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Abstract. In this short note we study a class of multi-player, turn-based

games with deterministic state transitions and reachability / safety objectives

(this class contains as special cases “classic” two-player reachability and safety
games as well as multi-player and ““stay–in-a-set” and “reach-a-set” games).

Quantitative and qualitative versions of the objectives are presented and for

both cases we prove the existence of a deterministic and memoryless Nash
equilibrium; the proof is short and simple, using only Fink’s classic result

about the existence of Nash equilibria for multi-player discounted stochastic

games

1. Introduction. The simplest ω-regular games are, arguably, two-player turn-
based safety and reachability games [7]. Multiplayer variants of these are the “Stay–
in-a-set” (SIAS) games [6, 8] and “Reach-a-set” (RAS) games [1, 2]. The existence
of Nash equilibria (NE) has been proved: for SIAS games in [8] and for RAS games
in [1, 2]; in particular in the special case of turn-based games with deterministic
state transitions and Borel objectives (these include SIAS and RAS objectives) the
existence of a pure Nash equilibrium (NE) is proved in [2, Corollary 1]. In both
cases the state space is assumed finite and the NE are not, in general, memoryless.1

A stronger result is proved in [9], namely: every turn-based multi-player game
with deterministic state transitions and Borel objectives possesses a pure sub-game
perfect (and hence memoryless) equilibrium. These results are quite general but
their proofs are rather involved.

In the current note our main goal is to provide a short and simple proof of
a special case: every turn-based SIAS and RAS game with deterministic state
transitions possesses a deterministic and memoryless NE. This is proved using only
Fink’s classic result on the existence of NE for multi-player discounted stochastic
games [5].

Our result is actually a little more general, in that it applies to the class of
multi-player, turn-based games with deterministic state transitions, reachability
objectives for some players and safety objectives for others. For brevity, we will
henceforth refer to these as multi-player reachability / safety games (MPRS games);
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1In [2, Theorem 1] is also proved the existence of memoryless ε-NE for a broader class, which

contains SIAS and RAS games.
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they contain as special cases classic reachability and safety games as well as SIAS
and RAS games.

Informally, the MPRS game can best be visualized as a graphical game, in which
N players move a token along the arcs of a digraph G = (V,E). The vertices of G
are partitioned into N sets: V = V1 ∪ V2 ∪ ... ∪ VN ; if at the t-th turn the token is
located on a vertex vt ∈ Vn, then it is moved by the n-th player (henceforth denoted
by Pn) into some vertex vt+1 such that (vt, vt+1) is an arc of G. In general we have
two type of players: reachers and avoiders. To each Pn is associated a nonempty
set Rn ⊆ V , related to his objective. If Pn is a reacher, he wins iff the token enters
some vertex v ∈ Rn; if he is an avoider, he wins iff the token never enters a vertex
v ∈ Rn.

In Section 2 we define the quantitative MPRS game and prove that every such
game has a NE in deterministic memoryless strategies. In Section 3 we do the same
things for the qualitative MPRS game.

2. The quantitative MPRS game. We now formulate MPRS as a discounted
stochastic game.2 In what follows the quantities N , V , E, V1, ..., VN , R1, ..., RN

are the ones presented in the previous section.

1. The player set is {P1, P2, ..., PN} or, for simplicity, {1, 2, ..., N}.
2. The state set is S := V ∪ {s}, where V is the vertex set of the previously

mentioned G = (V,E) and s is the terminal state.
3. We define {S1, ..., SN}, a partition of S, as follows: S1 := V1 ∪ {s}, S2 := V2,

..., SN := VN .
4. For n ∈ {1, 2, ..., N}, Pn’s target set is Rn; the total target set is R :=
∪Nm=1Rm.

5. An (s) denotes Pn’s action set when the game is at state s and is defined by
(λ is the “trivial” move):

when s ∈ Sn\R : An (s) := {s′ : (s, s′) ∈ E} ;

when s ∈ Sm\R,m 6= n : An (s) := {λ} ;

when s ∈ R ∪ {s} : An (s) := {λ} .

Pn’s “total” action set is An := ∪s∈SAn (s).
6. The law of motion is deterministic and has the following form:

(a) when s ∈ Sn\R and a = (λ, ..., an, ..., λ):

Pr (st+1 = s′|st = s, at = a) :=

{
1 when s′ = an,
0 else;

(1)

(b) when s ∈ R ∪ {s} and a = (λ, ..., λ, ..., λ)

Pr (st+1 = s′|st = s, at = a) :=

{
1 when s′ = s,
0 else.

(2)

All admissible state/action combinations are covered by (1)-(2), from which
we see the following.
(a) If the current state s “belongs” to Pn (i.e., s ∈ Sn) and is not a target

state, then he is the only player who can perform a non-trivial action
an ∈ V ; the next state is, with certainty, an.

2We follow the formulation of [4], expanded to the multi-player case.



MULTI-PLAYER REACHABILITY / SAFETY GAMES 119

(b) If the current state s is either target or terminal, then the only admissible
action vector is a = (λ, ..., λ, ..., λ); the next and all subsequent states are
the terminal s.

It is convenient to describe the deterministic state transitions in terms of a
state transition function T : S ×A→ S, defined by

T (s, an) :=

{
an when s ∈ Sn\R and an ∈ An (s) \λ,
s when s ∈ R ∪ {s} and an = λ.

(3)

All admissible state/action combinations are covered by (3).
7. Pn’s turn payoff function depends only on the current game state s (but not

on the current action vector) and can be either of the following:

qn (s) :=

{
1 when s ∈ Rn

0 when s /∈ Rn
(Pn is a reacher);

qn (s) :=

{
−1 when s ∈ Rn

0 when s /∈ Rn
(Pn is an avoider).

8. Pn’s total payoff function is (with discount factor γ ∈ (0, 1)): Qn (s0, s1, ...) =∑∞
t=0 γ

tqn (st).

The game starts at an initial state s0 = s ∈ S\s and, at the t-th turn (t ∈
{0, 1, 2, ...}) all players perform “trivial” moves, except for the player who “owns”
st. Two possibilities exist.

1. If a target state is entered at some time t′ (st′ = s′ ∈ R = ∪Nm=1Rm) the
next and all subsequent states are the terminal (∀t > t′ : st = s).3 For each
n ∈ {1, ..., N}, Pn receives total payoff:

Qn (s0, s1, ...) =

 γt
′

if s′ ∈ Rn and he is a reacher;

−γt′ if s′ ∈ Rn and he is an avoider;
0 if s′ /∈ Rn.

2. If a target state is never entered (∀t : st /∈ R), the game continues ad infinitum
and all players receive zero payoff.

A reacher (resp. avoider) Pn wants the game to enter Rn in the shortest (resp.
longest) possible time. Hence the above defined discounted stochastic game will
be called “quantitative MPRS game”.

A finite-length history is a finite sequence of states (we omit player actions, since
they will not be needed in our proof4):

h = s0s1...sk ∈ S × S × ...× S︸ ︷︷ ︸
k times

for some k ∈ {1, 2, ...} ;

the set of all finite-length histories is denoted by H∗. A deterministic strategy for
the n-th player is a function σn which assigns an action to each finite-length history:
σn : H∗ → An. A strategy σn is called memoryless if it only depends on the current
state, in which case we write (with a slight notation abuse) σn (s0s1...sk) = σn (sk).
A strategy profile is a tuple σ =

(
σ1, σ2, ..., σN

)
which specifies one strategy for

each player. As usual, σ−n =
(
σj
)
j∈{1,2,...,N}\{n}, so we can write σ = (σn, σ−n).

Since an initial state s0 and a deterministic strategy profile σ determine fully the

3Hence, while the game lasts an infinite number of turns, it effectively ends at t′.
4Besides they are directly inferred from the states, due to the deterministic law of motion.
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history s0s1s2..., the payoff function Qn (s0, s1, ...) will also be written as Qn (s0, σ),
Qn
(
s0, σ

1, ..., σN
)

or Qn (s0, σ
n, σ−n).

Theorem 2.1. Every quantitative MPRS game has a deterministic memoryless
NE. In other words, there exists a profile of deterministic memoryless strategies
σ̂ =

(
σ̂1, σ̂2, ..., σ̂N

)
such that

∀n ∈ {1, 2, ..., N} ,∀s0 ∈ S, ∀σn : Qn
(
s0, σ̂

n, σ̂−n
)
≥ Qn

(
s0, σ

n, σ̂−n
)
. (4)

For every s and n, let un (s) := Qn (s, σ̂). Then the following equations are satisfied

∀n, ∀s ∈ Sn : σ̂n (s) = arg max
an∈An(s)

[qn (s) + γun (T (s, an))] , (5)

∀n,m,∀s ∈ Sn : um (s) = qm (s) + γum (T (s, σ̂n (s))) . (6)

Proof. Fink has proved in [5] that every N -player discounted stochastic game has a
memoryless NE in probabilistic strategies; this result holds for the general game (i.e.,
with concurrent moves and probabilistic strategies and state transitions). According
to [5], at equilibrium the following equations must be satisfied for all m and s:

um (s) =

max
pm(s)

∑
a1∈A1(s)

...
∑

aN∈AN (s)

p1
(
a1|s

)
...pN

(
aN |s

) ·A (7)

with

A =

[
qm (s) + γ

∑
s′

Π
(
s′|s, a1, ..., aN

)
um (s′)

]
.

In the above we have modified Fink’s original notation to fit our own; in particular:

1. um (s) is the expected value of um (s);
2. pm (am|s) is the probability that, given the current game state is s, the m-th

player plays action am;
3. pm (s) = (pm (am|s))am∈Am(s) is the vector of all such probabilities (one prob-

ability per available action);
4. Π

(
s′|s, a1, a2, ..., aN

)
is the probability that, given the current state is s and

the player actions are a1, a2, ..., aN , the next state is s′ .

Now choose any n and any s ∈ Sn. For all m 6= n, the m-th player has a single move:
Am (s) = {λ}, and so pm (am|s) = 1. Also, since transitions are deterministic,∑

s′

Π
(
s′|s, a1, a2, ..., aN

)
un (s′) = un (T (s, an)) .

Hence, for m = n, (7) becomes

un (s) = max
pn(s)

∑
an∈An(s)

pn (an|s) [qn (s) + γun (T (s, an))] . (8)

Furthermore let us define σ̂n (s) (for the specific s and n) by

σ̂n (s) = arg max
an∈An(s)

[qn (s) + γun (T (s, an))] . (9)

If (8) is satisfied by more than one an, we set σ̂n (s) to one of these arbitrarily.
Then, to maximize the sum in (8) the n-th player must set pn (σ̂n (s) |s) = 1 and
pn (an|s) = 0 for all an 6= σ̂n (s). Since this is true for all states and all players (i.e.,
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every player can, without loss, use deterministic strategies) we also have un (s) =
un (s). Hence (8) becomes

un (s) = max
an∈An(s)

[qn (s) + γun (T (s, an))] = qn (s) + γun (T (s, σ̂n (s))) . (10)

For m 6= n, the m-th player has no choice of action and (8) becomes

um (s) = qm (s) + γum (T (s, σ̂n (s))) . (11)

We recognize that (9)-(11) are (5)-(6); replacing un (T (s, an)) with un (T (s, an))
in (9) defines σ̂n (s) for every n and s and so yields the required deterministic
memoryless strategies σ̂ =

(
σ̂1, σ̂2, ..., σ̂3

)
.

3. The qualitative MPRS game. The qualitative MPRS game elements are
identical to those of the quantitative one, except for the payoff functions. The
qualitative game: (i) does not have a turn payoff function; (ii) has total payoff
function

Q̃n (s0, σ) =

 1 if Qn (s0, σ) > 0,
−1 if Qn (s0, σ) < 0,

0 if Qn (s0, σ) = 0;

It is easily checked that: Q̃n (s0, σ) = 1 (resp. Q̃n (s0, σ) = 0) iff Pn is a reacher
(resp. an avoider) and his target set is entered (resp. not entered). Accordingly,
in the qualitative MPRS game Pn wins (resp. loses) iff he achieves the maximum

(resp. minimum) possible value of Q̃n. More specifically, we have the following.

1. When Pn is a reacher, he wins (resp. loses) iff Q̃n (s0, σ) = 1 (resp. Q̃n (s0, σ) =
0).

2. When Pn is an avoider, he wins (resp. loses) iff Q̃n (s0, σ) = 0 (resp. Q̃n (s0, σ) =

−1).

In short, the quantitative Qn’s defines the qualitative Q̃n’s which are used to
formalize win/lose criteria analogous to these of reachability, safety, RAS and SIAS
games; these are special cases of qualitative MPRS:

1. two-player reachability games (N = 2, P1 a reacher with R1 6= ∅ and P2 an
avoider with R2 = R1);

2. safety games (same as the reachability game, with player roles interhanged);
3. SIAS games (∀n : Pn is an avoider);
4. RAS games (∀n : Pn is a reacher). 5

The most general MPRS game involves N1 reachers and N2 avoiders; we can have
more than one winners (e.g., if Pm and Pn are reachers, both win if the token enters
some v ∈ Rm ∩Rn 6= ∅) and the same is true for losers.

It is easily checked that every σ̂ =
(
σ̂1, ..., σ̂N

)
which is a NE of the Qn’s is also

a NE of the Q̃n’s. Hence, by Theorem 2.1, we have the following.

Corollary 1. Every qualitative MPRS game has a deterministic memoryless NE.

5Note that, while the RAS game can be seen as a variant of the classic reachability game, it
is not a generalization thereof, because it does not involve a player with safety objectives [1, 2].

Similarly, the classic safety game is not a SIAS game.
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