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Abstract

In this paper we present an example of a lattice-ordered join space, i.e. a structure (L,≤, ·)
where (L,≤) is a lattice, (L, ·) is a join space and the · hyperoperation is compatible with the ≤
order. Our example is obtained from a join hyperoperation which is frequently used in machine
learning applications. We study the basic properties of the join hyperoperation and the associated
extension hyperoperation.

1 Introduction

The study of lattice ordered groups is a well established branch of classical algebraic theory (for
instance, see [1]). The study of ordered hypergroupoids and hypergroups appears in the work of
Konstantinidou and Serafimidis [16, 17, 24, 25, 27]. Join spaces were introduced by Prenowitz and
their properties were explored by Prenowitz and Jantosciak (see particularly [21, 22]); join spaces are
a special, geometrically motivated class of hypergroups; this has been pointed out by Jantosciak [13]
and by Corsini [9]; in addition Corsini and Leoreanu [10, 11] and Zahedi and Ameri [36] have explored
the connection of join spaces to fuzzy sets.

By lattice-ordered join space we mean a structure (L,≤, ·) where (L,≤) is a lattice, (L, ·) is a join
space and the · hyperoperation is compatible with the ≤ order. The exact nature of the compatibility
will be explained in the sequel.

To the best of our knowledge, a study of lattice-ordered join spaces has not been undertaken
previously and appears particularly interesting. However, in this paper we set a more modest goal: we
study an example of lattice-ordered join space. The particular example which is the object of our study
is frequently used in machine learning applications. In particular, the join hyperoperation which forms
the basis of our investigation is defined on pairs (a, b) (where a, b ∈ L, (L,≤) is a lattice) as follows

a · b .= {x : a ∧ b ≤ x ≤ a ∨ b}

or, which amounts to the same thing, as a · b = [a∧ b, a∨ b]. We also introduce the associated extension
hyperoperation, and study the properties of the resulting structure (L,≤, ·). This is a useful prelude
to the study of general lattice-ordered join spaces, which we plan to undertake in a future publication.
In addition, as already mentioned, the hyperoperations considered in this paper are related to several
machine learning applications; a study of their properties may have practical implications.

Let us explain the connection of the a · b hyperoperation to machine learning. First note that, when
L is a Euclidean space RN , a ·b is the N -dimensional hyperbox with lowest vertex at the point a∧b and
highest vertex at the point a∨ b. Such hyperboxes are used extensively for classification and clustering

0Ath. Kehagias thanks V.G. Kaburlasos for introducing him to lattice theory in general, and to lattice hyperbox
operations in particular. He thanks Karen VanDyck, V.G. Kaburlasos and V. Petridis for many stimulating conversations.
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by structures such as classification, regression and decision trees [3, 23] as well as in neural [4, 18] and
fuzzy [12] extensions of such structures. The use of hyperboxes is implicit in the above cited examples;
there are also cases [5, 6, 7, 8, 28, 29] where the hyperbox terminology is used explicitly. Similarly,
hyperbox terminology appears in the theory of computational learning theory [2, 33].

A hyperbox in a Euclidean space is a special case of an interval in a lattice. This is explicitly stated
in the literature: in a recent series of papers [14, 15, 19, 20] Kaburlasos and Petridis generalize the
classification and clustering theory from Euclidean spaces to complete lattices and present a collection
of related algorithms.

Given the ubiquity of the “hyperbox join”, it is desirable to formulate a general theory of its
properties. Such a theory can be used for the design of efficient machine learning algorithms, as well as
for establishing their theoretical properties (convergence, optimality); in addition, as already mentioned
such a theory can be seen as a preliminary exploration of the properties of general lattice-ordered join
spaces.
Remark. In this paper we are predominantly concerned with distributive lattices, in accordance
with the assumptions of the motivating papers [14, 15, 19, 20]. Additional properties (for instance
completeness) will occasionally be assumed. In the sequel (L,≤) will denote a distributive lattice; if
this assumption is strengthened or weakened, this will be explicitly stated.
Remark. To the best of our knowledge, the structure (L,≤, ·) (where (L,≤) is a distributive lattice
and · is the hyperbox join, as defined above) first appears in the hyperstructures literature in Corsini’s
paper [10]. Corsini briefly remarks that (L,≤, ·) is a join space, anticipating some of the results of the
present paper.

2 The Hyperbox Join Hyperoperation

2.1 Definitions and Basic Properties

Let (L,≤) be a distributive lattice with the sup and inf binary operations denoted by ∧ and ∨,
respectively. For every set A ⊆ L we will write ∨A to denote the supremum and ∧A to denote the
infimum of A (when each of these exists). The notation a ≥ b is equivalent to b ≤ a. We denote the
power set of L by ℘(L). We use the standard notation of algebraic hyperstructures, whereby for any
operation or hyperoperation *:L× L →℘(L), and for all A,B ⊂ L, we define A∗B

.= ∪a∈A,b∈Ba∗b.We
will write A ∼ B to denote that A ∩B 6= ∅.

The concept of lattice interval will be repeatedly used in this paper.

Definition 1 The class of intervals of elements of L is denoted by I(L), i.e. I(L) .= {[a, b] : a, b ∈
L,a ≤ b}.

The following properties of inf and sup acting on intervals will be repeatedly used in the sequel.

Proposition 2 For all a, b, x, y ∈ L such that x ≤ y, a ≤ b we have:

(i) a ∨ [x, y] = [a ∨ x, a ∨ y];

(ii) a ∧ [x, y] = [a ∧ x, a ∧ y];

(iii) [a, b] ∨ [x, y] = [a ∨ x, b ∨ y];

(iv) [a, b] ∧ [x, y] = [a ∧ x, b ∧ y].
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Proof. (i.1) Take any c ∈ a ∨ [x, y]. There is a z ∈ [x, y] such that c = a ∨ z. We have

x ≤ z ≤ y ⇒ a ∨ x ≤ a ∨ z = c ≤ a ∨ y ⇒ c ∈ [a ∨ x, a ∨ y] ⇒ a ∨ [x, y] ⊆ [a ∨ x, a ∨ y]. (1)

(i.2). Take any c ∈ [a ∨ x, a ∨ y]. Define z = (c ∧ y) ∨ x = (c ∨ x) ∧ y (by distributivity). We have

x ≤ (c ∧ y) ∨ x = z = (c ∨ x) ∧ y ≤ y ⇒ z ∈ [x, y].

and
z ∨ a = (c ∧ y) ∨ x ∨ a = (c ∨ x ∨ a) ∧ (y ∨ x ∨ a) = c ∧ (y ∨ x ∨ a) = c

(where we used a ∨ x ≤ c and c ≤ y ∨ a = x ∨ y ∨ a). In short, we have proved that z ∈ [x, y] and
z ∨ a = c; hence c ∈ a ∨ [x, y] and so

[a ∨ x, a ∨ y] ⊆ a ∨ [x, y]. (2)

From (1) and (2) follows that a ∨ [x, y] = [a ∨ x, a ∨ y]. This completes the proof of (i); (ii) is proved
dually; (iii) and (iv) are proved similarly. These proofs are omitted for the sake of brevity.�

We now introduce the join hyperoperation.

Definition 3 The join hyperoperation is denoted by a · b (a, b ∈ L) and is defined by:

a · b .= {x : a ∧ b ≤ x ≤ a ∨ b} = [a ∧ b, a ∨ b].

Remark. As already remarked, if L is a Euclidean space Rn, then a · b is the hyperbox with lowest
vertex a ∧ b and highest vertex a ∨ b. We retain this interpretation for a general L and will sometimes
refer to a · b as the hyperbox join.

It is seen immediately that for any a, b ∈ L we have a, b ∈ a · b, hence the hyperbox join is well
defined (never results in the empty set). We will usually write ab instead of a · b. The next proposition
states that the class of intervals of L is exactly the same as the set of all joins of elements of L.

Proposition 4 I(L) = {a · b : a, b ∈ L}.

Proof. Take any interval [a, b] ∈ I(L). By definition, a ≤ b, so ab = [a∧ b, a∨ b] = [a, b]. On the other
hand, any ab is an interval by definition.�

The following property of the join will be repeatedly used in the sequel.

Proposition 5 For all a, b, x, y ∈ L such that x ≤ y, a ≤ b we have

(i) a · [x, y] = [a ∧ x, a ∨ y].

(ii) [a, b] · [x, y] = [a ∧ x, b ∨ y].

Proof. (i) We have a[x, y] = ∪x≤z≤yaz. Pick any u ∈ a[x, y], then there is a zu ∈ [x, y] such that
a ∧ zu ≤ u ≤ a ∨ zu. Also, x ≤ zu ⇒ a ∧ x ≤ a ∧ zu and y ≥ zu ⇒ a ∨ y ≥ a ∨ zu. Hence we have
a ∧ x ≤ u ≤ a ∨ y which implies that u ∈ [a ∧ x, a ∨ y]; hence a[x, y] ⊆ [a ∧ x, a ∨ y].

On the other hand, pick any v ∈ [a ∧ x, a ∨ y] and define zv = (v ∨ x) ∧ y. By distributivity, we
also have zv = (v ∧ y) ∨ x. Now, x ≤ (v ∧ y) ∨ x = zv = (v ∨ x) ∧ y ≤ y. So zv ∈ [x, y]. Also,
zv ∧ a = [(v ∨ x) ∧ y] ∧ a = (v ∨ x) ∧ (y ∧ a) = (v ∧ y ∧ a) ∨ (x ∧ y ∧ a). Since v ∧ y ∧ a ≤ v and
x ∧ y ∧ a = x ∧ a ≤ v, it follows that zv ∧ a ≤ v. Similarly we can show that zv ∨ a ≥ v. In short,
zv ∧ a ≤ v ≤ zv ∨ a and so v ∈ azv. Hence zv ∈ [x, y] and v ∈ azv, which implies that v ∈ a[x, y]. So
[x ∧ a, y ∨ a] ⊆ a[x, y]
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Hence we conclude that [x ∧ a, y ∨ a] = a[x, y] and the proof of (i) is complete.
(ii) (For this proof we are indebted to V.G. Kaburlasos.) Let us first prove that [a, b] · [x, y] ⊆

[a ∧ x, b ∨ y]. Take any u ∈ [a, b] · [x, y] = ∪a≤z≤bz[x, y] = ∪a≤z≤b[z ∧ x, z ∨ y] (by part (i) of the
Proposition). Hence there is some z1 ∈ [a, b] such that z1 ∧ x ≤ u ≤ z1 ∨ y. But, a ∧ x ≤ z1 ∧ x,
since a ≤ z1. Similarly, z1 ∨ y ≤ b ∨ y, since z1 ≤ b. Hence, a ∧ x ≤ z1 ∧ x ≤ u ≤ z1 ∨ y ≤ b ∨ y, i.e.
u ∈ [a ∧ x, b ∨ y], and so [a, b] · [x, y] ⊆ [a ∧ x, b ∨ y].

Next we prove that [a ∧ x, b ∨ y] ⊆ [a, b] · [x, y]. Take v ∈ [a ∧ x, b ∨ y]; then a ∧ x ≤ v ≤ b ∨ y. Now
take z1 = (v ∨ x)∧ y = (v ∧ y)∨ x and z2 = (v ∨ a)∧ b = (v ∧ b)∨ a. It is easy to check that z1 ∈ [x, y]
and z2 ∈ [a, b]. Also, z1 ∧ z2 = [(v ∨ x)∧ y]∧ [(v ∨ a)∧ b] = [v ∨ (a∧ x)]∧ [b∧ y] = [v ∧ (b∧ y)]∨ [a∧ x]
≤ v (since v ∧ (b ∧ y) ≤ v and a ∧ x ≤ v). In short, we have shown that z1 ∧ z2 ≤ v. Similarly we
show that v ≤ z1 ∨ z2, i.e. we have v ∈ z1z2 ⊆ [x, y] ·[a, b]. In short, [a ∧ x, b ∨ y] ⊆ [a, b] · [x, y]. This,
together with [a, b] · [x, y] ⊆ [a ∧ x, b ∨ y], implies that [a, b] · [x, y] = [a ∧ x, b ∨ y].�

We now are ready to establish the basic properties of the join hyperoperation.

Proposition 6 The following properties hold for any a, b ∈ L.

(i) Idempotence: aa = a.

(ii) Commutativity: ab = ba.

(iii) Associativity: (ab)c = a(bc).

(iv) Reproduction: aL = L.

(v) There is no scalar in L, i.e. there is no a such that for all x ∈ L we have |ax| = 1.

Proof. (i) is immediate: aa = [a ∧ a, a ∨ a] = [a, a] = a. The proof of (ii) is obvious. The proof of (iii)
uses Proposition 5: we have (ab)c = [a ∧ b, a ∨ b]c = [a ∧ b ∧ c, a ∨ b ∨ c]; similarly a(bc) = a[b ∧ c, b ∨ c]
= [a ∧ b ∧ c, a ∨ b ∨ c]. For (iv), take any a ∈ L. We have aL = ∪x∈Lax ⊇ ∪x∈Lx = L. On the other
hand, aL is clearly a subset of L. So aL = L. Finally, for (v), take any a ∈ L and any x ∈ L, x 6= a;
then a, x ∈ ax and we have |ax| ≥ 2.�

Conclusion 7 (L, ·) is a hypergroup; each of its elements is idempotent; none of its elements is scalar.

Proposition 8 For every a, b ∈ L we have that (a · b,≤) is a convex sub-lattice of L.

Proof. This follows immediately from the fact that a · b is an interval. �

Proposition 9 For every a, b ∈ L we have that (a · b, ·) is a sub-hypergroup of L.

Proof. Choose any a, b ∈ L and keep them fixed for the rest of the proof. We need to prove that
for all x, y ∈ a · b we have: (i) x · y ⊆ a · b and (ii) x · (a · b) = a · b. Choose any x, y ∈ a · b, then
a ∧ b ≤ x, y ≤ a ∨ b. Hence it follows that a ∧ b ≤ x ∧ y ≤ x ∨ y ≤ a ∨ b which means x · y ⊆ a · b
and (i) is proved. Regarding (ii), we have x · (a · b) = [x ∧ a ∧ b, x ∨ a ∨ b] (from Proposition 5); since
a ∧ b ≤ x ≤ a ∨ b, we have [x ∧ a ∧ b, x ∨ a ∨ b] = [a ∧ b, a ∨ b] and so x · (a · b) = (a · b). �
Remark. When (L,≤) is not distributive, it is possible that the join hyperoperation is not associative.
For example, consider the lattice (L,≤) of Figure 1. Clearly (L,≤) is not distributive; in fact it is not
even modular. We can compute a(fe) and (af)e explicitly. It turns out that a(fe) = {a, b, c, e, f},
(af)e = {a, b, c, d, e, f}. So we see that associativity of join can fail in a non-modular lattice.

Figure 1 to be placed here
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Remark. We have proved that distributivity of (L,≤) is sufficient for associativity of the hyperbox
join. It is an open question whether modularity is also sufficient.
Remark. Finally, neither distributivity nor modularity of (L,≤) are necessary for the hyperbox join
to be associative. Consider for instance the lattice N5 depicted in Figure 2. It can be checked directly
that for all x, y, z ∈ N5 we have (xy)z = x(yz) (we performed this computation using the computer
algebra package Maple).

Figure 2 to be placed here

An alternative proof of the associativity of join on N5 is also presented. This requires the following
auxiliary Propositions 10, 11, 12.

Proposition 10 For any lattice (L,≤) (i.e. even a non-distributive lattice) and for any x, y, z ∈ L,
we have: x ∧ y ∧ z, x ∨ y ∨ z ∈ x(yz) ∩ (xy)z and so x(yz) ∼ (xy)z.

Proof. x · (yz) = x· [y ∧ z, y ∨ z] and so both x∧ y ∧ z and x∨ y ∨ z belong to x· [y ∧ z, y ∨ z]; similarly
for (xy) · z.�

Proposition 11 For any lattice (L,≤) (i.e. even a non-distributive lattice) and any x, y, z ∈ L, the
quantitites ∧(x(yz)), ∧((xy)z), ∨(x(yz)), ∨((xy)z) exist and in fact we have:

(i) ∧(x(yz)) = ∧((xy)z) = x ∧ y ∧ z;

(ii) ∨(x(yz)) = ∨((xy)z) = x ∨ y ∨ z.

Proof. We only prove (i), since (ii) can be proved dually. Take any u ∈ x(yz) = ∪w∈yzxw. Then
there is some wu such that x ∧ wu ≤ u and y ∧ z ≤ wu, from which follows x ∧ y ∧ z ≤ u. In short:
u ∈ x(yz) ⇒ x∧y∧z ≤ u. Since, x∧y∧z ∈ x(yz), it follows that ∧(x(yz)) = x∧y∧z. Similarly we can
prove that u ∈ (xy)z) ⇒ x∧y∧z ≤ u and, since, x∧y∧z ∈ (xy)z), it follows that ∧((xy)z)) = x∧y∧z.
�

Proposition 12 For all x, y, z ∈ N5, both x(yz) and (xy)z are closed intervals.

Proof. This can be checked by exhaustive computation (we did this with the computer program
Maple). �

Conclusion 13 We see that, since x(yz) and (xy)z are closed intervals and they have identical infi-
mum and supremum, they must be the same interval. Hence we have proved that join is associative in
the nonmodular lattice N5.

Remark. Propositions 10 and 11 are additionally useful as the basis for developing a theory of the
hyperbox join on non-distributive lattices; in this case we see that even if associativity fails, weak
associativity holds (hence we can build a theory of weakly join spaces, along the lines of [30, 31, 32,
34, 35]).
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2.2 Compatibility of Join with the Lattice Order

We will now demonstrate that the order relation ≤ (on elements of L), produces a new order - (on
intervals of elements of L), which is compatible with the join operation and hence we will conclude that
(L,≤, ·) is a partially-ordered join space. To this end we will define two preorders on ℘(L) and then
we will show that, when restricted on the class of intervals of L, these preorders are identical and, in
fact, are an order.

Definition 14 We define the - relation on pairs (A,B) where A,B ∈ ℘(L), as follows

A - B ⇔
{
∀a1 ∈ A ∃b1 ∈ B : a1 ≤ b1

∀b2 ∈ B ∃a2 ∈ A : a2 ≤ b2.

Proposition 15 (i) - is a pre-order on ℘(L); (ii) - is an order on I(L).

Proof. (i) Obviously, A - A for all A ∈ ℘(L). Now take any A,B, C ∈ ℘(L) such that A - B and
B - C. Since A - B, it follows that for every a ∈ A, there is some ba ∈ B such that a ≤ ba; but since
B - C there is also some c ∈ C such that ba ≤ c. Hence, for every a ∈ A, there is some c ∈ C such
that a ≤ c. We prove similarly that for every c ∈ C there is some a ∈ A such that a ≤ c and so we
have proved that - is a preorder on ℘(L) .

(ii) In case A = [a1, a2], B = [b1, b2], such that A - B and B - A, since A - B, it follows for a2

that there is some b ∈ [b1, b2] such that a2 ≤ b ≤ b2. It also follows for b1 that there is some a ∈ [a1, a2]
such that a1 ≤ a ≤ b1. Using B - A we prove similarly that b1 ≤ a1 and b2 ≤ a2. In short, we have
obtained that a1 = b1 and a2 = b2 , i.e. A = B. Hence - is an order on I(L).�

Definition 16 We define the 4 relation on pairs (A,B) where A,B ∈ ℘(L), as follows

A 4 B ⇔
{
∃b ∈ B such that ∀a ∈ A : a ≤ b
∃a ∈ A such that ∀b ∈ B : a ≤ b.

Proposition 17 (i) 4 is a pre-order on ℘(L); (ii) 4 is an order on I(L).

Proof. This is proved similarly to Proposition 15. �

Proposition 18 The - and 4 relations are identical on I(L), i.e. for all A,B ∈ I(L) we have

A - B ⇐⇒ A 4 B.

Proof. Let us take A = [a1, a2] and B = [b1, b2] . First let us show that A - B ⇒ A 4 B. If
A - B, then for a2 there is some b̂ ∈ [b1, b2] such that a2 ≤ b̂ ≤ b2. Then, for any a ∈ [a1, a2] we have
a ≤ a2 ≤ b2. Similarly we show that for any b ∈ [b1, b2] we have a1 ≤ b. Hence A 4 B. It can be shown
immediately that A 4 B ⇒ A - B. �

Proposition 19 (I(L),-) is a lattice; in particular, for any A,B ∈ I(L) where A = [a1, a2] and
B = [ b1, b2], we have

inf(A,B) = [a1 ∧ b1, a2 ∧ b2], sup(A,B) = [a1 ∨ b1, a2 ∨ b2] (3)
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Proof. This is can be proved easily. By Proposition 18 the relations - and 4 are equivalent on I(L).
But for A,B intervals, A 4 B is equivalent to a1 ≤ b1 and a2 ≤ b2. Now take any two intervals [a1, a2],
[b1, b2]; we certainly have [a1∧b1, a2∧b2] 4 [a1, a2] and [a1∧b1, a2∧b2] 4 [b1, b2]. Furthermore, suppose
there is some interval [c1, c2] which satisfies

[a1 ∧ b1, a2 ∧ b2] 4 [c1, c2] 4 [a1, a2], [b1, b2].

It follows that a1 ∧ b1 ≤ c1 ≤ a1, b1 which implies c1 = a1 ∧ b1; and similarly a2 ∧ b2 ≤ c2 ≤ a2, b2

which implies c2 = a2 ∧ b2. In short, inf(A,B) = [a1 ∧ b1, a2 ∧ b2]. It can be shown similarly that
sup(A,B) = [a1 ∨ b1, a2 ∨ b2].�

Hence we have obtained (by two alternative definitions) an order - on I(L). We are now ready
to state and prove the compatibility of join with the - order. To this end, let us first give precise
definitions of ordered hypergroup and ordered join space.

Definition 20 (L,≤, ·) is called a strictly ordered hypergroup (respectively, strictly ordered join space)
iff:

(i) (L,≤) is a lattice,

(ii) (L, ·) is a hypergroup (respectively, join space),

(iii) for all x, y ∈ L we have that xy is an interval,

(iv) for all a, x, y ∈ L such that x ≤ y we have a · x - a · y.

The above definition follows [27]. We are now ready to prove that (L,≤, ·) is an ordered hypergroup.

Proposition 21 For all a, b, x, y ∈ L we have: (i) x ≤ y ⇒ ax - ay, (ii) a ≤ b and x ≤ y ⇒ ax - by.

Proof. (i) Since ax = [a ∧ x, a ∨ x], ay = [a ∧ y, a ∨ y], it follows by Proposition 19 that inf(ax, ay)
= [(a ∧ x) ∧ (a ∧ y), (a ∨ x) ∧ (a ∨ y)]. However, since x ≤ y we have (a ∧ x) ∧ (a ∧ y) = (a ∧ x) and
(a ∨ x) ∧ (a ∨ y) = (a ∨ x). Hence inf(ax, ay) = [a ∧ x, a ∨ x] = ax, i.e. ax - ay.

(ii) From (i) and x ≤ y we have ax - ay; from (i) and a ≤ b we have ay - by; these two inequalities
imply that ax - by. �

Conclusion 22 (L,≤, ·) is a strictly ordered hypergroup.

2.3 Distributivity Properties

In this section we explore the distribution: (a) of ∨,∧ on join; (b) of join on ∨,∧.

Proposition 23 For all a, b, c ∈ L we have:

(i) (ab) ∨ c = (a ∨ c) · (b ∨ c).

(ii) (ab) ∧ c = (a ∧ c) · (b ∧ c).

Proof. (i) (ab) ∨ c = [(a ∧ b) ∨ c, a ∨ b ∨ c] from Proposition 2; (a ∨ c)(b ∨ c)= [(a ∨ c) ∧ (b ∨ c),
(a∨ c)∨ (b∨ c)]. Clearly (a∨ c)∧ (b∨ c) = (a∧ b)∨ c (by distributivity) and (a∨ c)∨ (b∨ c) = a∨ b∨ c;
(ii) is proved dually and we are done.�

Proposition 24 For all a, b, c ∈ L we have:
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(i) a(b ∨ c) = ab ∨ ac.

(ii) a(b ∧ c) = ab ∧ ac.

Proof. Take any z ∈ a(b∨c) and define x = (a∨b)∧z, y = (a∨c)∧z. Since a(b∨c) = [a∧(b∨c), a∨b∨c]
it follows that z ≤ a ∨ b ∨ c. Also x ∨ y = [(a ∨ b) ∧ z] ∨ [(a ∨ c) ∧ z] = (a ∨ b ∨ c) ∧ z = z. In short,
z = x∨ y. On the other hand, since x = (a∨ b)∧ z it follows that x ≤ a∨ b. And since z ≥ a∧ (b∨ c) it
follows that z ≥ a ∧ b; so x = (a ∨ b) ∧ z ≥ a ∧ b. In short, x ∈ ab. Similarly we can show that y ∈ ac.
In conclusion, we have shown that for every z ∈ a(b∨ c) there exist x ∈ ab, y ∈ ac such that z = x∨ y.
Hence a(b ∨ c) ⊆ (ab) ∨ (ac).

Take any u ∈ (ab) ∨ (ac). Then there is some x ∈ ab and some y ∈ ac such that u = x ∨ y. So
u = x ∨ y ≥ (a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c); similarly u ≤ a ∨ (b ∨ c). So u ∈ a(b ∨ c) which means
(ab) ∨ (ac) ⊆ a(b ∨ c).

Hence (ab) ∨ (ac) = a(b ∨ c) and the proof of (i) is complete; (ii) is proved dually. �
In anticipation of the results of Section 2.3 we also define lattice-ordered hypergroup and lattice-

ordered join space.

Definition 25 (L,≤, ·) is called a strictly lattice-ordered hypergroup (respectively, join space) iff:

(i) (L,≤) is a lattice,

(ii) (L, ·) is a hypergroup (respectively, join space),

(iii) for all x, y ∈ L we have that xy is an interval,

(iv) for all a, x, y ∈ L we have: a · (x ∨ y) = (ax) ∨ (ay) and a · (x ∧ y) = (ax) ∧ (ay).

Conclusion 26 From Definition 3, Proposition 24 and Conclusion 7 follows that (L,≤, ·) is a strictly
lattice-ordered hypergroup.

Definition 27 Given a strictly lattice-ordered hypergroup (H, ·), every convex subhypergroup of H is
called lattice-ordered hyperideal.

Remark. The above definition is analogous to the one presented in [26].

Conclusion 28 From Propositions 8 and 9 follows that for every a, b ∈ L, a · b is a strictly lattice-
ordered hyperideal.

3 The Extension Hyperoperation

3.1 Definitions and Basic Properties

We will now introduce the extension hyperoperation which is derived, in the manner of Prenowitz
[22], from the join hyperoperation.

Definition 29 The extension hyperoperation is denoted by a/b (a, b ∈ L) and is defined by:

a/b
.= {x : x ∧ b ≤ a ≤ x ∨ b} = {x : a ∈ xb}.

It is seen immediately that for any a, b ∈ L we have a ∈ a/b. In addition, the extension hyperoper-
ation enjoys the join property [22].To prove this, we first need an auxiliary proposition.
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Proposition 30 In any lattice L (i.e. not necessarily distributive) we have

x ∧ w ≤ y ∨ z
y ∧ z ≤ x ∨ w

}
⇔ xw ∼ yz.

Proof. (i) We first prove the ⇒ direction. Assume that x ∧ w ≤ y ∨ z and y ∧ z ≤ x ∨ w. It follows
immediately that

x ∧ w ≤ (x ∧ w) ∨ (y ∧ z) ≤ x ∨ w, y ∧ z ≤ (x ∧ w) ∨ (y ∧ z) ≤ y ∨ z. (4)

We similarly obtain

x ∧ w ≤ (x ∨ w) ∧ (y ∨ z) ≤ x ∨ w, y ∧ z ≤ (x ∨ w) ∧ (y ∨ z) ≤ y ∨ z. (5)

It also follows form the hypothesis that

(x ∧ w) ∨ (y ∧ z) ≤ (x ∨ w) ∧ (y ∨ z). (6)

Defining a = (x ∧ w) ∨ (y ∧ z) and b = (x ∨ w) ∧ (y ∨ z), we see from (6) that [a, b] is well defined;
furthermore, from (4), (5) we see that

[a, b] ⊆ (xw) ∩ (yz) ⇒ xw ∼ yz

and the first part of the proof is completed.
(ii) It is very easy to prove the ⇐ direction. If xw ∼ yz, then there is some u ∈ xw ∩ yz such that

x ∧ w ≤ u ≤ x ∨ w
y ∧ z ≤ u ≤ y ∨ z

}
⇒

{
x ∧ w ≤ u ≤ y ∨ z
y ∧ z ≤ u ≤ x ∨ w.

This completes the proof of (ii) and of the proposition.�
We can now prove that / and · enjoy the join property.

Proposition 31 For all a, b, c, d ∈ L we have: (a/b) ∼ (c/d) ⇒ ad ∼ bc.

Proof. If (a/b) ∼ (c/d), then there is some u ∈ (a/b) ∩ (c/d) such that u ∧ b ≤ a ≤ u ∨ b and
u ∧ d ≤ c ≤ u ∨ d. From a ≤ u ∨ b follows that a ∧ d ≤ (u ∨ b) ∧ d = (u ∧ d) ∨ (b ∧ d) ≤ c ∨ (b ∧ d) ≤
c ∨ b. From c ≤ u ∨ d follows that c ∧ b ≤ (u ∨ d) ∧ b = (u ∧ b) ∨ (d ∧ b) ≤ a ∨ (d ∧ b) ≤ a ∨ d. But,
from Proposition 30 we have a ∧ d ≤ c ∨ b and c ∧ b ≤ a ∨ d ⇒ bc ∼ ad and the proof is complete.�

Conclusion 32 (L,≤, ·) is a strictly lattice-ordered join space.

The following proposition gives conditions under which the converse of the join property holds.

Proposition 33 For all a, b, c, d ∈ L such that a ≤ d and b ≤ c, we have: ad ∼ bc ⇒ (a/c) ∼ (b/d).

Proof. Choose some x ∈ ad ∩ bc, then a ≤ x ≤ d and b ≤ x ≤ c. Take y = a ∧ b. Then y ∧ c ≤ a.
Also, a ≤ x ≤ d and b ≤ x ≤ c imply that a ≤ x ≤ d ∧ c ≤ c ≤ y ∨ c. It follows that y ∨ c ≥ a. So
y ∧ c ≤ a ≤ y ∨ c ⇒ y ∈ (a/c). Similarly we prove that y ∈ (b/d).�
Remark. Because of the commutativity of join, there are several more combinations implicit in the
above condition, For instance, if a ≤ d and b ≤ c, we have ad ∼ bc ⇒ (a/b) ∼ (c/d).
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3.2 Additional Properties

In this section we present various properties of the extension hyperoperation. The definition of the
extension hyperoperation does not give an explicit description of the elements which belong in a/b.
The next proposition is a step towards a more complete description of such elements, for the case when
a, b are comparable.

Proposition 34 For all a, b ∈ L we have:

(i) If b ≤ a, then a/b = {x : b ∨ x = a ∨ x}.

(ii) If a ≤ b, then a/b = {x : b ∧ x = a ∧ x}.

Proof. (i) Take some x ∈ a/b; then a ≤ b∨ x ⇒ a∨ x ≤ b∨ x; also b ≤ a ⇒ b∨ x ≤ a∨ x. So we have
b ∨ x = a ∨ x. Hence a/b ⊆ {x : b ∨ x = a ∨ x}. On the other hand, if b ∨ x = a ∨ x then it follows that
a ≤ a ∨ x = b ∨ x ; in addition, also b ≤ a ⇒ b ∧ x ≤ a ∧ x ≤ a. In short, b ∨ x = a ∨ x implies that
b ∧ x ≤ a ≤ b ∨ x. In short, a/b ⊇ {x : b ∨ x = a ∨ x}. It follows that a/b = {x : b ∨ x = a ∨ x}. (ii) is
proved dually.�

Corollary 35 It can be easily verified that in every lattice (L,≤) we have a/a = L.

Corollary 36 It can be easily verified that the following identities hold in every lattice (L,≤) with a
minimum element 0 and a maximum element 1: a/0 = [a, 1], a/1 = [0, a], 0/a = {x : x ∧ a = 0},
1/a = {x : x ∨ a = 1}.

Additional properties are described by the following propositions.

Proposition 37 For all a, b ∈ L, (a/b,≤) is a convex sublattice of (L,≤).

Proof. Take x, y ∈ a/b and keep them fixed for the rest of the proof. First, note that we have

x ∧ b ≤ a ≤ x ∨ b
y ∧ b ≤ a ≤ y ∨ b

}
⇒ (x ∧ b) ∧ (y ∧ b) ≤ a ≤ (x ∨ b) ∧ (y ∨ b) ⇒

(x ∧ y) ∧ b ≤ a ≤ (x ∧ y) ∨ b ⇒ x ∧ y ∈ (a/b).

We can prove dually that x ∨ y ∈ (a/b). Hence a/b is a sublattice.
Next take any z ∈ xy. Since (x ∨ y) ∧ b ≤ a and z ≤ x ∨ y, it follows that z ∧ b ≤ a. Since

a ≤ (x∧ y)∨ b and x∧ y ≤ z, it follows that a ≤ z ∨ b. In short z ∈ a/b and xy ⊆ a/b. Now, if we also
have x ≤ y, then [x, y] = [x ∧ y, x ∨ y] = xy ⊆ a/b; so a/b is a convex sublattice.�

Proposition 38 a/b is a subhypergroup for all a, b ∈ L.

Proof. Take any a, b ∈ L. We have to show that: (i) for all x, y ∈ a/b we have xy ⊆ a/b, and (ii) for
all x we have x(a/b) = a/b.

As for (i), it has been shown in the course of proving the previous proposition.
For proving (ii), any x ∈ a/b and keep it fixed for the rest of the proof. First, note that for all

y ∈ a/b we have, by (i), that xy ⊆ a/b, and so x(a/b) = ∪y∈a/bxy ⊆ a/b. So x(a/b) ⊆ a/b. Second,
note that for all z ∈ a/b we have z ∈ xz and so a/b = ∪z∈a/bz ⊆ ∪z∈a/bxz = x(a/b); so a/b ⊆ x(a/b).
Hence we have a/b = x(a/b).�
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Conclusion 39 From Propositions 37 and 38 follows that a/b is a lattice-ordered hyperideal for all
a, b ∈ L.

Proposition 40 For all a, b ∈ L we have ab ∩ (a/b) = a.

Proof. Clearly a ∈ ab ∩ (a/b), so ab ∩ (a/b) is not empty. Take any x ∈ ab ∩a/b.

a ∧ b ≤ x ≤ a ∨ b
x ∧ b ≤ a ≤ x ∨ b

}
⇒

{
a ∧ b ≤ x ∧ b
x ∧ b ≤ a ∧ b

}
⇒ a ∧ b = x ∧ b.

Dually we get a∨ b = x∨ b. In a distributive lattice, a∨ b = x∨ b and a∧ b = x∧ b imply a = x [1].�

Proposition 41 For all a, b ∈ L, (b/a) = (a/b) ⇒ a = b.

Proof. (b/a) = (a/b) ⇒ (b/a) ∩ ab = (a/b) ∩ ab . But from the previous proposition (b/a) ∩ ab = b
and (a/b) ∩ ab = a.�

Now suppose that L is equipped with a positive valuation1 v(·) and an associated metric d(·, ·).

Proposition 42 For all a, b, c ∈ L, we have: (c/b) ⊆ (a/b) ⇒ d(a, b) ≤ d(c, b).

Proof. (c/b) ⊆ (a/b) ⇒ c ∈ a/b. Then: b ∧ c ≤ a ⇒ b ∧ c ≤ b ∧ a ⇒ v(b ∧ c) ≤ v(b ∧ a). Similarly:
b∨ c ≥ a ⇒ b∨ c ≥ b∨ a ⇒ v(b∨ c) ≥ v(b∨ a). From v(b∧ c) ≤ v(b∧ a) and v(b∨ c) ≥ v(b∨ a) follows
that v(b∨ c)− v(b∧ c) ≥ v(b∨a)− v(b∧a) which is equivalent to d(c, b) = d(b, c) ≥ d(b, a) = d(a, b).�

3.3 Conditions for a/b to be a Closed Interval

In this section we give a more complete description of a/b. In particular we show that, under certain
conditions, a/b is a closed interval and we characterize its endpoints. The key requirement is that L is
not only distributive, but general distributive. The definition of this important property is given below.
(In the following definition, {xs}s∈S is a set and S is an appropriate index set, such that for all s ∈ S
we have xs ∈ L.)

Definition 43 (i)A lattice L is called general ∧ -distributive iff: ∀a ∈ L,∀{xs}s∈S we have

a ∧ (∨s∈Sxs) = ∨s∈S(a ∧ xs).

(ii) A lattice L is called general ∨-distributive iff: ∀a ∈ L,∀{xs}s∈S we have

a ∨ (∧s∈Sxs) = ∧s∈S(a ∨ xs).

(iii) A lattice is called general distributive iff it is general ∧-distributive and general ∨-distributive.

Let us now present two propositions related to general distributivity.

Proposition 44 If a lattice L is complete then

(i) L is general ∧-distributive iff {x : b ∧ x ≤ a} is a closed interval for all a, b ∈ L.

(ii) L is general ∨-distributive iff {x : b ∨ x ≥ a} is a closed interval for all a, b ∈ L.
1For instance, in a modular lattice of finite length, the height function is always a positive valuation.
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Proof. (i) is proved in p. 128 of [1]; (ii) can be proved dually.�
Remark. Birkhoff uses the term “Brouwerian lattice” for a lattice L with the property of Prop.44.(i),
i.e. a lattice L such that {x : b ∧ x ≤ a} contains a greatest element; he denotes this element by
a : b and calls it the relative pseudocomplement of b in a. We call this element briefly rpc of b in a.
Similarly, the dual relative pseudocomplement of b in a (denoted by drpc of b in a), is the least element
of the set {x : b ∨ x ≥ a}.

Proposition 45 If a lattice L is complete and a, b are any elements of L, then

{x : b ∧ x ≤ a} is a closed interval
{x : b ∨ x ≥ a} is a closed interval

}
⇒ a/b is a closed interval.

Proof. By assumption we have that: {x : b∧x ≤ a} = [p1, p2]; {x : b∨x ≥ a} = [q1, q2].We immediately
recognize that p1 = 0, since 0 certainly belongs to {x : b ∧ x ≤ a}; dually we have q2 = 1. Next, note
that [0, p2] ∩ [q1, 1] 6= ∅, since a belongs to both of them. It follows that q1 ≤ a ≤ p2. In other words
[0, p2]∩ [q1, 1] = [q1, p2]. It follows immediately that any x which belongs to a/b also belongs to [0, p2]
and to [q1, 1] and so to [q1, p2]. In short: a/b ⊆ [q1, p2]. On the other hand, take any x ∈ [q1, p2]. We
have

q1 ≤ x ≤ p2 ⇒
{

b ∨ q1 ≤ b ∨ x
b ∧ x ≤ b ∧ p2

}
⇒

{
a ≤ b ∨ x
b ∧ x ≤ a

}
⇒ x ∈ a/b.

So a/b ⊇ [q1, p2]. Hence a/b = [q1, p2] and the proof is complete. It is worth noting that the lower
(respectively upper) bound of the closed interval a/b is the drpc (respectively rpc) of b with respect to
a.�

The next proposition gives the required sufficient condition for a/b to be a closed interval.

Proposition 46 If a complete lattice L is general distributive, then a/b is a closed interval.

Proof. The proof can be obtained directly; but it can also be obtained from the preceding propositions.
First, by general distributivity and Proposition 44, we have that {x : b∧x ≤ a} = [0, p] and {x : b∨x ≥
a} = [q, 1]. From this and Proposition 45, we see that a/b = [q, p] and the proof is complete.�

Corollary 47 If L is finite then a/b is an interval for any a, b ∈ L.

Remark. In a non-modular lattice a/b is not necessarily a closed interval. Consider for example the
non-modular lattice N5. Referring to Figure 2 we see that b/c = {a, b, d} which is not an interval.
Remark. In a lattice which is not general distributive, a/b is not necessarily a closed interval. In the
following counterexample (adapted from [1])we see a lattice which is complete and distributive, but
not general distributive and in which a/b is not always a closed interval.
Counterexample. The lattice of all closed subsets of [0,1], with order provided by set theoretic
inclusion, is both complete and distributive (see [1]). Denote the inf by Z (actually it is just set
theoretic inclusion, i.e. A Z B = A ∩ B) and the sup by Y (A Y B is the intersection of all closed
sets containing A ∪ B). Now take A = ∅, B = {1} and Xn = [0, 1 − 1/n], n = 1, 2, ... . Consider
A/B = {X : {1} Z X ⊆ ∅ ⊆ {1} Y X}. Clearly Xn ∈ A/B for all n. Suppose that A/B is a closed
interval of subsets of [0, 1], i.e. A/B = [X,X]. We must have X1 ⊆ X2 ⊆ X3 ⊆ ... ⊆ X and so
∪∞n=1[0, 1 − 1/n] ⊆ X which implies [0, 1) ⊆ X, i.e. [0, 1] = X. But B Z X = B ∩X = 1* ∅. Hence
X /∈ A/B, i.e. A/B is not a closed interval of sets.

In light of the above remarks, the following question arises: is general distributivity a necessary
condition for a/b to be a closed interval? We have not found an answer to this question.

A case where a/b is an interval, with particular importance for applications, is the following.
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Proposition 48 If L is Boolean then a/b = ab′.

Proof. Take any x ∈ a/b. Then a ≤ x∨b and we have 0 ≤ a∧b′ ≤ (x∨b)∧b′ = (x∧b′)∨(b∧b′) = x∧b′.
In short, we have 0 ≤ a ∧ b′ ≤ x ∧ b′. But then, 0 = 0 ∧ x′ ≤ (a ∧ b′) ∧ x′ ≤ (x ∧ b′) ∧ x′ = 0. It follows
that a ∧ b′ ∧ x′ = 0 and then x′ ≤ (a ∧ b′)′, or equivalently, x ≥ a ∧ b′. Starting from x ∧ b ≤ a, we
proceed dually and obtain x ≤ a ∨ b′. In short, a ∧ b′ ≤ x ≤ a ∨ b′ ⇒ x ∈ ab′and so a/b ⊆ ab′.

Take any x ∈ ab′. Then a∧ b′ ≤ x ⇒ (a∧ b′)∨ b ≤ x∨ b ⇒ (a∨ b)∧ (b′∨ b) ≤ x∨ b ⇒ a∨ b ≤ x∨ b;
from which follows a ≤ x ∨ b. Starting from x ≤ a ∨ b′ we proceed dually and obtain x ∧ b ≤ a. In
short, we have showed that x ∈ ab′ ⇒ x ∧ b ≤ a ≤ x ∨ b ⇒ x ∈ a/b and so ab′ ⊆ a/b.

From the previous two steps it is clear that a/b = ab′.�

3.4 Join Properties

The first proposition of this section summarizes properties of the join and extension hyperoperation
which depend on the join property but on the order relationship ≤ (i.e. they remain valid for a general
join space). These properties are presented in [22] and are listed here for completeness; the proofs can
be found in [22].

Proposition 49 For any A,B, C, D ∈ ℘(L) and any x ∈ L, we have:

(i) A ⊆ B,C ⊆ D ⇒ (AC ⊆ BD, A/C ⊆ B/D).

(ii) B ⊆ C ⇒ (AB ⊆ AC,A/B ⊆ A/C,B/A ⊆ C/A).

(iii) x ∈ A ⇒ (x ∈ AB, x ∈ A/B).

(iv) AB ∼ C ⇔ A ∼ C/B ⇔ B ∼ C/A.

(v) A ∼ B/C ⇔ AC ∼ B.

(vi) A/(BC) = (A/B)/C.

(vii) A/(B/C) ⊆ (AC)/B.

(viii) B ⊆ A/(A/B).

(ix) (A/B)(C/D) = (AC)/(BD).

(x) (A/B)/(C/D) = (AD)/(BC).

(xi) A(B/C) ⊆ (AB)/C.

Proof. As already remarked, all of the above properties are proved in [22].�
The validity of the next proposition depends on the underlying lattice order.

Proposition 50 For any a, b, c ∈ L, we have:

(i) (a/b)a = a/b,

(ii) (a/c)(b/c) = (ab)/c,

(iii) (a/b)(a/c) = a/(bc).

Proof. (i) Since a ∈ a/b, then for every x ∈ a/b we have (by Proposition 38) xa ⊆ a/b and so
(a/b)a ⊆ (a/b). On the other hand, (a/b)a = ∪x∈a/bxa ⊇ ∪x∈a/bx = (a/b). Hence (a/b)a = a/b.

(ii) and (iii) follow from Proposition 49.(ix), taking A = {a}, B = {b}, C = {c}, D = {c}, and
using cc = c.�
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3.5 Ordering Properties

The first proposition of this section describes the compatibility of extension with the ≤ order.

Proposition 51 For all a, b, c ∈ L we have: (i) a ≤ b ⇒ (a/c) - (b/c),(ii) a ≤ b ⇒ (c/b) - (c/a).

Proof. (i) Take any x ∈ a/c, so x ∧ c ≤ a ≤ x ∨ c. Define y = b ∨ x. Clearly x ≤ y. Also,
y ∨ c = (b ∨ x) ∨ c ≥ b. Finally, y ∧ c = (b ∨ x) ∧ c = (b ∧ c) ∨ (x ∧ c), but b ∧ c ≤ b and x ∧ c ≤ a ≤ b,
so y ∧ c ≤ b. In short, for all x ∈ a/c, exists y ∈ b/c such that x ≤ y.

On the other hand, take any y ∈ b/c and define x = a ∧ y ≤ y. Then x ∧ c = a ∧ y ∧ c ≤ a. Also,
x∨ c = (a∧ y)∨ c = (a∨ c)∧ (y ∨ c) ≥ b ≥ a. In short, for all y ∈ b/c, exists x ∈ a/c such that x ≤ y.
It follows that (a/c) - (b/c).

(ii) Take any x ∈ c/b. Define y = x ∨ c; then x ≤ y and c ≤ y. Clearly c ≤ y ∨ a. Also,
a∧ y = a∧ (x∨ c) = (a∧ x)∨ (a∧ c). Since a∧ x ≤ b∧ x ≤ c, it follows that a∧ y ≤ c. So y ∈ c/a. In
short, for every x ∈ c/b, exists y ∈ c/a such that x ≤ y. It follows that (c/b) - (c/a).

On the other hand, take any y ∈ c/a, so y ∧ a ≤ c ≤ y ∨ a. Define y = x∧ c; then x ≤ y and x ≤ c.
Clearly x ∧ b ≤ c. Also, b ∨ x = b ∨ (y ∧ c) = (b ∨ y) ∧ (b ∨ c). Since b ∨ y ≥ a ∨ y ≥ c, it follows that
b ∨ x ≥ c. So x ∈ c/b. In short, for all y ∈ c/a, exists x ∈ c/b such that x ≤ y.�
Remark. Notice that the above proposition holds even when a/c, b/c etc. are not intervals; however,
in this case - must be understood as a preorder, rather than an order.

The next proposition relates the join hyperoperation to set theoretic inclusion; it is well known that
this is an (alternative to ≤) order on ℘(L).

Proposition 52 For all a, b, x ∈ L we have: x ∈ (a/b) ⇐⇒ xa ⊆ xb.

Proof. x ∈ a/b ⇒ x ∧ b ≤ a ≤ x ∨ b. Now, x ∧ b ≤ a ⇒ x ∧ b ≤ x ∧ a. Also, a ≤ x ∨ b and x ≤ x ∨ b
imply that x ∨ a ≤ x ∨ b. Hence x ∧ b ≤ x ∧ a ≤ x ∨ a ≤ x ∨ b ⇒ xa ⊆ xb. On the other hand, xa ⊆ xb
is equivalent to x ∧ b ≤ x ∧ a ≤ x ∨ a ≤ x ∨ b which implies x ∧ b ≤ x ∧ a ≤ a ≤ x ∨ a ≤ x ∨ b , i.e.
x ∈ a/b.�

3.6 Distributivity Properties

Proposition 53 For all a, b, c ∈ L we have: (i) (a/b) ∨ c ⊆ (a ∨ c)/b, (ii) (a/b) ∧ c ⊆ (a ∧ c)/b.

Proof. (i) Take any u ∈ (a/b) ∨ c; then u = x ∨ c, where x ∈ a/b. So a ∨ c ≤ (x ∨ b) ∨ c = u ∨ b. On
the other hand, a ∨ c ≥ (x ∧ b) ∨ c = (x ∨ c) ∧ (b ∨ c) = u ∧ (b ∨ c) ≥ u ∧ b. Hence u ∈ (a ∨ c)/b and so
(a/b) ∨ c ⊆ (a ∨ c)/b.

(ii) Take any u ∈ (a/b) ∧ c; then u = x ∧ c, where x ∈ a/b. So a ∧ c ≥ (x ∧ b) ∧ c = u ∧ b. On the
other hand, a ∧ c ≤ (x ∨ b) ∧ c = (x ∧ c) ∨ (b ∧ c) = u ∨ (b ∧ c) ≤ u ∨ b. Hence u ∈ (a ∧ c)/b and so
(a/b) ∨ c ⊆ (a ∨ c)/b. �
Remark. It is worth remarking that the inclusions in the above proposition can be proper; for instance
consider Figure 3, where (a/b) ∨ c = {e, d, q, c} and (a ∨ c)/b = {j, i, q, c, e, d}.

Figure 3 to be placed here

The next two propositions relate join and extension to set theoretic inclusion.

Proposition 54 For all a, b, c ∈ L we have:

(i) a/(b ∨ c) - (a/b) ∨ (a/c).
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(ii) a/(b ∧ c) % (a/b) ∧ (a/c).

(iii) (b ∨ c)/a ⊇ (b/a) ∨ (c/a).

(iv) (b ∧ c)/a ⊇ (b/a) ∧ (c/a).

Proof. (i) From Proposition 51 we know that for all x, y, z such that x ≤ y , we have z/y - z/x. Let
us put z = a, x = b, y = b ∨ c. Then we have a/(b ∨ c) - a/b. Similarly we get a/(b ∨ c) - a/c.

Now take any z ∈ a/(b ∨ c). Since a/(b ∨ c) - a/b, there exists x ∈ a/b such that z ≤ x; since
a/(b∨c) - a/c, there exists y ∈ a/c such that z ≤ y. Define u = x∨y; clearly z ≤ u and u ∈ (a/b)∨(a/c).
In short, for any z ∈ a/(b ∨ c) there exists u ∈ (a/b) ∨ (a/c) such that z ≤ u.

Next, take any u ∈ (a/b) ∨ (a/c), i.e. u = x ∨ y, where x ∈ a/b , y ∈ a/c. Since a/(b ∨ c) - a/b,
there exists z1 ∈ a/(b ∨ c) such that z1 ≤ x; since a/(b ∨ c) - a/c, there exists z2 ∈ a/(b ∨ c) such that
z2 ≤ y. By Proposition 37 a/(b ∨ c) is a sublatttice of L, so z = z1 ∧ z2 is in a/(b ∨ c) and, clearly,
z ≤ x ∨ y = u. In short, for any u ∈ (a/b) ∨ (a/c) there exists z ∈ a/(b ∨ c) such that z ≤ u. This,
together with the previous paragraph shows that a/(b ∨ c) - (a/b) ∨ (a/c). (ii) is proved dually.

(iii) Take any u ∈ (b/a) ∨ (c/a); then there exist x ∈ b/a, y ∈ c/a such that u = x ∨ y. We have
x∧ a ≤ b, y ∧ a ≤ c and so (x∧ a)∨ (y ∧ a) = (x∨ y)∧ a ≤ b∨ c; it is also clear that (x∨ y)∨ a ≥ b∨ c.
In short, recalling that u = x ∨ y, we have shown that u ∈ (b ∨ c)/a ; hence (b/a) ∨ (c/a) ⊆ (b ∨ c)/a
and we have proved (iii); (iv) is proved dually. �
Remark. Regarding parts (i) and (ii) of Proposition 54, note that they hold true even when a/b, b/c
etc. are not intervals; in this case, however, - is a preorder, rather than an order.

Proposition 55 For all a, b ∈ L we have: (i) a/b ⊆ a/(a ∨ b), (ii) a/b ⊆ a/(a ∧ b).

Proof. (i) Take any x ∈ a/b. Then a ≤ x ∨ b ≤ x ∨ (a ∨ b). Also, since a ≥ x ∧ b and a ≥ x ∧ a, it
follows that a ≥ (x ∧ b) ∨ (x ∧ a) = x ∧ (a ∨ b). So x ∈ a/(a ∨ b) and so a/b ⊆ a/(a ∨ b). (ii) is proved
dually.�
Remark. The set inclusion in the above proposition can be proper, as can be seen by the following
example. Take L to be R2 and the order relation on elements of R2 to be as follows: for all a = (a1, a2),
b = (b1, b2) ∈ R2 we have a ≤ b ⇔ [a1 ≤ b1 and a2 ≤ b2 ]. It can be checked easily that (L,≤) is
a distributive lattice. Now take a = (1, 2), b = (2, 1); then we have a ∨ b = (2, 2) and (see Figure 4)
a/(a∨ b) = {(x1, x2) : x1 ≤ 1}, a/b = {(x1, x2) : x1 ≤ 1, x2 ≥ 2}. So we see that the inclusion is in this
case proper.

Figure 4 to be placed here

4 Conclusion

Motivated from machine learning applications, we have introduced the “hyperbox” join hyperoperation
(and the associated extension hyperoperation) in a distributive lattice. The resulting algebraic structure
is a lattice ordered join space. We have studied the basic properties of the hyperoperations. In the
future we want to study the properties of a general lattice ordered join space (i.e. not related to
the hyperbox join). Secondly, we want to study the properties of the collection of lattice intervals
generated by the hyperbox join hyperoperation in a distributive lattice; in particular we are interested
in the approximation of arbitrary subsets of the lattice by join and extension hyperoperations. Finally,
we want to study the application of the hyperbox join in a lattice of intervals of fuzzy membership
functions, in connection to Corsini’s remarks in [10], [11].
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