
Dynamic Games and Applications
https://doi.org/10.1007/s13235-021-00385-0

Some Game-Theoretic Remarks on Two-Player Generalized
Cops and Robbers Games

Athanasios Kehagias1 · Georgios Konstantinidis1

Accepted: 18 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, we study the two-player generalized cops and robbers (GCR) games introduced
by Bonato andMacGillivray. Our main goals are to provide: (a) a game-theoretic formulation
of GCR and (b) a self-contained game-theoretic proof that GCR has a value and an optimal
strategy profile. To achieve our goals, we first formulate GCR (and CR as a special case)
as a zero-sum stochastic game. Then we study a Vertex Labeling (VL) algorithm and prove
it computes the value of the GCR game (for every starting “condition”) and that the vertex
labels can be used to specify a positional deterministic optimal strategy for each player. We
also compare our game-theoretic analysis to some of the usual graph theoretic/combinatorial
approaches to CR/GCR.

Keywords Cops and robbers · Pursuit evasion

1 Introduction

In this paper, we present a game-theoretic analysis of the two-player generalized cops and
robbers games (henceforthGCR) introduced byBonato andMacGillivray in [5]. GCR (which
includes the “classic” cops and robbers (CR) game as a special case) can be understood as a
general framework for pursuit games on graphs. Our main goals are:

1. to provide a game-theoretic formulation of GCR;
2. to prove in a game-theoreticmanner that GCR has a value and an optimal strategy profile.

Before presenting our own contribution in more detail, let us briefly discuss previous
approaches to CR and GCR. “Classic” CR was introduced in [18] and [19–21] and has been
the subject of intense research ever since. A relatively recent review of the literature appears in
the excellent book [4]; additional references can be found in [6,8,16]. As already mentioned,
Bonato and MacGillivray [5] introduced GCR games, a very broad generalization of classic
CR.

In almost all CR/GCR literature, a graph theoretic and/or combinatorial approach is used;
as far as we are aware, very few authors deal with the game-theoretic aspects (such as value,

B Athanasios Kehagias
kehagiat@gmail.com

1 Aristotle University Thessaloniki, Thessaloniki, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s13235-021-00385-0&domain=pdf
http://orcid.org/0000-0002-7703-3658

Dynamic Games and Applications

minimax, Nash equilibria, etc.) of classic CR, CR variants or GCR. This has the following
consequences1.

1. Typically, a payoff function is not defined for either the CR and GCR games. Similarly,
strategies are oftenmentionedwithout being formally defined.Consequently, the existence
and computation of optimal strategies cannot be established in the standard game-theoretic
manner.

2. A key concept in CR/GCR is the capture time. As we will show in the sequel, this has a
simple game-theoretic interpretation: It is the value of CR/GCR, if this is appropriately
formulated as a zero-sum game. In most of the existing literature, this connection is not
pointed out.

In Sect. 4, we will elaborate on the above themes and provide specific examples from three
important papers [2,5,9].

We believe that a game-theoretic formulation will put the existing CR/GCR work on a
firmer basis. In addition, we hope that the infusion of “classic” game-theoretic concepts into
the CR literature will provide new methods of analysis and lead to new insights. We will
elaborate on this theme in Sect. 5.

To obtain the desired game-theoretic analysis, we start by formulating GCR (and CR as a
special case) as a zero-sum stochastic game. The first step to this end is the definition of an
appropriate payoff function. Having defined GCR as a stochastic game, we could establish
the existence of value and optimal strategies using standard results (e.g., the ones contained in
[7]) from stochastic game theory. However we have chosen another route and have obtained
a self-contained game theoretic solution of GCR.2

Namely, we study a Vertex Labeling (VL) algorithm (introduced in [9] for CR and then
extended in [5] for GCR) and prove some of its properties. We then use these properties
to establish that the VL algorithm actually computes the value of the GCR game (for every
starting “condition”) and that the vertex labels can be used to specify a positional deterministic
optimal strategy for each player3. We repeat that our analysis is entirely self-contained, with
one exception: our Proposition 2.18 is the well-known (and easily proved) theorem about
equivalence of value and Nash equilibrium in zero-sum games.

The rest of this paper is organized as follows. In Sect. 2, we present definitions and
notations which will be used in the sequel. In Sect. 3, we solve the GCR game, i.e., we give
a self-contained proof that the VL algorithm computes the value and optimal strategies. In
Sect. 4, we discuss the connection of previous analyses of both GCR and classic CR to our
own. We summarize and conclude in Sect. 5.

2 Preliminaries

2.1 Informal Description of the GCR Game

We first provide an informal description of the GCR game. This description is inspired by the
one given in [5] but differs in several respects. To motivate our description, recall the basic
elements of the classic CR game. CR is played on an undirected, simple, finite graph G, in

1 Let us add that the following remarks apply (to a certain extent) even to the simpler, original version of
CR/GCR which is concerned with winning (i.e., capturing/evading) rather than time optimal strategies.
2 We mention, for the sake of completeness, that yet another possibility is the formulation and solution of
GCR as an extensive form game.
3 It is worth noting that the VL algorithm is actually a special form of value iteration.

Dynamic Games and Applications

discrete time steps (turns) and involves two players: the cop (or pursuer) and the robber (or
evader). At every turn, each player is located on a vertex v of G, and a single player can
move to a new location (a vertex v′ adjacent to v). The cop wins if he “captures” the robber,
i.e., if at some turn they are both located in the same vertex4.

The generalized CR game (GCR game) can be informally described as follows. It involves
two players, the pursuer and the evader; the game is played in turns; in each turn a single
player can (subject to certain restrictions) move between elements of a finite set, resulting in
a new “configuration” of player locations; there is a set of target (“capture”) configurations;
the pursuer wins if a target configuration is reached and the evader wins otherwise.

It is easy to see that the classic CR is a special case of GCR game. As explained in [5]
(where details and references are provided) the definition of GCR games also encompasses
the following games: distance-k cops and robbers, tandem-win cops and robbers, cops and
robbers with traps, eternal domination, revolutionaries and spies, seepage and many more.

2.2 Formal Description of the GCR Game

We give a formal description (similar but not identical to the one in [5]) of the GCR game.

2.2.1 General Rules

A GCR game involves two players, P1 (pursuer) and P2 (evader); for n ∈ {1, 2}, Pn’s
possible locations are the elements of a finite set V .

A nonterminal game state (or position) is a triple
(
x1, x2, p

)
where (for n ∈ {1, 2})

xn ∈ V indicates Pn’s location and p indicates the single player who currently “has the
move” (i.e., can change his location). The set of all nonterminal game states is

S = V 1 × V 2 × {1, 2} .

Wewill also use a terminal state τ , so that the full state set is S = S∪{τ }. The game starts at
a prespecified initial state s0 ∈ S and is played in turns; in each turn, a single player moves
by the movement rules described in Sect. 2.2.2. A target set Sc ⊆ S is given; Sc is the set of
capture states. The set of noncapture states is Snc = S\Sc. So, finally we have the partitions

S = Snc ∪ Sc, S = Snc ∪ Sc ∪ {τ } .

We will also need the sets

∀n ∈ {1, 2} : Sn = {
s = (

x1, x2, n
) : x1, x2 ∈ V

} ;
i.e., Sn is the set of states in which Pn has the move. This results in another partition of S:

S = S1 ∪ S2.

It is assumed that both players have perfect information, i.e., at every turn of the game they
have complete knowledge of the way the game has been played so far.

Example 2.1 In the CR game, P1 is the cop and P2 is the robber. The location sets are
V 1 = V 2 = V , the vertex set of a graph G = (V , E). The nonterminal state set is

S = {(
x1, x2, n

) : x1, x2 ∈ V , n ∈ {1, 2}} .

4 Note that in the usual CR description time is counted in rounds, where each round encompasses (in our
terminology) one cop and one robber turn. The two approaches are essentially equivalent.

Dynamic Games and Applications

The capture set Sc is

Sc = {(
x1, x1, n

) : x1 ∈ V , n ∈ {1, 2}} .

This is almost exactly the classic CR game, with one difference: we omit the classic “place-
ment phase” in which first the cop and then the robber choose initial positions. We assume
instead that both initial positions (as well as the first player to move) are given by the pre-
specified initial state s0 = (

x10 , x
2
0 , n0

)
.

2.2.2 Movement Rules

At each turn, a player can change his location subject to some movement rules, which are
specific to each particular GCR game. For example, in the classic CR game each player can
move from his current vertex to any adjacent vertex (or stay in place).

To specify movement rules, we will often use the following standard game-theoretic
notation: for each n ∈ {1, 2} , we use −n to indicate the index of the “other player.” For
example, suppose player Pn has location xn , then the “other” player is P−n and has location
x−n .

We have already mentioned that each game state specifies which player makes the next
move. Unlike both classic CR and the GCR of [5] , we do not demand that the players
alternate in taking moves; in making a move, a player may take the game to a state in which
he again has the move.

For every state s = (
xn, x−n, n

)
, there exists a nonempty set of possible next moves

for Pn (the player who has the move). To each such move corresponds a unique next state
and conversely. Hence we fully describe possible next moves from state s by the set N (s)
of possible next states. For instance, if s = (

xn, x−n, n
) ∈ S then every

(
yn, y−n,m

) ∈
N

(
xn, x−n, n

)
must satisfy two conditions: (a) yn is a possible next move of Pn from xn

and (b) y−n = x−n .
We assume that the GCR game is played for an infinite number of turns. That is, even

after a capture state is reached, the game will continue ad infinitum, but in a trivial manner.
Namely, in every GCR game the only successor of a capture state is the terminal state:

s ∈ Sc ⇒ N (s) = {τ }
which can only transit into itself

N (τ) = {τ } .

In short, the movement rules of a particular GCR game can be encoded by

N = (N (s))s∈S ,

the collection of possible next moves of each state. Note thatN also specifies (implicitly) the
state set S which in turn specifies the location sets V 1, V 2.

Example 2.2 Continuing from Example 2.1, in the CR game played on the graphG = (V , E)

we have

∀s = (
xn, x−n, n

) ∈ S : N (s) = {(
z, x−n,−n

) : {
xn, z

} ∈ E
}
and N (τ) = {τ } .

Dynamic Games and Applications

2.2.3 Payoff Function

According to [5], the pursuer wins iff a capture state is reached. We will now express this in
terms of a total payoff function, which is itself defined in terms of a turn payoff function.

Definition 2.3 The turn payoff function q (s) specifies the amount gained by the evader (and
lost by the pursuer) at every turn of GCR in which the current state is s; it is defined by

q (s) =
{
1 iff s ∈ Snc
0 iff s ∈ Sc ∪ {τ } . (1)

Definition 2.4 The total payoff function Q (s0s1...) specifies the amount gained by the evader
(and lost by the pursuer) in a play of GCR with state sequence s0s1...; it is defined by

Q (s0s1s2...) =
∞∑

t=0

q (st) . (2)

The following remarks can be made regarding the significance of the payoff functions.

1. When the game goes through the state sequence s0s1... , clearly Q (s0s1s2...) is the capture
time, i.e., the number of turns until capture is affected; if Q (s0s1s2...) = ∞ then capture
is never affected.

2. It is also clear that, by the above payoff functions, GCR is a zero-sum game. The pursuer
wants to minimize capture time and the evader wants to maximize the same quantity.

3. By the above formulation, the pursuer not only wants to capture the evader in finite time
(and hence win); he wants to capture in the shortest possible time.

2.2.4 The GCR Game Family

Keeping in mind all of the above, we have the following two definitions.

Definition 2.5 A GCR game is a tuple
(
N, S1, S2, Sc, s0

)
where

1. N describes the movement rules (and implicitly the sets S, V 1, V 2);
2. S1 and S2 describe which player has the move in every state;
3. Sc describes the capture (winning) condition;
4. s0 is the initial state.

Definition 2.6 A GCR game family is a tuple
(
N,S1, S2, Sc

)
.

By the above definitions, given the game family
(
N,S1, S2, Sc

)
and a specific initial state

s0 ∈ S, we obtain a particular game
(
N, S1, S2, Sc, s0

)
. In other words, every element of the

family
(
N,S1, S2, Sc

)
is a game played by the same rules but from a different initial state. In

Sect. 3, we will mostly prove properties of the entire family
(
N,S1, S2, Sc

)
which will also

imply corresponding properties of all specific games
(
N, S1, S2, Sc, s0

)
.

Recall that a stochastic game [7] is a sequence of one-turn games; for every one-turn
game played, the players receive their turn payoff and the next game to be played is selected,
depending on the current game and players’ actions; the total payoff to each player is the sum
of his turn payoffs. Obviously, a GCR game family is a stochastic game (in fact, a special
case in which player actions and transitions to the next state are deterministic) and we could
obtain the full GCR solution by invoking well-known stochastic games results [7] . However,
we will avoid this route since, as mentioned, we want to present a self-contained solution.

Dynamic Games and Applications

Atfirst sight, our definition ofGCRgames and the one given in [5] differ in several respects.
Most importantly, the GCR game of [5] starts with a “placement phase,” in which first P1

and then P2 chooses his initial location; this yields an initial state s0 and the remaining part
of the Bonato–MacGillivray game is basically our

(
N, S1, S2, Sc, s0

)
game. We will argue

in Sect. 4 that this and several other differences are not significant and that our results also
apply to the games defined in [5].

2.3 Additional Game-Theoretic Concepts

We conclude this section by presenting some additional standard game theoretic concepts
which will prove useful in the sequel. In what follows we assume that a game family(
N,S1, S2, Sc

)
has been specified, so it is usually omitted from the notation. Also, in what

follows N0 denotes the set {0, 1, 2, ...}.
Definition 2.7 A history h = s0s1... is a finite or infinite sequence of states.

Definition 2.8 We define the following sets of histories

the set of finite length histories : H∗ = {h : h = s0s1s2...sT , T ∈ N0, ∀t : st ∈ S} ,

the set of infinite length histories : H∞ = {h : h = s0s1s2..., ∀t : st ∈ S} .

Definition 2.9 A (pure or deterministic) strategy σ : H∗ → S is a function which maps finite
histories to next states.

We could have defined randomized (more precisely: behavioral) strategies, but these
will not be needed in our analysis, since the GCR game has perfect information. Also, in
the context of stochastic games, the usual definition specifies a strategy as a function which
maps finite histories to nextmoves. However, since the GCR game evolves deterministically,
a move specifies the next state; hence, our definition is sufficient (and more convenient) for
our purposes.

Definition 2.10 A strategy σm is called positional if it depends only on the current state st ,
but neither on previous states nor on current time t , i.e.,

∀h = s0s1...st , h
′ = s′

0s
′
1..., s

′
t ′ : st = s′

t ′ = s ⇒ σm (h) = σm (
h′) = σm (s) .

A strategy is called nonpositional iff it is not positional.

Notation 2.11 H
(
σ 1, σ 2|N, S1, S2, Sc, s0

)
denotes the infinite history s0s1s2... generated

when: (i) the game is
(
N, S1, S2, Sc, s0

)
and (ii) for n ∈ {1, 2}, Pn uses σ n. When(

N,S1, S2, Sc
)
is understood from the context, we simply write H

(
σ 1, σ 2|s0

)
.

Notation 2.12 T
(
σ 1, σ 2|N, S1, S2, Sc, s0

)
denotes the capture time, i.e., the first (actu-

ally the only) time at which a capture state s ∈ Sc is reached when: (i) the game is(
N, S1, S2, Sc, s0

)
and (ii) for n ∈ {1, 2}, Pn uses σ n. When

(
N,S1, S2, Sc

)
is understood

from the context, we simply write T
(
σ 1, σ 2|s0

)
.

Remark 2.13 It is obvious that

T
(
σ 1, σ 2|N, S1, S2, Sc, s0

) = Q
(
H

(
σ 1, σ 2|N, S1, S2, Sc, s0

))
.

Dynamic Games and Applications

We conclude by presenting several well-known definitions and facts about zero-sum games,
in a notation specific to a GCR game. What follows concerns a specific game

(
N,S1, S2, Sc

)
,

which we assume known and (for brevity) do not include in the notation.

Definition 2.14 For every s we define the following two quantities

lower value of
(
N,S1, S2, Sc

) : T− (s) = sup
σ 2

inf
σ 1

T
(
σ 1, σ 2|s) ,

upper value of
(
N,S1, S2, Sc

) : T+ (s) = inf
σ 1

sup
σ 2

T
(
σ 1, σ 2|s) .

Proposition 2.15 For every s we have

T− (s) = sup
σ 2

inf
σ 1

T
(
σ 1, σ 2|s) ≤ inf

σ 1
sup
σ 2

T
(
σ 1, σ 2|s) = T+ (s) .

Definition 2.16 We say that the game
(
N,S1, S2, Sc

)
has a value T̂ (s) iff

T− (s) = sup
σ 2

inf
σ 1

T
(
σ 1, σ 2|s) = inf

σ 1
sup
σ 2

T
(
σ 1, σ 2|s) = T+ (s) .

in which case we define T̂ (s) to be

T̂ (s) = sup
σ 2

inf
σ 1

T
(
σ 1, σ 2|s) = inf

σ 1
sup
σ 2

T
(
σ 1, σ 2|s) .

Definition 2.17 We say that the game
(
N,S1, S2, Sc, s

)
has optimal strategies σ̂ 1, σ̂ 2 iff

∀σ 2 : T
(
σ̂ 1, σ 2|s) ≤ T

(
σ̂ 1, σ̂ 2|s) ,

∀σ 1 : T (
σ 1, σ̂ 2|s) ≥ T̂

(
σ̂ 1, σ̂ 2|s) .

We also say that
(
σ̂ 1, σ̂ 2

)
is an optimal strategy pair (or profile).

Proposition 2.18 The game
(
N,S1, S2, Sc, s

)
has value T̂ (s) and optimal strategies σ̂ 1, σ̂ 2

iff

∀σ 2 : T
(
σ̂ 1, σ 2|s) ≤ T̂ (s) ,

∀σ 1 : T (
σ 1, σ̂ 2|s) ≥ T̂ (s) .

3 Solution of the GCR Game

In Sect. 2.2, we have formulated the GCR game family
(
N,S1, S2, Sc

)
as a two-player, zero-

sum stochastic game. By “solving
(
N,S1, S2, Sc

)
” we mean proving that, for every s ∈ S,

the game
(
N,S1, S2, Sc, s

)
has value and optimal strategies, as well as computing these

quantities.
We will now provide a self-contained solution based on a vertex labeling algorithm (VL

algorithm) obtained by modifying similar algorithms presented in [9] (for the CR game) and
[5] (for the GCR game). Our analysis is more detailed than the ones presented in [5,9], mainly
because we present in detail the game-theoretic aspects.

Dynamic Games and Applications

Algorithm 1 : The vertex labeling algorithm

Require: The game family
(
N, S1, S2, Sc

)
.

1: for s ∈ S do
2: if s ∈ Sc then
3: T 0 (s) = 0
4: else
5: T 0 (s) = ∞
6: end if
7: end for
8: for i = 1, 2, .. do
9: for s ∈ S do
10: if T i−1 (s) < ∞ then
11: T i (s) = T i−1 (s)
12: else if s ∈ S1 then
13: T i (s) = 1 + mins′∈N (s) T

i−1 (
s′

)

14: else if s ∈ S2 then
15: T i (s) = 1 + maxs′∈N (s) T

i−1 (
s′

)

16: end if
17: end for
18: end for

The VL algorithm produces, for every s ∈ S, an infinite sequence

T 0(s), T 1(s), T 2(s),

Note that, for any s, theVL algorithm changes V i (s) atmost once (lines 10-11). Hence, either
T i (s) is never changed through the run of the algorithm and then, for all i , T i (s) ∈ {0,∞};
or T i (s) starts equal to ∞ and is changed once to a finite nonzero value. In other words, the
only two forms which

(
T i (s)

)
i∈N0

can take are:

1. for every i ∈ N0, T i (s) has the same value (which is either 0 or ∞),
2. there exists some n ∈ N such that T i (s) = ∞ for i ∈ {0, ..., n − 1} and T i (s) = m ∈ N

for i ∈ {n, n + 1, ...}.
Hence the following are well defined (with the understanding that min ∅ = ∞).

Definition 3.1 For all s ∈ S we define

T (s) = lim
m→∞ Tm(s), T̃ (s) = min{i : T i (s) < ∞}.

We will show that, for all s ∈ S, T (s) = T̃ (s). I.e., if Tm (s) attains a finite value at the
i-th iteration of the VL algorithm, this value equals both i and limm→∞ Tm(s). We need the
following auxiliary proposition.

Proposition 3.2 For all s ∈ S and for all n ∈ N0 we have
(
T̃ (s) = n

) ⇒
(
∀i ≥ n : T i (s) = T (s) ≤ n

)
. (3)

Proof Let us first prove that, for all s ∈ S and n ∈ N0, we have
(
T̃ (s) = n

) ⇒ T n (s) ≤ n. (4)

Clearly (4) holds for n = 0; assume it holds for n ∈ {0, 1, ..., k}. Now, if for some s we have
T̃ (s) = k + 1 then T k (s) = ∞ and T k+1 (s) < ∞. Using lines 10-16 of the VL algorithm

Dynamic Games and Applications

we get:

T k+1 (s) = 1 + T k (
s′)

for some s′ ∈ N (s) which satisfies T k
(
s′) = m < ∞. But then T̃

(
s′) ≤ k which, by the

inductive assumption, implies T k
(
s′) ≤ k. Hence T k+1 (s) ≤ k + 1 and we have proved (4)

for every n ∈ N0. Now (3) follows from lines 10-11 of the VL algorithm. ��

Proposition 3.3 For every s ∈ S we have: T (s) = T̃ (s) .

Proof We partition S into the following two sets

Sa = {
s : T̃ (s) = ∞}

, Sb = {
s : T̃ (s) < ∞}

.

If s ∈ Sa , then T̃ (s) = ∞; then

{i : T i (s) < ∞} = ∅ ⇒
(
∀i : T i (s) = ∞

)
;

hence T (s) = ∞. We conclude that

∀s ∈ Sa : T (s) = T̃ (s) . (5)

To complete the proof, we must show:

∀s ∈ Sb : T (s) = T̃ (s) . (6)

To this end we will show that, for all n ∈ N0, we have

∀s ∈ Sb : T̃ (s) = n ⇒ T (s) = T n (s) = T n+1 (s) = ... = n. (7)

Now, (7) clearly holds for n = 0. Suppose it holds for n ∈ {0, 1, ..., k}. Take any state s ∈ Sb
such that T̃ (s) = k + 1. Then we have

T k (s) = ∞, (8)

T k+1 (s) = T k+2 (s) = ... = T (s) = m ≤ k + 1 < ∞. (9)

1. If s ∈ S1, (8)–(9) imply that there exists some s′ ∈ N (s) such that

T k (
s′) = min

u∈N (s)
T k (u) and T k+1 (s) = 1 + T k (

s′) .

Also (8) implies that minu∈N (s) T k−1 (u) = ∞ and hence

T k−1 (
s′) = ∞. (10)

But T k
(
s′) = T k+1 (s) − 1 < ∞; so T̃

(
s′) = k and by the inductive assumption, we

have

T
(
s′) = T k (

s′) = T k+1 (
s′) = ... = k ⇒

T (s) = T k+1 (s) = T k+2 (s) = ... = 1 + T k (
s′) = 1 + k.

2. If s ∈ S2, (9) implies that maxu∈N (s) T k (u) < ∞; hence for all u ∈ N (s) we have
T k (u) < ∞. On the other hand, (8) implies that there exists some s′ ∈ N (s) such that

Dynamic Games and Applications

T k−1
(
s′) = ∞. Hence T̃

(
s′) = k. We also have

T k+1 (s) = m < ∞ ⇒
(
∀u ∈ N (s) : T k (u) < ∞

)

⇒ (∀u ∈ N (s) : T̃ (u) ≤ k
)

⇒
(
∀u ∈ N (s) : T (u) = T k (u) ≤ k

)

(the last line following from Proposition 3.2). Hence s′ achieves the maximum:

T k (
s′) = max

u∈N (s)
T k (u) = k

and so

T (s) = T k+1 (s) = T k+2 (s) = ... = 1 + T k (
s′) = 1 + k.

Thus we have proved that (7) holds for every n ∈ N0, and we are done. ��
We also have the following useful and easily provable proposition.

Proposition 3.4 The collection
(
T (s)

)
s∈S satisfies the following:

∀s ∈ S1\Sc : T (s) = 1 + min
s′∈N (s)

T
(
s′) , (11)

∀s ∈ S2\Sc : T (s) = 1 + max
s′∈N (s)

T
(
s′) , (12)

Proof Simply take the limits in lines 13 and 15 of the VL algorithm. ��
The system of Eqs. (11)–(12) is the perfect information version of the optimality equations
which play a central role in stochastic games [7].
We will next show that, for every s ∈ S, T (s) is the value of the game

(
N, S1, S2, Sc, s

)
.

Furthermore, we will use the collection
(
T (s)

)
s∈S to define optimal strategies for P1 and

P2.
To avoid ambiguities in the definition of the optimal strategies, we modify the functions

argmin and argmax as follows. Given the collection of successor states N = (N (s))s∈S , we
assume that S is equipped with a fixed total order. Since also S is a finite set, it follows that,
for every s ∈ S, expressions such as “the first element of N (s) such that ...” are uniquely
defined. Now, for every function f : S → R ∪ {∞}, we (re)define argmin and argmax:

∀s ∈ S : arg min
s′∈N (s)

f
(
s′) = “the first element u ∈ N (s) s.t. f (u) = min

s′∈N (s)
f
(
s′) ”,

∀s ∈ S : arg max
s′∈N (s)

f
(
s′) = “the first element u ∈ N (s) s.t. f (u) = max

s′∈N (s)
f
(
s′) ”.

Definition 3.5 Given the game family
(
N, S1, S2, Sc

)
, with labels

(
T (s)

)
s∈Sc , we define the

following two strategies

A pursuer strategy σ̂ 1 : ∀s ∈ S1\Sc : σ̂ 1 (s) = argmin s′∈N (s)T
(
s′) ,

An evader strategy σ̂ 2 : ∀s ∈ S2\Sc : σ̂ 2 (s) = argmax s′∈N (s)T
(
s′) .

Proposition 3.6 Given the game family
(
N, S1, S2, Sc

)
, for every s ∈ S: T (s) is the value of

the game
(
N, S1, S2, Sc, s

)
, and σ̂ 1, σ̂ 2 are optimal positional strategies.

Dynamic Games and Applications

Proof Assuming
(
N, S1, S2, Sc

)
given and fixed, we drop it from all subsequent notation.

It follows immediately from Definition 3.5 that σ̂ 1, σ̂ 2 are positional strategies. Given
Proposition 2.18, to prove the rest of the theorem it suffices to show that

∀s ∈ S : ∀σ 2 : T
(
σ̂ 1, σ 2|s) ≤ T (s), (13)

∀s ∈ S : ∀σ 1 : T
(
σ 1, σ̂ 2|s) ≥ T (s). (14)

Part I Take any s such that T (s) < ∞.

1. First we show that σ̂ 1 satisfies (13), by showing that, for every n ∈ N0 we have:

∀s : T (s) = n ⇒ (∀σ 2 : T (
σ̂ 1, σ 2|s) ≤ T (s)

)
. (15)

Obviously (15) holds when T (s) = 0 (because then s ∈ Sc and T
(
σ 1, σ 2|s) = 0 for all

σ 1, σ 2). Assume it holds for all n ∈ {0, 1, ..., k} and pick any s such that T (s) = k + 1.

(a) Suppose s ∈ S1. From (11), we have

k + 1 = 1 + min
s′∈N (s)

T (s′) ⇒ min
s′∈N (s)

T (s′) = k.

Hence, for s = σ̂ 1 (s) = argmins′∈N (s) T
(
s′) we have T (s) = k. By the inductive

assumption, we then have

∀σ 2 : T
(
σ̂ 1, σ 2|s) ≤ T (s) = k.

In other words, if P1 uses σ̂ 1 in the game
(
N, S1, S2, Sc, s

)
then he will achieve

capture in at most k moves, no matter how P2 plays. Since s ∈ N (s), P1 can also
use σ̂ 1 in the game

(
N, S1, S2, Sc, s

)
. This means he will move from s to s and then

will play exactly as in game
(
N, S1, S2, Sc, s

)
. This ensures capture in at most k + 1

moves, no matter how P2 plays, i.e.,

∀σ 2 : T
(
σ̂ 1, σ 2|s) ≤ k + 1.

Therefore σ̂ 1 satisfies (13) for all s ∈ S1 with T (s) = k + 1.
(b) Suppose s ∈ S2. From relation (12), we have

k + 1 = 1 + max
s′∈N (s)

T (s′) ⇒ max
s′∈N (s))

T (s′) = k.

Thus, whatever the initial move by player P2 in game
(
N, S1, S2, Sc, s

)
, the resulting

state s will satisfy T (s) ≤ k. Again, by the inductive assumption, we have

∀σ 2 : T
(
σ̂ 1, σ 2|s) ≤ T (s) ≤ k

and hence, in the game
(
N, S1, S2, Sc, s

)
, P1 can use σ̂ 1 and capture in at most k

moves (no matter what P2 plays). We then get, by the same reasoning as above, that

∀σ 2 : T
(
σ̂ 1, σ 2|s) ≤ k + 1.

Therefore σ̂ 1 satisfies (13) for all s ∈ S2 with T (s) = k + 1.

2. Next we show inductively that σ̂ 2 satisfies (14). I.e., we show that: for every n ∈ N0 we
have:

∀s : T (s) = n ⇒ (∀σ 1 : T (
σ 1, σ̂ 2|s) ≥ T (s)

)
. (16)

Dynamic Games and Applications

Obviously (16) holds when T (s) = 0. Assume it holds for all n ∈ {0, 1, ..., k} and pick
any s such that T (s) = k + 1.

(a) Suppose s ∈ S2. Similarly to the previous case, from (12) we get maxs′∈N (s) T (s′) =
k. Hence for s = σ̂ 2 (s) = argmaxs′∈N (s) T (s′) we have T (s) = k. By the inductive
assumption, we then have

∀σ 1 : T (
σ 1, σ̂ 2|s) ≥ T (s) = k.

Hence P2 using σ̂ 2 in the game
(
N, S1, S2, Sc, s

)
can ensure capture will take k

turns or more, no matter how P1 plays. Reasoning as previously, P2 using σ̂ 2 in(
N, S1, S2, Sc, s

)
can ensure capture will take k +1 turns or more, no matter how P1

plays, i.e.,

∀σ 1 : T (
σ 1, σ̂ 2|s) ≥ k + 1.

Therefore σ̂ 2 satisfies (14) for all s ∈ S2 with T (s) = k + 1.
(b) Finally, suppose s ∈ S1; by an argument similar to that of case 1.b above we get that

∀σ 1 : T (
σ 1, σ̂ 2|s) ≥ k + 1.

Therefore σ̂ 2 satisfies (14) for all s ∈ S1 with T (s) = k + 1.

We have completed the proof of (13)–(14) for all s such that T (s) < ∞.
Part II Now take any state s such that T (s) = ∞. Then we clearly have

∀s ∈ S : ∀σ 2 : T
(
σ̂ 1, σ 2|s) ≤ T (s) = ∞;

which proves (13). To prove (14), first set s0 = s and then, for any pursuer strategy σ 1, let

s0s1s2... = H
(
σ 1, σ̂ 2|s0

)
.

Wewant to show that s0s1s2... never reaches a capture state.Wewill actually prove something
(apparently) stronger:

∀t ∈ N0, st ∈ H(σ 1, σ̂ 2|s0) : T (st) = ∞. (17)

Suppose (17) is false and let sk+1 be the first element of s0s1s2... with T (st) < ∞. I.e.,

∀t ≤ k : T (st) = ∞ and T (sk+1) = m < ∞. (18)

If sk ∈ S2, then sk+1 = σ̂ 2 (sk) = argmaxs′∈N (sk) T
(
s′) and

∞ = T (sk) = 1 + T (sk+1) ⇒ T (sk+1) = ∞. (19)

If sk ∈ S1, then clearly (for any σ 1) sk+1 ∈ N (sk). Since T (sk+1) = m < ∞ we will have

T (sk) = 1 + min
s′∈N (sk)

T
(
s′) ≤ 1 + T (sk+1) = 1 + m < ∞. (20)

In both (19) and (20), we have a contradiction. We conclude that we cannot have T (st) < ∞
for any t ; consequently (17) is true. Hence we have completed the proof of (13)–(14) for all
s such that T (s) = ∞. ��
Remark 3.7 It is worth noting that the VL algorithm implements both Backward Induction
and Value Iteration.

The following generalizes the well-known concepts of cop-win and robber-win graphs.

Dynamic Games and Applications

Definition 3.8 The game
(
N, S1, S2, Sc, s

)
is called pursuer-win (P-win) iff P1 has a strategy

σ 1 which effects capture for every evader strategy σ 2;
(
N, S1, S2, Sc, s

)
is called evader-win

(E-win) iff P2 has a strategy σ 2 which avoids capture for every pursuer strategy σ 1. In other
words

(
N, S1, S2, Sc, s

)
is P-win iff : ∃σ 1 : ∀σ 2 : T (

σ 1, σ 2|s) < ∞, (21)
(
N, S1, S2, Sc, s

)
is E-win iff : ∃σ 2 : ∀σ 1 : T (

σ 1, σ 2|s) = ∞ (22)

Note that the opposite of (21) is

∀σ 1 : ∃σ 2
σ 1 : T (

σ 1, σ 2
σ 1 |s

) = ∞, (23)

(i.e., the evader strategy σ 2
σ 1 which ensures no capture takes place will in general depend

on the pursuer strategy σ 1) which is not equivalent to (22). Hence we cannot automatically
conclude that a game is either P-win or E-win. But this can be proved, as seen next.5

Proposition 3.9 Every
(
N, S1, S2, Sc, s

)
is either P-win or E-win.

Proof The game
(
N, S1, S2, Sc, s

)
has value T (s) and optimal strategies σ̂ 1, σ̂ 2. We have

two cases: either T (s) < ∞ or T (s) = ∞. If T (s) < ∞ then we also have

∀σ 2 : T (
σ 1, σ 2|s) ≤ T (s) < ∞ ⇒ (

N, S1, S2, Sc, s
)
is P-win.

If, on the other hand, T (s) = ∞ then we also have

∀σ 1 : T (
σ 1, σ 2|s) = T (s) = ∞ ⇒ (

N, S1, S2, Sc, s
)
is E-win.

This completes the proof. ��

4 Comparison to Other Approaches

Our analysis of Sect. 3 is heavily inspired by [5,9]. Let us compare these two papers and
also the related [2] to the game-theoretic approach. These excellent papers have provided the
inspiration and foundation for our own approach.

4.1 Hahn andMacGillivray

In [9] Hahn and MacGillivray study, a CR version with two generalizations of the classic
game: (i) the game is playedon a directed graph and (ii)more than one cops and/or robbers (“k-
cop, l-robber”) may be involved6. On the other hand, following the classic CR formulation,
they count time (and thus capture time) in rounds; one round includes one move by each
cop and robber token. While we consider the single cop and single robber case, our own
formulation can easily accommodate all of the above.

Next we describe two more substantial differences between Hahn and MacGillivray’s
approach and our own. These are really differences between the games being studied in each
case. Namely, in [9]:

5 This point is also raised in [10], where an interesting alternative approach is proposed to characterize
robber-win graphs.
6 Let us stress that they still deal with a two-player game: there is a single cop player and a single robber
player, but each can control one or more (cop or robber) tokens.

Dynamic Games and Applications

1. it is assumed that the two players move alternately and the game always starts with the
cop moving first (once again this follows the classic CR game formulation);

2. the game starts with an empty graph, the cop’s first move is to place his token on some
vertex and the robber’s first move is to place his own token; these two moves constitute
the “placement round”.

However both of the above differences can be easily accommodated by our approach.
Obviously, removing the “alternating moves” assumption makes our analysis more general.
To accommodate the “placement round,” we can use a one-round game which consists of
two turns: first the cop chooses a vertex x10 , then the robber chooses a vertex x20 and then the
CR game is played according to our rules. At the game conclusion, the robber gains (the cop
loses) T̂

(
x10 , x

2
0 , 1

)
payoff units, where T̂

(
z1, z2, 1

)
is the one computed for every vertex

pair
(
z1, z2

)
by the VL algorithm. Clearly the new game has a value which is

min
x10

max
x20

T̂
(
x10 , x

2
0 , 1

)
.

Hence the solution of our GCR game also provides the solution to Hahn and MacGillivray’s
(classic) CR game.

One of the main components of [9] is a vertex labeling algorithm very similar to our
own, which is used to compute optimal capture times (counted in rounds) and strategies. The
main properties of this algorithm are established in Lemma 4 of [9]. Both “strategy” and
“optimal strategy” are used informally in [9]. “Strategy” is not defined. “Optimal strategy”
for the cop is defined informally as follows: “a strategy from a configuration cxy [is] optimal
for the cop if no other strategy gives a win in fewer moves.” This needs some clarification:
cop strategies can give capture time better than optimal but only for some robber strategies.
Similar remarks can be made regarding the definition of optimal robber strategies.

On the other hand, in the game-theoretic approach “optimal strategy” is defined by first
defining “strategy” (as a function from histories to moves) and then providing an optimality
criterion, connected with “game value” (which is neither defined nor used in [9]). In the
context of CR and GCR, the appropriate definitions are Definitions 2.16 and 2.17 of our
Sect. 2.3.

However, the game-theoretic approach can be introduced in [9] with minor modifications.
For instance, their statement “the cop’s move will be to an x ′ ... from which, by the induction
hypothesis, the cop can win in t − 1 rounds” should be augmented by: “no matter how the
robber plays” 7. Similar remarks apply to other parts of [9].

4.2 Bonato andMacGillivray

As already stated, our main inspiration is [5], in which Bonato and MacGillivray generalize
the games and results of [9]. In place of “cop” and “robber,” they use the terms “pursuer” and
“evader.” “Alternating moves” and “placement round” are used in the same manner as in [9].
On the other hand, capture is understood in a more general sense; slightly paraphrasing [5],
the pursuer wins if, at any time-step, the current position of the game belongs to the subset
of final positions. Of course this is exactly analogous to our capture set Sc.

7 Of course this is just a verbal description of the sup and inf conditions of our Definition 2.16.

Dynamic Games and Applications

A vertex labeling algorithm is also provided in [5]; it counts time in turns (not rounds)
and is essentially the same as our own VL Algorithm8. However, rather than proving directly
the properties of their algorithm, the authors proceed in the following manner.

1. They construct, independently of the labeling algorithm, a sequence of orderings �0, �1,
... on pursuer and evader positions.

2. They prove that these converge to an ordering �.
3. They relate winning and “optimal” game duration to (�i)i∈N0

and � (their Theorem 3.1
and Corollary 3.2).

4. Finally they relate state labels to the orderings (�i)i∈N0
(Theorem 3.3).

Hence the vertex labeling algorithm is peripheral, rather than central, to the arguments
of [5]. “Strategy,” “value” and “optimality” are not formally defined. An informal definition
of optimality is that “the pursuer’s optimal strategy is to move so that the game is over as
quickly as possible, and the evader’s optimal strategy is to move so the game lasts as long
as possible”. Similarly to [9], this definition does not clarify the role of the “other” player’s
strategy. From the game-theoretic point of view, the definition should be modified as follows:
“the pursuer’s optimal strategy is to move so that the longest possible duration of the game
is as short as possible” and a similar modification should be applied to the definition of the
evader’s optimal strategy; these are verbal descriptions of the infσ 1 supσ 2 and supσ 2 infσ 1

conditions on capture time and a condition must be added regarding equality of infσ 1 supσ 2

and supσ 2 infσ 1 , as in our Definition 2.16.

4.3 Berarducci and Intrigila

The earliest investigation of time optimal CR strategies that we know of is the one presented
in [2] by Berarducci and Intrigila. They do provide a definition of strategies, both general and
positional. In their Remark 2.2, they apparently assume implicitly that an optimal solution
can be found by considering only positional strategies but they actually justify (post facto)
this assumption.

Interestingly, the results of [2] are established by using a sequence of setsW0,W1, ... , rather
than a labeling algorithm. The sequence is defined inductively: Their W0 is our capture set
Sc and, for each n,Wn is defined (their Definition 2.4) in a manner which strongly resembles
our VL Algorithm. The subsequent arguments (contained in their Lemmas 2.5-2.7) resemble
the analysis of our VL Algorithm. Their main results are the following.

1. The setWn is the set of all these starting states from which the cop can capture the robber
in n moves or less (their Lemma 2.5).

2. The sequence of setsWn converges to a setW which has the following property: for every
starting state s ∈ W the cop can capture the robber in a finite number of moves; for every
starting state s /∈ W the cop cannot capture the robber in a finite number of moves (their
Lemma 2.6).

3. Optimal cop and robber strategies are also defined in the proof of Lemma 2.6 and they
are, by their definition, positional.

While in the above results Berarducci and Intrigila make no explicit mention of the “other
player’s” strategy, the use of “can” implies that the cop has a strategy which guarantees
capture no matter how the robber plays. Similarly, the use of “cannot” implies that the
robber has a strategy which guarantees noncapture no matter how the cop plays.

8 There is one caveat: it is never specified in [5] whether once a state achieves a finite label can be subsequently
relabeled (it should not); this is probably an oversight in the description.

Dynamic Games and Applications

Keeping the above remarks in mind, the proof of the above results is very close to a
game-theoretic one. We believe that the important quantities are not the sets Wn but the sets
Un = Wn\Wn−1. While not explicitly stated, it follows from their proof that Un is the set of
initial states from which

1. the cop can capture the robber in at most n rounds, no matter how the robber plays;
2. but the robber can delay capture for at least n − 1 rounds, no matter how the cop plays.

In short, the analysis of [2] respects, at least implicitly, all the relevant game-theoretic
considerations and is also related to the previously mentioned vertex labeling algorithm. For
example, it is easy to prove that, reverting to our own terminology, the state s belongs to Un

iff T̂ (s) = n.

5 Concluding Remarks

We have presented a self-contained game-theoretic solution of the GCR game. Our main
tool is the VL algorithm which is based on similar algorithms introduced in [5,9]. Our main
contribution is the presentation in greater detail and precision of certain implicit assumptions
of [5,9]. Let us also mention that in a longer version of the current paper [14] we have
presented an alternative proof of our main result, which is not based on the VL algorithm.

We conclude the current paper by listing (i) further generalizations of the GCR game and
(ii) well-known families of games which contain GCR as a special case.
Generalizations of GCR The GCR game, as presented in both [5] and the current paper, is
a perfect information, two-person, zero-sum game. All of these aspects can be generalized.

1. Concurrent GCR A standard assumption of both classic CR and GCR is that a single
player moves in each turn of the game. An obvious generalization is to allow both players
to move concurrently. In this case, the game no longer has perfect information. It still has
a value which, however, will in general be achieved by randomized optimal strategies. An
exploration of this direction appears in [15].

2. Nonzero-sumGCRBymodifying the payoff function, we can obtain a two-player nonzero
sum CR game. For example, introducing “energy cost,” the robber’s payoff could be the
capture timeminus the distance he has travelled and the cop’s payoff could be the negative
of the sum of capture time and the distance he has traveled. Another example of a two-
player, nonzero-sum GCR game has been presented in [11]; it involves two selfish cop
players who attempt to catch a “passive” robber (i.e., the robber is not controlled by a
player but follows a predetermined path, known to both cop players); the capturing cop
player receives a higher payoff than the noncapturing one.

3. Multiplayer GCR The classic CR game and practically all its published variants are two-
player, zero -sum games; the same holds for the GCR of [5]. While such games may
involve more than one pursuer, all pursuers are controlled by a single player whose payoff
is given by a single function. On the other hand, in [12] we have studied an N -player (with
N ≥ 2), nonzero-sum version of the classic CR, the so-called selfish cops and adversarial
robber (SCAR) game. SCAR involves several selfish cops, each controlled by a separate
player; all cop players share the goal of catching the robber but each cop player has his
own payoff function which assigns a higher reward to the player who actually affects
the capture; the robber player wants, as in the classic CR game, to delay capture as long
as possible. We generalize this approach in [13], introducing N-player Generalized CR
Games.

Dynamic Games and Applications

Additional Game Families

1. Stochastic GamesAll of the above presented GCR games can be formulated as stochastic
games and, using standard results [7], the following can be shown for every GCR game:

(a) if it is zero-sum, it possesses a value and optimal strategies, which can be computed
by the Value Iteration Algorithm, a generalization of our VL algorithm;

(b) if it is nonzero-sum, it possesses at least one Nash Equilibrium in deterministic posi-
tional strategies [12,13].

2. Reachability games The two-player, zero-sum GCR game (understood in the sense of
either the current paper or [5]) can also be seen as a special type of reachability game
[3,17]. In a reachability game, the first player’s objective is to bring the game to a target
state and the second player’s objective is to keep the game away from all target states. This
is very similar to the GCR game except that no assumption is made regarding the players’
locations. Indeed, a reachability game can be represented by a tuple

(
N, S1, S2, S

)
where

N represents an abstract collection of successor states. Our solution of the GCR game
can be applied to any reachability game. However, the “usual” way to solve a reachability
game is by constructing a sequence of attractor sets; this approach is practically identical
to the one used in [2] to solve the classic CR game.

3. Graphical games Reachability games are perhaps the simplest example of infinite perfect
information games [1,3,17,22] which can also be understood as games in which two
or more players move a token along the edges of a graph (hence the term “graphical
games”). Various infinitary winning conditions can be used which, in general, depend on
some property of the entire game history (for example, Player 1 wins if a certain state is
visited infinitely often). In the most general setting, we can have games with any number
of players and nonzero-sum winning conditions.

Data availability statement This paper has no associated data and consequently there is no data to be made
available. Ath. Kehagias and G. Konstantinidis

References

1. Apt KR, Grädel E (2011) Lectures in game theory for computer scientists. Cambridge University Press,
Cambridge

2. Berarducci A, Intrigila B (1993) On the cop number of a graph. Adv Appl Math 14(4):389–403
3. Berwanger D (2013) “Graph games with perfect information.” Preprint
4. Bonato A, Nowakowski R (2011) The game of cops and robbers on graphs. American Mathematical

Society, USA
5. Bonato A, MacGillivray G (2017) Characterizations and algorithms for generalized Cops and Robbers

games. Contributions to Discrete Mathematics, vol.12
6. Chung TH, Hollinger GA, Isler V (2011) Search and pursuit-evasion in mobile robotics. Auton Robots

31:299–310
7. Filar J, Vrieze K (1996) Competitive Markov Decision Processes
8. Fomin FV, Thilikos DM (2008) An annotated bibliography on guaranteed graph searching. Theor Comput

Sci 399(3):236–245
9. Hahn G, MacGillivray G (2006) A note on k-cop, l-robber games on graphs. Discret Math 306(19–

20):2492–2497
10. Ibragimov G, Luckraz S (2017) On a characterization of evasion strategies for pursuit-evasion games on

graphs. J Optim Theory Appl 175(2):590–596
11. Kehagias A, Konstantinidis G (2017) Selfish cops and passive robber: qualitative games. Theor Comput

Sci 680:25–35
12. Kehagias A, Konstantinidis G (2019) Selfish cops and active robber: multi-player pursuit evasion on

graphs. Theor Comput Sci 780:84–102

Dynamic Games and Applications

13. Kehagias A (2019) Generalized cops and robbers: a multi-player Pursuit game on graphs. Dyn Games
Appl 9:1076–1099

14. Kehagias A, Konstantinidis G. “Some Game Theoretic Remarks on Two-Player Generalized Cops and
Robbers Games.” arXiv:2007.14758

15. Konstantinidis G, Kehagias Ath (2016) Simultaneously moving cops and robbers. Theor Comput Sci
645:48–59

16. Luckraz S (2019) A survey on the relationship between the game of cops and robbers and other game
representations. Dyn Games Appl 9(2):506–520

17. Mazala R (2002) Infinite games. Automata logics, and infinite games. Springer, Berlin, Heidelberg, pp
23-38

18. Nowakowski R, Winkler P (1983) Vertex-to-vertex pursuit in a graph. Discret Math 43:235–239
19. Quilliot A (1978) Thèse de 3ème cycle, Université de Paris VI, pp 131–145
20. Quilliot A (1983) Problemes de jeux, de point fixe, de connectivite et de representation sur des graphes,

des ensembles ordonnes et des hypergraphes
21. Quilliot A (1985) A short note about pursuit games played on a graph with a given genus. J Comb Theory

Ser B 38:89–92
22. Ummels M (2010) Stochastic multiplayer games: theory and algorithms. Amsterdam University Press,

Amsterdam

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2007.14758

	Some Game-Theoretic Remarks on Two-Player Generalized Cops and Robbers Games
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Informal Description of the GCR Game
	2.2 Formal Description of the GCR Game
	2.2.1 General Rules
	2.2.2 Movement Rules
	2.2.3 Payoff Function
	2.2.4 The GCR Game Family

	2.3 Additional Game-Theoretic Concepts

	3 Solution of the GCR Game
	4 Comparison to Other Approaches
	4.1 Hahn and MacGillivray
	4.2 Bonato and MacGillivray
	4.3 Berarducci and Intrigila

	5 Concluding Remarks
	References

