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1 Abstract
In this paper we present an application of predictive modular neural networks (PREMONN) to
short term load forecasting. PREMONNs are a family of probabilistically motivated algorithms
which can be used for time series prediction, classification and identification. PREMONNs utilize
local predictors of several types (e.g. linear predictors or artificial neural networks) and produce a
final prediction which is a weighted combination of the local predictions; the weights can be
interpreted as Bayesian posterior probabilities and are computed online. The method is applied to
short term load forecasting for the Greek Public Power Corporation dispatching center of Crete,
where PREMONN outperforms conventional prediction techniques.

2  Problem Formulation
We are given a sequence yt, t=1,2, ... , where (for each t) yt has dimensions 24× 1; each of the yt
components corresponds to the load of a particular hour of the day on day no. t. The predictors
have the general form yt =f(yt-1, yt-2,..., yt-N), in other words one may use data from N days from
the past load history. At midnight of day no. t −1 it is required to provide a prediction for the 24
hours of day t. This prediction will be used for scheduling the power generators to be activated in
the following working day. Typical load for a winter and a summer day are presented in Picture 1.
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Picture 1: Two representative daily loads.
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3 Previous Work on Short Term Load Forecasting
Statistical STLF models can be generically separated into regression models [7] and time series
models [13]; both can be either static or dynamic. In static models, the load is considered to be a
linear combination of time functions, while the coefficients of these functions are estimated
through linear regression or exponential smoothing techniques [7]. In dynamic models weather
data and random effects are also incorporated since autoregressive moving average (ARMA)
models are frequently used. In this approach the load forecast value consists of a deterministic
component that represents load curve periodicity and a random component that represents
deviations from the periodic behavior due to weather abnormalities or random correlation effects.
An overview of different statistical approaches to the STLF problem can be found in [3]. The
most common (and arguably the most efficient) statistical predictors apply a linear regression on
past load and temperature data to forecast future load. For such predictors, we will use the generic
term Linear Regression (LR) predictors.

The application of artificial neural networks to STLF yields encouraging results; a
discussion can be found in [6]. The ANN approach does not require explicit adoption of a
functional relationship between past load or weather variables and forecasted load. Instead, the
functional relationship between system inputs and outputs is learned by the network through a
training process. A minimum-distance based identification of the appropriate historical patterns of
load and temperature used for the training of the ANN has been proposed in [8], while both linear
and non-linear terms were adopted by the ANN structure. Due to load curve periodicity, a non-
fully connected ANN consisting of one main and three supporting neural networks has been used
to incorporate input variables like the day of the week, the hour of the day and temperature.
Various methods were proposed to accelerate the ANN training [4], while the structure of the
network has been proved to be system dependent [1,5]. Hybrid neuro-fuzzy systems applications
to STLF have appeared recently. Such methods synthesize fuzzy-expert systems and ANN
techniques to yield impressive results, as reported in [2,12].

Each of the methods discussed above has its own advantages and shortcomings. Our own
experience is that no single predictor type is universally best. For example, an ANN predictor
may give more accurate load forecasts during morning hours, while a LR predictor may be
superior for evening hours. Hence, a method that combines various different types of predictors
may outperform any single "pure" predictor of the types discussed above. It is clear that the
PREMONN is just such a combination method, hence it is reasonable to apply the PREMONN
methodology to the task at hand.

4 PREMONN: Theory
The theory of PREMONNs has been described in a series of papers [9,10], as well as in the book
[11]. We only give a brief overview here. Given a time series yt, the weighted prediction of yt,
denoted by y*t, is given by
(1) y*t = Error!pn

tyn
t

where yn
t is a "local" prediction of yt, obtained from the n-th predictor (out of a total of N

predictors) and pn
t is a credit function, signifying the confidence we have in yn

t , the prediction of
the n-th predictor at time t. The pn

t's are obtained by the following recursive formula
(2) pn

t = Error!.
Here en

t is the prediction error: en
t = yt − yn

t and g(en
t) is a function of the error, usually the

Gaussian: g(en
t) = exp(−|en

t|/σn
2). The significance of the formulas presented above is that each

predictor is penalized according to the absolute value of its prediction error, which results in a
multiplicative decrease of the respective credit pn

t−1 (note that g(e) is decreasing with the absolute
value of e). Past performance is also taken in account, as can be seen by the presence of the pn

t−1
term. Finally, note that performance is normalized by dividing with the sum of the pn

t-1 g(en
t)

terms; hence pn
t is always in the [0,1] range. In fact, it can be shown [11] that, under mild

assumptions, eq.(2) is Bayes’ rule and the pn
t’s are the posterior conditional probabilities of the

local predictors.
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PREMONN is implemented by a bank of (usually neural) predictive modules, which
implement the computation of yn

t, n=1,2,…,N and a combination module which implements the
computation of eq.(2).

5 PREMONN: Implementation
In this section we present the implementation details for three types of "pure" predictors, namely
two linear regression predictors and one neural predictor. Then we present the implementation
details for the combination module.

5.1 "Long Past" Linear Regression
This predictor performs a straightforward linear regression on two time series: daily loads (for a
given hour of the day) and maximum daily temperature. There are M+N inputs, where M is the
number of past loads (for the given hour of the day) and N is the number of past temperatures
used. Several values of M, between 21 and 56, have been employed. This means we use data from
the last 21 to 56 days; hence the designation "long past". (The best value turned out to be 35.)
Output is tomorrow's load for the given hour. Hence, for a complete 24-hour load forecast, we
need 24 separate predictors. The regression coefficients are determined by least square error
training. The training phase is performed only once, offline. It should also be mentioned that the
hourly load data were analysed and "irregular days", such as national and religious holidays,
major strikes, election days, etc. were excluded from the training data set and replaced by
equivalent regular days; of course this substitution was performed only for the training data.
Training utilized load and temperature data for the years 1992 and 1993. Training error
(computed as the ratio of forecast error divided by the actual load, averaged over all days and
hours of the training set) was 2.30%. It must be mentioned that there was a "ceiling" effect as to
the possible reduction of forecast error. While training error could be reduced below 2.30% by the
introduction of more regression coefficients, this improvement was not reflected in the test error.
This is the familiar "overfitting" effect.

5.2 "Short Past" Linear Regression
This is very similar to the previous method. Again, it utilizes straightforward linear regression on
the time series of loads; but now loads of all hours of the day are used as input., in addition to
maximum and minimum daily temperature. There are (24M+2N) inputs, where M is the number
of past loads (for all hours of the day) and N is the number of past temperatures used. Several
values of M, between 1 and 8, have been employed. We have found that the best value of M is 4,
which means data from four past days are used. For a given forecast day, we use the two
immediately previous days and the same weekday of the previous two weeks.; hence this
predictor uses a relatively "short past", as compared to the one of Section 5.1. Output is
tomorrow's load for every hour of the day. The regression coefficients are determined by least
square error training. The remarks of Section 5.1 on training and overfitting apply here as well.
Training error (computed as the ratio of forecast error divided by the actual load, averaged over
all days and hours of the training set) was 2.40%.
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5.3 Neural Network Prediction
A fully connected three layer feedforward ANN was used in this method. The ANN comprises of
57 input neurons, 24 hidden neurons and 24 output neurons representing next day's 24 hourly
forecasted loads. The first 48 inputs represent past hourly load data for today and yesterday.
Inputs 49-50 are maximum and minimum daily temperatures for today. The last seven inputs, 51-
57, represent the day of the week, e.g. Monday is encoded as 1000000, Tuesday as 0100000 and
so on. The ANN was trained by being presented with a set of input-desired output patterns until
the average is less than a predefined threshold. The well known back propagation algorithm [14]
was used for the ANN training. The hourly load data were carefully analysed and all “irregular
days”, such as national and religious holidays, major strikes, election days, etc. were excluded
from the training data set. Special logic for the treatment of missing data has also been
incorporated in the data analysis software. The training data set consists of 90+4×30=210
input/output patterns created from the current year and the four past years historical data as
follows: 90 patterns are created for the 90 days of the current year prior to the forecast day. For
every one of the 4 previous years, another 30 patterns are created around the dates of the previous
years that correspond to the current year forecast day. After an initial offline training phase, the
ANN parameters are updated online, on a daily basis. The network is trained until the average
error becomes less than 2.35%. It was observed that further training of the network (to an error
1.5% for example) did not improve the accuracy of the forecasts. Training of the ANN to a very
small error may result in data overfitting.

6 Results and Conclusions
We applied the PREMONN described in Section 5 to the prediction of loads for the period July
1st, 1994 to September 30th, 1994. In Picture 2 we see a comparison of the prediction error for the
local predictors as well as for the PREMONN. The n-th point of each curve in Picture 2 (with
n=1,2, … , 24) corresponds to the average (over the entire three month test period) prediction
error for the 24-th hour of the day, i.e.
(3) En=Error!Error!.
The final, 25th point represents the average daily error (i.e. averaged over all 24 hours), i.e.
(4) E=Error!Error!.
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Picture 2: Comparative prediction errors for local and combined predictors.

It can be seen that the PREMONN\ predictor not only outperforms all local predictors on the
average, but usually also outperforms them on individual hours (with a few exceptions). In this
connection, it is quite instructive to observe the evolution of the posterior probabilities of the
three local predictors for two different hours. In Picture 3 we plot the evolution of the posteriors
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for the hour 1am and in Picture 4 for the hour 1pm. The reader will see that in Picture 3 the
highest probability is generally assigned to the SP LR predictor, even though over short time
intervals one of the other two local predictors may outperform it. Similarly, in Picture 4 the
highest probability is generally assigned to the LP LR predictor, even though over short time
intervals one of the other two predictors may outperform it. These results are consistent with the
general results of Picture 2; the additional information presented in Pictures 3 and 4 is that a
predictor that generally performs poorly, may still outperform its competitors over short time
intervals; in such cases the PREMONN will take this improved performance into account, as
evidenced by the adaptively changing posterior probabilities. This explains why the PREMONN
is generally better than the best pure predictor.
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Picture 3: Evolution of posterior probabilities.
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Picture 4: Evolution of posterior probabilities.

In short we see that the principle of predictor combination is justified by our experiment,
where the global predictor outperforms the specialized ones. Hence we are encouraged in
extending our methodology to a wider range of problems in the future.
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