⇒ z ∈ x t z = y t z. Similarly, y = y ∨ z ∈ y t z ⇒
y ∈ y t z. Hence (by T7′) y = z and so x is w-convex. Since w-convexity of R
implies T6′ by Proposition 19 and T8′ by Proposition 21, the proof is complete.

We are now ready to prove that: R is w-convex iff (H/R,g,f) is a super-
lattice.

Proposition 23 Let R be a s-congruence on H. Then R is w-convex iff (H/R,
g, f) is a superlattice.

Proof. (i) Assume that R is w-convex. Then from Propositions 19, 20, 21
respectively, it follows that properties T6′, T7′, T8′ hold. Furthermore, since R
is an s-congruence, (T1−T4) hold by Proposition 12. It follows that (H/R,g,f)
satisfies (T1− T4, T6′ − T8′) and hence is a superlattice.

(ii) Assume (H/R,g,f) is a superlattice. Take any x, y, z ∈ H such that: (a)
x = y and (b) x ≤ z ≤ y. Now z = x∨ z ∈ xt z ⇒ z ∈ x t z = y t z; similarly
y = z ∨ y ∈ z t y ⇒ y ∈ z t y = y t z. Since (H/R,g,f) is a superlattice, it
follows that T7′ holds; from T7′ and z ∈ y t z, y ∈ z t y it follows that y = z.
Hence R is w-convex.

Before proceeding, let us provide some additional notation and prove an
auxiliary proposition.
Notation. For all A,B ⊆ H we define

A ∨B
.= {x ∨ y : x ∈ A, y ∈ B}, A ∧B

.= {x ∧ y : x ∈ A, y ∈ B}.

Proposition 24 Let R be an equivalence relation on H. If for some z ∈ H we
have that z is a sub-∨-semi-lattice of H, then z ∨ z = z.

Proof. Clearly z ⊆ z ∨ z. Now, say u ∈ z ∨ z; then exist x, y ∈ z such that
u = x ∨ y. Since z is a sub-∨-semi-lattice, it follows that u = x ∨ y ∈ z. So
z ∨ z ⊆ z.

Let us now continue the study of properties of s-congruences. We have seen
that when R is a s-congruence on H, then w-convexity of R is equivalent to
(H/R,g,f) being a superlattice. The next proposition shows that a number of
other properties are equivalent to the above two.
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Proposition 25 Let R be a s-congruence on H. Then the following are equiv-
alent.

1. For all x ∈ H, x is a sub-∨-semi-lattice of H.

2. For all x ∈ H, x is a sublattice of H.

3. For all x ∈ H, x is w-convex.

4. For all x ∈ H, x is s-convex.

5. (H/R,g,f) is a superlattice.

Proof. We will show that (1) ⇒ (3) ⇒ (2) ⇒ (1); also that (2) ⇔ (4) and
(3) ⇔ (5).

(1) ⇒ (3): Suppose that for all x ∈ H, x is a sub-∨-semi-lattice of H. Take
any A ∈ H/R and any x, y, z ∈ H such that: (a) x = y = A and (b) x ≤ z ≤ y.
From (a) we have: x t z = y t z. From (b) it follows that z = x ∨ z ∈ x t z ⇒
z ∈ x t z = y t z. Hence exists some u ∈ y t z such that: u = z. But u
∈ y t z ⇒ u ∨ y = u ∨ z = y ∨ z = y ⇒ u ∨ z = y = x. Also, u ∨ z ∈ u ∨ z =
z ∨ z = z (since z is a sub-∨-semi-lattice). Hence z = u ∨ z = x = A. So for
all x ∈ H, x is w-convex.

(3) ⇒ (2): Suppose that for all x ∈ H, x is w-convex. Take any A ∈ H/R

and any x, y such that x = y = A. Then x t x =x t y. Now x ∨ y ∈ x t y ⇒
x ∨ y ∈ x t y = x t x. Hence exists some z such that: (a) z ∈ x t x and (b)
z = x ∨ y. We have z ∈ x t x ⇒ x ∨ z = x ∨ x = x ⇒ z ≤ x. So we have
z ≤ x ≤ x∨ y and z = x ∨ y; by w-convexity of R it follows that x∨ y ∈ x = A.
We show dually that x ∧ y ∈ A and so we have established that for all x ∈ H,
x is a sublattice of H.

(2) ⇒ (1): This is obvious.
(4) ⇒ (2): This is obvious.
(2) ⇒ (4): Assume that for all x ∈ H we have that x is a sublattice. Then,

we have already established that, for all x ∈ H, x is also w-convex. Since for all
x ∈ H, x is a w-convex sublattice, it is also s-convex.

(3) ⇔ (5): This was proved in Proposition 23.

4 A New Order Relationship

We have already noted that: if (H/R,g,f) is a superlattice (equivalently, if R
is a s-convex s-congruence on H) the order relationship - can be defined on
H/R in terms of either g or f. We now introduce two additional relationships:
� and v. Then we show that -, � and v are equivalent when (H/R,g,f) is
a superlattice.

Definition 26 Let R be an equivalence on H. For all A,B ∈ H/R we write
A � B iff: ∀x ∈ A,∀y ∈ B we have x ∧ y ∈ A and x ∨ y ∈ B.
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Proposition 27 If R is a s-convex equivalence on H, then � is an order rela-
tionship on H/R.

Proof. We will show that for all A,B,C ∈ H/R we have: (i) A � A, (ii)
A � B and B � A ⇒ A = B and (iii) A � B and B � C ⇒ A � C .

(i) Take any x, y ∈ A. Since A is s-convex, x ∨ y ∈ A and x ∧ y ∈ A.
(ii) Take any x ∈ A and any y ∈ B . Now A � B ⇒ x ∨ y ∈ B; and

B � A ⇒ x ∨ y ∈ A. Since A,B are classes and A ∩ B 6= ∅, it follows that
A = B.

(iii) Take any x ∈ A , any y ∈ B and any z ∈ C . Now x∧ y ∈ A, x∨ y ∈ B,
y ∧ z ∈ B, y ∨ z ∈ C. Since x ∧ y ∈ A, y ∧ z ∈ B and A � B, it follows that
x ∧ y ∧ z ∈ A. Also, by assumption x ∈ A. Since x ∧ y ∧ z ≤ x ∧ z ≤ x, by
s-convexity it follows that x ∧ z ∈ A. We can prove similarly that x ∨ z ∈ C.
Hence A � C .

Proposition 28 Let R be an equivalence on H. If � is an order relationship
on H/R, then for all A ∈ H/R we have that A is a sublattice.

Proof. Take any A ∈ H/R and any x, y ∈ A. Since A � A, it follows that
x ∧ y, x ∨ y ∈ A.

Definition 29 Let R be an equivalence on H. For all A,B ∈ H/R we write
A v B iff:

(i) ∀x ∈ A ∃y ∈ B such that x ≤ y; (ii) ∀y ∈ B ∃x ∈ A such that x ≤ y.

Proposition 30 Let R be an equivalence on H. For all A,B,C ∈ H/R we
have:

(i) A v A; (ii) if A v B and B v C, then A v C.

Proof. (i) For all x ∈ A we have x ≤ x, so A v A.
(ii) Take any x ∈ A; then exists y ∈ B such that x ≤ y. For this y exists

z ∈ C such that y ≤ z. Hence for every x ∈ A exists some z ∈ C such that
x ≤ z. We can similarly prove that for all z ∈ C exists some x ∈ A such that
x ≤ z.

Proposition 31 Let R be a w-convex equivalence on H and A,B ∈ H/R. Then

(A 6= B and A v B) ⇒ @(x, y) ∈ A×B such that y < x.

Proof. Assume that exists some x ∈ A, y ∈ B such that y < x. There also
exists some y1 ∈ B such that x ≤ y1. Hence we have y < x ≤ y1 ⇒ x ∈ B (by
convexity) which implies that A∩B 6= ∅. But A,B were assumed to be distinct
classes, so we have reached a contradiction.

We will now prove that: if (H/R,g,f) is a superlattice then -,�,v are
equivalent. To this end we first need an auxiliary proposition.

Proposition 32 Let R be an equivalence on H. If R is s-convex, then for all
A ∈ H/R we have: (i) A ∨A = A, (ii) A ∧A = A.
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Proof. We will only prove (i), since (ii) is proved similarly. Clearly A ⊆
A ∨A. Now take any x ∈ A ∨A, then there exist y, z ∈ A such that x = y ∨ z.
But, y ∨ z ∈ A by s-convexity of A. So A ∨A ⊆ A.

Proposition 33 Let R be a s-convex s-congruence on H. Then for all A,B, C ∈
H/R the following are equivalent: (i) A - B, (ii) A � B, (iii) A v B.

Proof. We will prove (i) ⇔ (ii), (ii) ⇔ (iii).
(i) ⇒ (ii). Assume that A - B. Take any x ∈ A, y ∈ B. Equivalently y ∈ xgy

and from Proposition 18 we have that y = x ∨ y, i.e. that x ∨ y ∈ y. Similarly
we prove that x ∧ y ∈ x. Hence x � y, i.e. A � B.
(ii) ⇒ (i). Assume that A � B. Take any x ∈ A, y ∈ B. Then x∧y ∈ A = x ⇒
x ∧ y = x. This, by Proposition 18, implies x ∈ xfy and so x - y, i.e. A - B.
(ii) ⇒ (iii). Assume that A � B. Take any x ∈ A, y ∈ B. Then x ∧ y ∈ A; so
for any y ∈ B exists x1 = x ∧ y ∈ A such that x1 ≤ y. Similarly we can show
that for any x ∈ A exists y1 = x ∨ y ∈ B such that x ≤ y1. Hence A v B.
(iii) ⇒ (ii). Assume that A v B. Take any x ∈ A, y ∈ B. We will consider
three cases for the relationship between x and y and we will show that in very
case x ∧ y ∈ A, x ∨ y ∈ B.

(a) If x ≤ y, then x ∧ y = x ∈ A, x ∨ y = y ∈ B.

(b) Assume y < x. Since A v B, we must have A = B; because if A 6= B then,
by Proposition 31, we cannot have y < x. Furthermore A is a sublattice,
so x ∧ y ∈ A and x ∨ y ∈ A = B.

(c) Assume x||y. Since A v B, exists some x1 ∈ A such that x1 ≤ y. So
x ∧ x1 ≤ x ∧ y ≤ x and x ∧ x1, x ∈ A; then by convexity x ∧ y ∈ A.
Similarly it can be shown that x ∨ y ∈ B.

So we have shown that for all x ∈ A, y ∈ B we have x ∧ y ∈ A, x ∨ y ∈ B,
i.e. that A � B.
Remark. Hence when R is a s-convex s-congruence, the v relationship is an
order.

In the case of main interest to us, namely when (H/R,g,f) is a superlattice,
the three relationships -, �, v are equivalent and they can be denoted by a
single symbol. In such a case we will use the symbol � to denote this order on
the superlattice (H/R,g,f). Let us now establish further properties of the �
order.

Proposition 34 Let R be an s-convex s-congruence on H. Then for all x, y ∈
H we have:

x ≤ y ⇒ x � y.

Proof. We have x ≤ y ⇒ x = x ∧ y ⇒ x = x ∧ y. But then x � y by
Proposition 18.
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Corollary 35 Let R be an s-convex s-congruence on H. Then for all x, y, z ∈
H we have:

(i) x ≤ y ⇒ x ∨ z � y ∨ z (ii) x ≤ y ⇒ x ∧ z � y ∧ z.

Proof. This follows immediately from Proposition 34.

Proposition 36 Let R be an s-convex s-congruence on H. Then R is a l-
congruence on H, i.e. for all x, y ∈ H we have:

(i) x = y ⇒ x ∨ z = y ∨ z, (ii) x = y ⇒ x ∧ z = y ∧ z.

Proof. We only prove (i), since (ii) is proved similarly. x = y ⇒ x t z =
y t z. Since x ∨ z ∈ x t z, exists some u ∈ y t z such that x ∨ z = u. Since
u ∈ ytz it follows that u ≤ y∨z and then (by Proposition 34) x ∨ z = u � y ∨ z.
Similarly we prove y ∨ z � x ∨ z. Hence y ∨ z = x ∨ z.
Remark. The converse is not true, i.e. an l-congruence (which is necessarily
s-convex) is not necessarily an s-congruence. This can be seen in the next
example.

Example 37 Take the lattice of Figure 1 and let R = {A,B}, A = {0, x1},
B = {x2, 1}. It is easy to check that R is a l-congruence, but it is not a s-
congruence. For instance 0 u x1 = {0}, x1 u x1 = {x1, x2, 1}, 0 u x1 = {0} =
{A}, x1 u x1 = {x1, x2, 1} = {A,B}; so 0 = x1, but 0 u x1 6= x1 u x1.

Figure 1

In fact, the above example is also related to the following proposition.

Proposition 38 Let (H,∨,∧) be a chain and R be a s-congruence on H. If
there is some x ∈ H such that card(x) ≥ 2, then H/R = {H}.
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Proof. Given x such that card(x) ≥ 2, choose some y 6= x such that x = y.
Since (H,∨,∧) is a chain, we will have either x < y or y < x. Without loss
of generality, take x < y. Then it is easy to check that x t x = x t y = y.
Define A = {z : z ≤ x}; then it is easy to check that A = x t x. Now take any
z ∈ A = x t x; then z ∈ x t x = y, i.e. z ∈ z = y. Hence A ⊆ y. Defining
B = {z : x ≤ z}, one can show similarly that B ⊆ y. Hence H = A ∪B ⊆ y ⊆
H and so the only class of H/R is y = H.
Remark. Hence, if (H,∨,∧) is a chain, the only s-congruences on H are
R1 = {H} and R2 = {{x}}x∈H . The connection to Example 37 is now obvious.

Proposition 39 Let R be an s-convex s-congruence on H. Then for all x, y ∈
H we have:

(i) x � y ⇒ x ∨ z � y ∨ z, (ii) x � y ⇒ x ∧ z � y ∧ z.

Proof. We only prove (i), since (ii) is proved similarly. Assuming x � y,
it follows that exists some y1 ∈ y such that x ≤ y1. Then (from Corollary 35)
we have x ∨ z � y1 ∨ z. But, from Corollary 36 we have y1 ∨ z = y ∨ z and the
proof is complete.

References

[1] S.D. Comer, “Multi-Valued algebras and their graphical representations”,
preprint, Dep. of Mathematics and Computer Science, The Citadel, 1986.

[2] J. Jakubik, “On strong superlattices”. Math. Slovaca, vol.44, pp.131-138,
1994.

[3] M. Konstantinidou and K. Serafimidis. “Hyperstructures dérivées d’un trellis
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