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I. Introduction

The Prisoner's Dilemma (henceforth PD) has been discussed extensively
as a model of the conflict between competition and cooperation, or between
individual and collective rationality.  PD can be viewed either as a
mathematical paradox, or as a useful (albeit simplified) paradigm that
belongs to the realm of applied sciences such as psychology, economics,
political science, biology, ecology etc. A good technical presentation of PD
appears in (Rapoport, 1966). A bibliography and discussion of the technical
aspects can be found in (Luce & Raiffa, 1985); an extensive treatment of
variations of PD can be found in (Axelrod, 1984). For an interesting
popularized discussion see (Hofstadter, 1985).

Probabilistic Learning Automata (henceforth PLA) are an important
model of Artificial Intelligence.  They offer a simple way to describe the
learning process of several interacting agents. In this sense they are a very
suitable model for the evolution of strategies for playing PD.  For a very
extensive discussion of the theory of PLA, as well as for a presentation of
their applications see (Narendra & Thathatchar, 1989).

In this paper we discuss an iterated version of the PD , played by
Probabilistic Learning Automata (henceforth PLA).  This particular version
of PD has been studied by computer simulation; we summarize our findings
and discuss possible implications. The main conclusion is that cooperation
is a more viable and persistent alternative than competition. This is an
intuitively satisfying result and may help in resolving the apparent paradox
of PD. Our results must be viewed wth caution; strictly speaking they only
pertain to the particular version of PD that we discuss here. However, even
this limited analysis may offer useful insights to more general versions of
PD and to the general competition - cooperation problem.  A detailed
presentation of the computer simulations and the associated mathematical
analysis is outside the scope of this journal and will appear elsewhere.

II. Prisoner's Dilemma
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Consider the following situation. Two persons, call them A and B, are
accused of having committed a crime. The prosecutor makes A the
following proposition. "There is circumstantial evidence against both you
and your accomplice. If both of you plead innocent you will be convicted
anyway, and each will receive a sentence of two years imprisonment.
However, if you give evidence  against your accomplice, we will have a
better case against him and he will be convicted to a harder sentence: five
years imprisonment. In exchange for your help, we  will let you free for
turning state's evidence." The prosecutor makes B exactly the same
proposition; he also tells both A and B that  the proposition was made to the
other person.  Finally, he tells them that if they both confess each will
receive a sentence of four years. A and B cannot communicate with each
other; each must decide independently whether to denounce his partner, or
cooperate with him. This is the Prisoner's Dilemma. It will shortly become
clear why it is called a dilemma.

We can view PD as a game to be played between A and B (with the
prosecutor acting as referee). Hence we will use the following terminology.
A and B will be called players or agents. Each player has a choice between
two actions:  C (cooperating with the other player) and  D (defecting or
denouncing the other player). The outcome of the game (the resulting
sentences) will be called the cost of the actions. Finally, we will assume that
each player has only one criterion for playing the game, namely to minimize
his cost, without being concerned with questions of trust, ethics,  friendship
etc. We will discuss this assumption in greater detail later.

A preliminary analysis of the PD game might go as follows. A is tempted
to defect (denounce B) and go away free, but he realizes that B is under
exactly the same temptation and might denounce him in turn. In a case of a
double defection,  both A and B  will  be convicted to four years
imprisonment, which is clearly undesirable. If A and B cooperate, they get
the lighter sentence of two years each; but since they cannot communicate,
each of them must choose his action independently. The analysis is
facilitated by introducing the following tables. Table 1 summarizes the cost
of each choice to both players.

      B Actions
A Actions

C D       B Actions
A Actions

C D       B Actions
A Actions

C D

C 2 , 2 5 , 0 C 2 5 C 2 0
D 0 , 5 4 , 4 D 0 4 D 5 4

Table 1 Table 2 Table 3
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A's action determines a row and B's action determines a column of Table
1; then the entry at the chosen column and row determines the cost to A
(first number) and to B (second number). Table 2 summarizes the cost to A
only and, similarly,  Table 3 summarizes the cost to B only. Note that each
player's cost depends on both players' actions.

We have assumed that each player's sole objective is to minimize his
cost, hence considerations of friendship, trust, morality etc. are assumed to
be irrelevant. However, if we wished, we could introduce such factors to the
game by assigning them a cost. For example, if defection is a "bad thing",
we can increase the cost of all D actions by a certain amount, say 2. Of
course this presumes that moral choices can be assigned a numerical value;
this is, indeed, a bold assumption.  At any rate, from the players' point of
view, the only thing that matters is minimization of cost and hence Table 1
is, at least in principle, a complete description of the PD game.

Let us now return to the analysis of the game. When  A chooses his
action, he looks at Table 2 to compute the respective cost. He can reason as
follows. Suppose that B chooses action C (i.e. the first column of Table 2).
Then A can choose action C, at a cost of  2, or  action D at a cost of  0.
Since 0 < 2, it is preferrable to choose action D. Similarly, suppose that B
chooses action D (i.e. the first column of  Table 2). Then A can choose
action C, at a cost of 5, or choose action D at a cost of 4. Since 4 < 5, it is
again preferrable to choose action D. Thus, no matter what action B chooses
, it is best for A to choose action D. But the game is perfectly symmetric. B
will choose exactly the same action D, by exactly the same reasoning; in
which case both A and B incur a cost of 4 (four year prison sentences). Here
lies the paradox: if they had both chosen C, they would only incur a cost of
2. So, by seemingly faultless reasoning they choose an action which is
clearly suboptimal for both of them.

Of course A might take his reasoning one step further, perceive the cost
of a mutual defection and  conclude that it is better to trust B and choose
action C. But this conclusion is only valid assuming that  B will also choose
C; in which case A would be better off by choosing D anyway. Hence, it
seems there is no way out of this vicious circle which enforces
noncooperative D actions. This is the Prisoner's Dilemma. It is a dilemma in
that, while cooperation is a clearly preferrable alternative, it cannot be
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justified; no for each player competitive behavior appears to yield a lower
cost, matter what the other player does.

III. Further Examples

At first sight PD appears to be a frivolous and contrived problem, but a
little reflection will show that it is a simplified version of many real world
situations.

For example, think of an arms race between two rival countries. Each
country has the options of arming or not arming.  Assume that both
countries can arm at the same rate. If both countries arm neither gains an
advantage over its rival; in addition they are both burdened by an increased
military budget. Clearly it is preferrable that neither country arms. On the
other hand, if one country arms and its rival doesn't, then the first country
gains an advantage. Clearly, arming corresponds to the D move of the
previous section and not arming corresponds to the C move. The best
situation for a country is that it arms and its rival doesn't; barring this, its is
best that neither country arms; the worst situation occurs when both
countries arm. However, just as in the prisoners' case it is clear that no
matter what one country does it is best for the other country to arm. Or is it?
This is a simple but not inaccurate model for the Cold War rivalry between
the US and USSR. Virtually the same analysis can be applied to
intercommunal conflicts such as the one between Protestants and Catholics
in Northern Ireland, Jews and Palestinians in Israel, Moslims and Serbs in
Bosnia and so on. In some of these cases the deadlock has been resolved and
a cooperative solution found; in other cases the "players" are stuck with
noncooperative strategies.

In a different context, consider an enviromental problem. The water
resources of a city are running low. There is a steady but low inflow of
water, which is not sufficient for the needs of all the population. To simplify
matters, assume that the city has a population of only two people. Each one
of them has the choice of conserving water (which will be inconvenient but
not unbearable) or consuming at a high rate. If both consume at a high rate,
pretty soon the city reservoirs will be empty and the population thirsty.  If
both conserve, the water resources will increase and the crisis averted. And
if only one consumes, the other can use all the water he wants and the water
resources will remain constant.  Once again each "player" has an incentive
to consume, no matter what the other does, but this leads to a catastrophic
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outcome. If the population were not two people but one million, this analysis
would apply fairly well to the plight of a certain Greek city. Of course the
analysis is not limited to water; clean air, oil and a number of other
resources (even parking space at city center) could be used instead.

Similar examples can be found in many other areas: economics
(competing firms), biology (competing organisms) and so on.

IV. Generalizations and Discussion

Admittedly all such examples are much more complex than the PD.  But
the essence of the dilemma is captured in a simple table of action costs, such
as Table 1.  In fact, a slightly more general table, such as Table 4, is
appropriate.

      B Actions
A Actions

C D

C R , R S , T
D T , S P , P

Table 4

Here R, S, T, P are the costs of each pair of actions. To have a PD
situation it is sufficient that the following inequalities hold.

(1a) T > R: If B cooperates, it is better for A to defect (and vice versa).
(1b) R > P: If both A and B cooperate, they do better then if both defect.
(1c) P > S: If B defects, it is better for A to defect (and vice versa)

When (1a-c) hold we have a situation where both players are tempted to
defect; but if they both defect they are worse off then if they both
cooperated. For either player, the best situation is when he defects and his
opponent cooperates. Hence there is temptation for individual defection, but
mutual defection is costly for both players. The crux of the matter is that
"selfish", competitive reasoning leads to a result that is bad from both the
individual and collective point of view, while "altruistic", cooperative
reasoning  leads to a result that is good from both the individual and
collective perspective. The simplified PD model captures the essential
elements of this situation and may yield useful insights into more complex,
real world problems. Undoubtedly, this an important reason for the great
interest PD has aroused.
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Another reason for the interest in PD must be a sense of frustration.
While cooperation is obviously better than defection, the reasoning for
defection appears to be faultless.  This is morally distasteful to many people;
perhaps more importantly, experimental observation of actual human PD
players shows that very often they will play cooperatively. Therefore, there
is a strong incentive to find a rational way out of the dilemma.

Many authors have attempted to resolve PD by introducing in the
decision process  motives such as ethics, trust, friendship etc. This can be
done in two ways. The simplest way has already been mentioned: it is to
assign to such "higher motives" a numerical cost. For example, if defection
is morally reprehensible, add, say, ten units to the cost of a defecting player
and build a new table, which incorporates the additional costs. But this only
postpones the dilemma. In some instances of PD, the additional costs might
produce a table that does not satisfy inequalities (1a-c), for example when
defection incurs a high moral cost. But it may be that unreciprocated
cooperation also has a high cost, or succesful defection has a high profit.
For instance, returning to the prisoners' example, imagine that the penalty
for the lone cooperator is not five years of prison, but the death sentence; in
this case it takes a very trusting player to play C. Hence, despite the moral
cost, situations will arise where (1a-c) still hold and these will introduce the
same paradox as in the original PD.

A more serious objection (and a possible way out of the dilemma) is that
there are situations in real life which cannot be assigned a numerical cost.
What is the cost of death? What is the cost of ostracism when one defects?
What units are these costs measured in? Are they the the same units for
death and ostracism? These are serious objections and, in our opinion, have
not been answered in a satisfactory manner yet.

Hence one can escape the paradox of PD by rejecting its applicability to
real life: the paradox never arises, because people do not assign numerical
costs to their actions and do not determine their actions according to such
costs. But we think this is not a very good argument, or at least it does not
make the study of PD uninteresting. It is probably true that very few people
will follow an exact PD analysis in their everyday decision making, but we
believe that game tables such as Table 1 are acceptable approximations.
While they cannot give exact predictions of the way people act, they may
help in qualitatively understanding certain motives of human behavior.
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At any rate, this is a problem for the psychologist and behavioral
scientist. Let us now present a different attempt to escape the PD paradox,
which can be studied mathematically.

Many people have accepted the assignment of numerical costs to PD-like
games, but have observed that such games are rarely played only once. What
occurs more frequently is the so called iterated PD. The PD game will not be
played once, but many times in succession, and each player will remember
how his opponent played in the past. This can promote cooperation, both in
a negative and a positive way. For example, we have established that the
"individual-rational" way to play PD is for both players to defect. This
happens in the first round of PD and consequently both players are
punished. This may convince them to be a little more cooperative in the next
round. Conversely, suppose both players  cooperate (even by accident) once;
consequently they are rewarded and this may make them more cooperative
in the future. The rest of this paper is concerned with formalizing this
argument and exploring its consequences.

A related idea that becomes more plausible when one considers iterated
PD is the use of mixed strategies. One could decide to play C, say, 50% of
the time and D 50% of the time. This decision when to play C and when D
could be taken deterministically, e.g. by always cooperating once, then
defecting, then cooperating again and so on, or probabilistically: e.g. by
flipping a coin at every round and cooperating if it comes up heads,
defecting otherwise. In general one could cooperate with probability p and
defect with probability q, where p+q=1. The decision when to cooperate and
when to defect can be taken using a computerized coin that can come up
heads with any desired probability p and tails with any desired probability q.

Before concluding this section, let us mention a final possibility for
generalizing the PD. In everything we have discussed so far, we have
assumed that only two players are involved. But one can also consider the
case of three-, four- or, in general, N- player PD. In such a case, the cost to
each player depends on the action of several other players. One can set up a
cost function (rather than cost table) which depends on the actions of several
players, and which yields large costs when many players defect, and small
costs when many players cooperate; in addition the function is such that the
optimal situation for a single player (smallest cost) occurs when everybody
else cooperates and he defects.  Hence each individual player has an
incentive to defect, but when many players defect a large cost is inflicted to
everybody. Obviously, such an N-player PD is a more realistic model for the



8

environmental problems we discussed earlier. The introduction of N players
creates many additional complications in the analysis of the game; indeed
the study of N- player games is considerably harder than that of two- player
games. At any rate, we will not discuss this possibility in this paper; it is just
mentioned for the sake of completeness.

V. Probabilistic Learning Automata

 In this section we introduce PLA's, which we have used in our study of
the iterated PD. We will present a very brief summary of the main ideas; for
a complete discussion see (Narendra & Thathatchar, 1989). The basic idea is
to develop a model of the learning process for a group of individual simple
agents (automata) that repeatedly interact with each other.

Consider an automaton (in other words a very simple entity) that
interacts with the surrounding environment in the following manner. At time
instants t = 1, 2, ... etc.  the automaton chooses one out of two possible
actions; as a consequence of the chosen action, it receives from the
environment a response, which can be either a reward or a punishment.  The
connection to the PD is obvious: take the automaton to be a PD player, the
possible actions to be C and D, and the cost of each action to be the
corresponding prison sentence; a short (or zero) sentence is a reward, a long
sentence is punishment.

Generally, the automaton should choose its actions in a way that
increases reward and minimizes punishment; in other words it should try to
minimize the cost of playing the game. This cost minimization has two
aspects. On the one hand the automaton tries to maximize its immediate
rewards; on the other hand it tries to learn the behavior of the environment
(and of other automata), and use this knowledge for selecting its future
actions. If the same action were chosen always, the response and the cost
would also remain the same.  Rather, one wants to use the previous actions
and responses, in combination with some learning scheme, to decrease cost
as time progresses. We will now present such a scheme.
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First, our automata will use mixed strategies, in other words they will
choose their actions probabilistically.  For instance, at every time step the
automaton flips a coin. If the coin comes up heads, the automaton chooses
C; otherwise it chooses D.  Obviously, the probability of C  is p =1/2 and the
probability of  D is q = 1/2.  Or the automaton can  choose actions by
tossing a die. If a six comes up, C is chosen; otherwise D. In this case  p =
1/6 and  q =5/6. Using a "computer  coin" (more precisely, a computerized
random number generator), the automaton can choose actions with any
desirable probabilities p and q.

If the action probabilities were constant and independent of the
enviroment's response, then no learning would occur. The one- round and
iterated PD games would have exactly the same outcome. Instead our
automata will use time varying action probabilities p (t )  and  q (t ). The
probability of choosing C at time t  is p (t ) (and similarly for q (t ) ).
Further, p (t )  and  q (t ) change according to the environment's responses.
For instance, if at time t  the automaton chooses C and the environment
rewards it, then the probability of choosing C is increased for subsequent
time steps. A simple scheme that implements this idea is the following.
(2a) p (t +1) = p (t ) + (1−p (t ))⋅á if at t action = C, response= reward,
(2b) p (t +1) = (1−á)⋅p (t ) if at t action = C, response =
punish.

Here a is a number representing learning rate.  When a is large, p (t ) can
change a lot even in one time step.  Conversely, when a is small, at  every
time step p (t ) changes only a little. Hence the first equation tells us that
when C is chosen and rewarded, then the probability of choosing C at the
next time t +1 is  increased  by a positive quantity; when the action is
punished the probability is multiplied by a number less than 1, hence it
decreases.  Recall that there are only two possible actions, with probabilities
p and q respectively.  Hence for every t we must have q (t ) =1 - p (t ). So
equations (2a-b) imply two complementary equations for updating q (t +1).

In case action D is chosen, similar equations are used for updating the
action probabilities:
(3a) q (t +1) = q (t ) + (1−q (t ))⋅á if at t action = D, response= reward,
(3b) q (t +1) = (1−á)⋅q (t ) if at t action = D, response =
punish.
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Again, (3a-b) imply two complementary  equations for updating p (t +1).
Equations (2a-b, 3a-b) constitute a simple scheme that will learn
connections between actions and responses. For example, consider the case
where C is always rewarded and D always punished. Suppose that our
automaton starts with equal probability of choosing the first or second
action (p(1) = q(1) =1/2) and chooses 100 consecutive actions; further
suppose that 50 of these are D actions. Since we assumed that D is always
punished, after 100 time steps we will have  q(100) =(1-a)50 ⋅1/2. For a
=0.9, this probability would be about 1051, which means that by time t =
100, the D action probability is very close to zero and the automaton will
practically never choose D any longer. So the PLA has learned that C is
"good"  and D is "bad" .

VI. A PLA, Iterated  PD Game

Now we have all the pieces necessary to design an experiment of
iterated PD. We will use not one, but two PLA's, one as player A and the
other as player B. At time t , automaton A chooses C (cooperation) with
probability pA(t ) and D (defection) with probability qA(t ); similarly
automaton B chooses C with probability pB(t )  and D with probability qB(t
). Then the automata communicate their chosen actions to an impartial
referee (the "environment"), who responds by meting out reward and
punishment according to  the PD cost table.  Finally, the automata update
their action probabilities according to the response they received.

For example, suppose  A chooses C and B chooses D. Then A receives a
cost of S and B receives a cost of T.  Given B's action, A notices that, it
would have better had it chosen D. In particular A notices an opportunity
loss of S-P.  Hence it perceives the environment response as punishment and
it computes its loss as S-P (in other words the cost it actually incurred minus
what it would have incurred had it chosen D) and decreasess its cooperation
probability by  equation 3b, using a learning rate a=(S-P).  Similarly, B
perceives a gain of R-T and increases its defection probability by a learning
rate of a=(R-T).  Similar reasoning applies in the case that the automata
choose actions CC, DC or DD. The only modification from the standard
learning method of the previous section is that the learning rate a is not fixed
but variable, depending on the opportunity cost of the differences S-P, P-R,
R-T.

In this way we have devised a scheme such that each automaton
continuously updates its action probabilities, depending on the actions of



11

itself and its opponent's.  It is a fairly simple scheme, but it can be used to
explore the evolution of cooperation and competition under various
conditions, which are determined by the choice of parameters P, R, S, T.
(Several other parameters are available for experimentation, but will not be
considered here, because of space limitations).

VII. Computer  Experiments

Hence our experiment plan is the following. For each experiment we
choose specific T, R, S, P parameters and we run a computer simulation of
equations (2a,2b,3a,3b3) for a a large number of time steps t =1, 2, ... . We
take enough time steps to ensure that the learning process is completed and
observe the final values of the cooperation and defection probabilities.
There are four such probabilities: pA (cooperation probability for automaton
A), qA (defection probability for automaton A), pB (cooperation probability
for automaton B), qB (defection probability for automaton B). The pA, qA,
pB, qB values at the end of experiment describe the level of cooperation
achieved. For instance we could have pA=1, pB=1; in this case both A and B
would choose the cooperative move 100% of the time; or we could have
pA=pB=0, in which case A and B will choose the defection move 100% of
the time; or pA=1, pB=0.5, in which case A will always choose C, but B will
choose C 50% of the time, D 50% of the time and so on.

We expect that the final level of cooperation, as expressed by pA, pB,
qA, qB,  will depend on the values of the costs T, R, P, S. More precisely,
since the learning process described in the previous section depends not on
T, R, P, S themselves but on the differences S-P, P-R, R-T, we also expect
that in each experiment the final pA, pB, qA, qB values are determined by S-
P, P-R, R-T.  By adjusting these values we can promote cooperation or
competition. For example, if T is much smaller than R, then on every C
move of B, A loses much more by cooperating than by defecting. In this
case defection is promoted. If P is large compared to R, mutual defection
has a much larger cost than mutual cooperation, hence cooperation is
promoted, and so on. There is considerable latitude in the choice of P, R, S,
T, but to have a PD game we must alwaysrespect inequalities (1a-c).

We have run several experiments along these lines, trying various
combinations of P, R, S, T values. The results are presented in Table 5.

We note that in some cases we obtain a pure cooperation strategy and in
some others a mixed strategy, but never a pure defection strategy. In general,
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large P and R values promote cooperation and large S and T values promote
defection, as expected.  In short, Table 11 tells us that cooperation is always
a viable strategy, and when the T, R, P, S are closely spaced, a pure
cooperation strategy will emerge.
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pA(1) pB(1) á R T S P pA(700) pB(700)

 0.50  0.75 0.010      1.0  0.0  5.0  4.0  1.000  1.000

 0.50  0.75 0.010      1.0  0.0  5.0  2.0  0.378  0.375

 0.50  0.75 0.010      1.0  0.0  5.0  4.5  1.000  1.000

 0.50  0.75 0.010      1.0  0.0  2.0  1.5  0.384  0.434

 0.50  0.75  0.010      2.0  0.0  5.0  4.0  0.617  0.631

 0.50  0.75  0.010      3.0  0.0  5.0  4.0  0.338  0.396

 0.50  0.75  0.010      3.5  0.0  5.0  4.0  0.263  0.265

 0.50  0.75  0.010      1.0  0.0  9.9  4.0  0.462  0.499

 0.50  0.75  0.010      0.1  0.0  4.1  4.0  1.000  1.000

 0.50  0.75  0.010      0.1  0.0  5.0  4.0  1.000  1.000

 0.50  0.75  0.010      0.1  0.0  9.9  4.0  0.596  0.597

 0.50  0.75  0.010      3.9  0.0  4.1  4.0  0.116  0.119

 0.50  0.75  0.010      3.9  0.0  5.0  4.0  0.108  0.108

 0.50  0.75  0.010      3.9  0.0  9.9  4.0  0.088  0.088

Table 5
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VII. Conclusion

The results of our computer experiments are interesting, but some
caution is necessary: these experimental results do not constitute a complete
analysis of our model. Such an analysis would require inordinate amounts of
computer time to fully explore all possible combinations of parameters.
Another method would be a mathematical analysis of convergence
properties of our model.  Such an analysis requires rather sophisticated
mathematical methods and belongs to a more specialized journal. For an
exposition of such methods see (Narendra & Thathatchar, 1989).

Even a complete mathematical analysis will only give information about
this particular model of playing iterated PD. Our model is a linear reward -
penalty probabilistic learning automaton. Many other types of learning laws
could have been used, such as reward-inaction, inaction-penalty, linear or
nonlinear and so on. For a full discussion of learning laws for PLA's see
(Narendra & Thathatchar, 1989). Further, learning automata are only one of
many possible models for playing  iterated PD. Finally even a complete
analysis of every possible strategy for playing iterated PD (which appears to
be a formidable task) would still pertain to PD; it must be stressed that PD is
a vastly simplified model of realistic cooperation - competition situations.

Keeping all these qualifications in mind, we still have evidence for the
following rather optimistic conclusion: in a PLA game of iterated PD
cooperation will emerge under very broad conditions and, excluding the
case of very low defection cost, we will in fact have a pure cooperation
strategy.  Also, the behavior of our model is intuitively appealing, since its
dependence on the cost parameters is generally the one we would expect.
For instance, we observe that increased T hinders, or at least delays
cooperation, while increased R and P promote it.

These conclusions contradict a number of more pessimistic analyses of
PD existing in the literature.  We may have here at least  a  partial resolution
of the PD paradox.  It seems that the crucial elements are iterated playing
combined with learning.

A more detailed study, involving extensive computer  experimentation
and mathematical analysis of our model will undoubtedly clarify the issue
further. Other extensions of the model could include the application of the
PLA/PD framework to more realistic problems of competition and
cooperation, in particular N player problems.  For example we could have a
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macroeconomic model of investment and consumption: several consumers
share a resource (capital) that can be either consumed or invested; one
would look for an optimal policy that maximizeseach consumer's utility.
Would such a policy be competitive (immediately consume as much as
possible) or cooperative? Finally, a very ambitious research goal would be
the empirical test  of our PLA/PD model, involving the observation of
humans playing iterated PD. Records of actions and costs can be used to
statistically estimate the T, R, P, S parameters, so that a computer
experiment will replicate as closely as possible the observed human
behavior.
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