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We introduce and study the game of “Selfish Cops and Active Robber” (SCAR) which can 
be seen as a multiplayer variant of the “classic” two-player Cops and Robbers (CR) game. 
In classic CR all cops are controlled by a single player, who has no preference over which 
cop captures the robber. In SCAR, on the other hand, each of N − 1 cops is controlled by a 
separate player, and a single robber is controlled by the N-th player; and the capturing 
cop player receives a higher reward than the non-capturing ones. Consequently, SCAR is an 
N-player pursuit game on graphs, in which each cop player has an increased motive to 
be the one who captures the robber. The focus of our study is the existence and properties 
of SCAR Nash Equilibria (NE). In particular, we prove that SCAR always has one NE in 
deterministic positional strategies and (for N ≥ 3) another one in, generally, deterministic 
nonpositional strategies. Furthermore, we study conditions which, at equilibrium, guarantee 
either capture or escape of the robber and show that (because of the antagonism between 
the “selfish” cop players) the robber may, in certain SCAR configurations, be captured later 
than he would be in classic CR, or even not captured at all. Finally we define the selfish cop 
number of a graph and study its connection to the classic cop number.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we introduce and study the game of “Selfish Cops and Active Robber” (SCAR) which can be seen as an N-player 
variant of the “classic” two-player cops and robbers (CR) game [2,22].

The rules of SCAR are similar to those of CR: N −1 cops and a robber take turns moving along the edges of an undirected 
finite simple connected graph; the robber is captured if at the end of a turn he is located in the same vertex as one or more 
cops.

However each cop in SCAR is a separate player (while in CR a single player controls all cops). Furthermore, payoffs are 
quite different from those of CR. A complete description will be given in Section 2; the gist of the matter (and the SCAR 
novelty) is that in SCAR the capturing cops receive a higher reward than the remaining, non-capturing cops. As a result, one cop’s 
win is another cop’s partial loss (as well as the robber’s complete loss).

In other words, while in SCAR (as in CR) the robber will try to maximize capture time, each cop has a motive to minimize 
capture time and an additional motive for the capture to be effected by himself; depending on some game parameters, 
situations will arise in which a cop will enforce a longer capture time to ensure that he (rather than another cop) captures 
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the robber. Hence cop cooperation cannot be taken for granted (the cops are selfish); in this respect, SCAR differs essentially 
from classic CR where a team of N − 1 cops chase a single robber.

SCAR belongs to the extensively studied family of stochastic games.1 For two-player stochastic games see [8] and for the 
N-player case see [20,28]. More specifically, SCAR is an N-player pursuit evasion game on graphs, where the interests of each of 
the N players are in (partial or total) conflict with those of the remaining players. To the best of our knowledge such games have 
not been previously studied.

The prototypical pursuit/evasion game played on graphs is the classic CR game introduced in [22,24]; for an extensive 
recent overview of the subject see the book [2]. While the connection between graph pursuit games and game theory is 
a natural one, relatively few publications [14–17,19] exploit the “game theoretic approach”.2 In particular, we are aware of 
only two previous publications (by ourselves) on graph pursuit games involving selfish pursuers [14,17]. There is also some 
related work [1] involving selfish searchers.

Graph pursuit games are also related to several other research areas: reachability games [4,18], recursive games [7,28], 
combinatorial games (see [11,23] and especially [3]) and differential pursuit games [13]. It is worth noting that the idea of 
selfish pursuers has been occasionally (but not extensively) explored in studies of differential pursuit games [10,25,27].

The rest of the paper is organized as follows. In Section 2 we present the necessary preliminaries (rules, notation etc.) for 
the analysis of the three-player (two cops, one robber) SCAR. In Section 3 we briefly present a game theoretic formulation 
of a slightly modified version of the classic CR game; this formulation will be useful in the analysis of SCAR presented in 
later sections. In Section 4 we prove that three-player SCAR admits Nash equilibria in deterministic strategies and at least 
one of these is an equilibrium in positional strategies; we also prove several additional properties, regarding the connection 
of SCAR capturability to the classic cop number. In Section 5 we extend our results to N-player SCAR (with N ≥ 2), and we 
also define the selfish cop number of a graph and study its connection to the classic cop number. We conclude, in Section 6, 
by presenting variants and extensions of SCAR which can be the subject of future work.

2. Preliminaries

We denote the SCAR game played by N players on G by �N (G|s0, γ , ε); s0 is the initial position and γ , ε are game 
parameters which will be discussed later. Sometimes we simplify the notation to �N (G|s0) and/or �N (G). The main task of 
this section is a rigorous definition of three-player SCAR �3 (G); the generalization to �N (G) will appear in Section 5.

“Iff” means “if and only if”. The cardinality of set A is denoted by |A|; the set of elements of A which are not elements 
of B is denoted by A\B . We use the following sets of integers:

N = {1,2,3, ...} , N0 = {0,1,2,3, ...} .

Given a graph G = (V , E), for any x ∈ V , N (x) is the neighborhood of x: N (x) = {y : {x, y} ∈ E}; N [x] is the closed neighbor-
hood of x: N [x] = N (x) ∪ {x}.

�3 (G) is played on an undirected, finite, simple connected graph G = (V , E). The first player is the cop C1, the second 
player is the cop C2 and the third player is the robber R . Thus the player set is I = {C1, C2, R} or, for simplicity, I = {1,2,3}.

The game is played in turns, numbered by t ∈ N0. At the zero-th turn the player initial positions are given; at each 
subsequent turn, a single player moves. Any player can have the first move and they play in “cyclical” order ... → C1 →
C2 → R → .... The game ends if the robber is captured, i.e., if at the end of a turn he is in the same vertex as one or more 
cops; otherwise it continues indefinitely.

A game position or game state has the form s = (
x1, x2, x3, p

)
where xn ∈ V is the position (vertex) of the n-th player and 

p ∈ {1,2,3} is the number of the player who has the next move. The set of nonterminal states is

S ′ = V × V × V × {1,2,3} .

We will also need a terminal state τ . Hence the full state set is S = S ′ ∪ {τ }.
We partition the state set as follows. Define (for each n ∈ I) the set Sn of states in which the n-th player has the next 

move3:

Sn =
{

s : s =
(

x1, x2, x3,n
)

∈ S
}

.

Then the full state set can be partitioned as follows:

1 Actually all elements of SCAR are deterministic; the term “stochastic games” denotes a general game family which contains, as a special case, games 
deterministically evolving in time.

2 By this we mean an approach which involves a payoff, defined in terms of strategy functions, and in which the existence of game value (from optimal, 
minimax strategies) and/or NE is investigated.

3 Formally speaking and given that SCAR is a stochastic game (as noted before) at every turn all players make a move. There is however at every turn a 
single player who can choose from a non-singleton set of moves and this is what (for reasons of brevity) we mean by the expression “the player who has 
the next move”.
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S = S ′ ∪ {τ } = S1 ∪ S2 ∪ S3 ∪ {τ } . (1)

An alternative partition of the state set is effected as follows. We define capture state sets:

S1
C =

{
s : s = (x1, x2, x3,n) with x1 = x3, x2 �= x3

}
, where R is captured by C1;

S2
C =

{
s : s = (x1, x2, x2,n) with x1 �= x3, x2 = x3

}
, where R is captured by C2;

S12
C =

{
s : s = (x1, x2, x2,n) with x1 = x3, x2 = x3

}
, where R is captured by both C1 and C2.

Now define:

SC = S1
C ∪ S2

C ∪ S12
C , the set of all capture states;

SNC = S ′\SC , the set of all non-capture, non-terminal states.

Then the state set can be partitioned as follows:

S = S ′ ∪ {τ } = SNC ∪ SC ∪ {τ } . (2)

We define An (s), the n-th player’s action set when the game state is s = (
x1, x2, x3,m

)
, by

An (s) =

⎧⎪⎪⎨⎪⎪⎩
N [xn] for s ∈ Sn ∩ SNC ,{
xn

}
for s ∈ Sm ∩ SNC with n �= m,

{λ} for s ∈ SC , where λ is the null move
{λ} for s = τ .

The players’ action sets have the following implications on state-to-state transitions:

1. when the n-th player has the move at a non-capture state, he can stay at his current vertex or move to any neighboring 
vertex, thus producing the next state of the game;

2. when another player has the move at a non-capture state, the n-th player can only stay in his current vertex (trivial 
move);

3. when the game is in a capture state, every player has only the null move and the game moves to the terminal state;
4. when the game is in the terminal state, every player has only the null move and the game moves to (actually stays in) 

the terminal state.

State-to-state transitions are described by the transition function T (s,a) which gives the game state resulting when the 
game is at a position s ∈ S and the actions profile is a = (a1, a2, a3). The behavior of T (s,a) is illustrated by some examples 
as follows:

for s =
(

x1, x2, x3,1
)

∈ S1 ∩ SNC : T
(

s, (a1,a2,a3)
)

=
(

a1, x2, x3,2
)

,

for s =
(

x1, x2, x3,2
)

∈ S2 ∩ SC : T (s, (λ,λ,λ)) = τ ,

for s = τ : T (τ , (λ,λ,λ)) = τ .

Often we use the following simplified notation: if at t the game state is st = (
x1

t , x2
t , x3

t ,n
) ∈ Sn and at t + 1 the n-th player’s 

action is an
t+1, we write

st+1 = T
(
st,an

t+1

)
.

A game history is a sequence h = (s0, s1, s2, ...), where st is the state of the game at the t-th turn (t ∈N0={0,1,2,3, ...}). 
We define the following history sets:

histories of length k : Hk = {h = (s0, s1, s2, ..., sk−1)},
histories of finite length : H∗ = ∪∞

k=1 Hk,

histories of infinite length : H∞ = {h = (s0, s1, ..., st , ...)}.
Histories of infinite length can be further partitioned as H∞ = HC ∪ H NC where

histories where capture occurs : HC = {h = (s0, s1, ...) ∈ H∞ : ∃st ∈ SC },

histories where the robber evades indefinitely : H NC = {h = (s0, s1, ...) ∈ H∞ : �st ∈ SC }.
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Furthermore, we define the capture time of history h ∈ H∞ as

TC (h) =
{

min {t : st ∈ SC } if h ∈ HC

∞ if h ∈ H NC .

We will often use the simpler notation TC , when the history is clear from the context. Now consider the following cases.

1. If TC = 0 then the initial state is a capture state and st = τ for every t ∈N = {1,2, ...}.
2. If 0 < TC < ∞ then:

(a) at the 0-th turn the game starts at some preassigned state s0 ∈ SNC ;
(b) at the t-th turn (for t ∈ {1,2, ..., TC − 1}), the game moves to some state st ∈ SNC ;
(c) at the TC -th turn the game moves to some capture state sTC ∈ SC ;
(d) at the (TC + 1)-th turn the game moves to the terminal state and stays there for all subsequent turns (for every 

t > TC , st = τ and the game effectively ends at time TC ).
3. If TC = ∞ then st ∈ SNC for every t ∈N0.

The case s0 = τ is uninteresting and hence excluded from consideration.
A pure, or deterministic strategy is a function σ n : H∗ → An which assigns a move in the player’s action set to each 

finite-length history.4 That is,

∀h = (s0, s1, s2, ..., st) ∈ H∗ ∃an ∈ An(st) : σ n (h) = an.

We call σ n positional (or Markovian stationary) if the next move depends only on the current state of the game (but not on 
previous states or current time). That is,

∀h = (s0, s1, s2, ..., st) ∈ H∗ : σ n (h) = σ n (st) .

A strategy profile is a triple σ = (
σ 1, σ 2, σ 3

)
. We define σ−n = (

σm
)

m∈I\{n}; for instance, σ−1 = (
σ 2, σ 3

)
. A profile is 

positional if σ 1, σ 2, σ 3 are positional. Otherwise (i.e., if at least one of the σ n ’s is not positional) we call the profile non-
positional. If 

(
σ 1, σ 2, σ 3

)
applied to the game �3 (G|s0, γ , ε) results (resp. does not result) in a capture, we call 

(
σ 1, σ 2, σ 3

)
a capturing (resp. non-capturing) profile in �3 (G|s0, γ , ε).

We complete the description of �3 (G) by defining payoff functions for the players. Each player will try to maximize his 
payoff; the payoffs will encapsulate the following facts.

1. The longer the capture time, the less the cops gain and the less the robber loses.
2. The capturing cop gains at least as much as the non-capturing one.

We fix a constant ε ∈ [
0, 1

2

]
and define turn payoffs as follows. For n ∈ {1,2}, Cn ’s payoff is

qn (s) =

⎧⎪⎪⎨⎪⎪⎩
1 − ε if s ∈ Sn

C ,

ε if s ∈ Sm
C with n �= m,

1
2 if s ∈ S12

C ,

0 else.

(3)

R ’s turn payoff is

q3 (s) =
{ −1 if s ∈ SC ,

0 else.
(4)

Next, we fix a discounting factor γ ∈ (0, 1) and, for n ∈ {1,2,3}, we define the n-th player’s total payoff function by

Q n (s0, s1, s2, ...) =
∞∑

t=0

γ tqn (st) , (5)

In the rest of the paper we will assume, unless explicitly stated otherwise, that

(γ , ε) ∈ �(3) = (0,1) ×
[

0,
1

2

]
.

Since a history is fully determined by the initial position s0 = (
x1, x2, x3, p

)
and the strategy profile σ = (

σ 1, σ 2, σ 3
)
, we 

can write the n-th player’s payoff in any one of the equivalent forms Q n (s0, s1, s2, ...), Q n (s0, σ ) and Q n
(
s0, σ

1, σ 2, σ 3
)
.

4 We only consider legal strategies i.e., they never produce moves outside the player’s closed neighborhood.
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To understand the consequences of (3)-(5), let us first consider the case where (i) TC < ∞ (finite capture time), (ii) ε < 1
2

and (iii) capture is effected by a single cop. Then the players receive the following payoffs:

1. the capturing cop receives (1 − ε)γ TC ;
2. the non-capturing cop receives εγ TC ;
3. the robber receives −γ TC (i.e., loses γ TC ).

The total cops’ reward is equal to the robber’s loss, but, since ε < 1
2 , the capturing cop receives more than the other one 

(unless both cops simultaneously capture the robber). Since γ ∈ (0,1), the robber’s loss is decreasing with capture time TC

and he will play so as to maximize TC . Conversely, the cops have a motive to minimize TC . But, since (1 − ε)γ TC > εγ TC , 
there is an additional motive for each cop to be the capturing one; there will exist combinations of γ , ε and TC for which 
a cop may choose to delay the robber capture in order to ensure that it is effected by himself (an example is given in 
Section 4.3). The SCAR game �3 (G|s0, γ , ε) as defined above is a three-player, perfect information discounted stochastic 
game.

Let us consider briefly some additional scenaria obtained for particular values of TC , γ , ε.

1. If the robber can avoid capture ad infinitum, i.e., if TC = ∞, then all players receive zero payoff. Clearly this is the best 
outcome for R .

2. Since a single player moves at each turn, it is only possible to have a “double capture” if R , on his turn, moves into a 
vertex which is occupied by both C1 and C2. In this case each cop will receive equal payoff of γ TC /2.

3. When ε = 1
2 (and for any γ ∈ (0,1)) each cop receives the same payoff whether he captures R or not; hence one might 

expect the two cops to collaborate to effect capture in the shortest possible time as in classic CR played by two cops 
against one robber; however this is not always the case, as we shall see in Section 4.

A basic question in classic CR is the existence of winning and/or (time) optimal strategies. In SCAR, which is an N-player 
game, we look for equilibrium strategy profiles. The prevalent definition of equilibrium is the one due to Nash [21], which we 
now present in the general context of N-player stochastic games; the application to three-player SCAR (and N-player SCAR, 
as we will see in Section 5) is immediate.

Consider an N-player perfect-information stochastic game starting at state s0. When the players use the (deterministic) 
strategy profile σ = (

σ 1, σ 2, ..., σ N
)

they receive (total) payoffs Q 1 (s0, σ ), Q 2 (s0, σ ), ..., Q N (s0, σ ). We say that σ∗ =(
σ 1∗ , σ 2∗ , ..., σ N∗

)
is a Nash equilibrium (NE) iff

∀n,∀σ n : Q n (s0,σ∗) ≥ Q n (
s0,σ

n,σ−n∗
)
. (6)

What (6) says is that, when the rest of the players stick to their equilibrium strategies, no player can improve his payoff by 
unilaterally changing his own; for example, if players 2, 3, ..., N play σ−1∗ = (

σ 2∗ , ..., σ N∗
)
, then the first player cannot increase 

his payoff by switching from σ 1∗ to some other σ 1.5 The following points must be emphasized.

1. A game may possess no NE, or exactly one, or more than one.
2. A NE is a strategy profile; different NE may yield the same payoffs to the players.
3. Different NE may yield different payoffs. The fact that σ∗ is a NE does not imply that the corresponding payoff is the 

best a player can achieve; if more than one players change their strategies, they may achieve better payoffs than the ones 
implied by a NE. In other words, a NE is not necessarily an optimal solution.

3. Modified CR from a game theoretic point of view

Before embarking on the study of SCAR, we present and study a modified CR game, which will be used in later sections.

1. The game is played by two players: the cop player controls N − 1 cop tokens (with N ≥ 2) and the robber player controls 
a single robber token.

2. States, movement rules, histories and capture time are the same as those of SCAR.
3. The same is true for strategies except for the fact that the cop player’s strategy is of the form 

(
σ 1, ..., σ N−1

)
, i.e., it 

contains one strategy for each of his tokens.
4. The cop (resp. robber) player’s payoff is γ TC (resp. −γ TC ) (with γ ∞ = 0).

This is a two-player, zero-sum, discounted stochastic game which differs from the classic CR game (with N − 1 cops and 
one robber) only in the following.

5 The definition of NE can be extended to games of non-perfect information, provided the σ n ’s are understood as probabilistic strategies and the Q n ’s as 
expected payoffs. We will not need these generalizations in the current paper.
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1. In modified CR, the cop (resp. robber) player tries to maximize (resp. minimize) γ TC ; this is obviously equivalent to 
classic CR, where the cop (resp. robber) player tries to minimize (resp. maximize) TC .

2. In modified CR, time is counted in turns, while in classic CR it is counted in rounds, where each round consists of one 
move for each player. This is roughly equivalent to a rescaling of time by the factor 1/N .

3. In classic CR, the players select their initial positions, while in modified CR the initial position is predetermined. It is 
easy to recover this aspect of classic CR by adding to modified CR a “placement turn” for each player; this change has 
no major impact on the essential features of the game such as the existence of value and optimal strategies.

Using standard results [8, Section 4.3] we see that modified CR has a value, which in fact is γ raised to the capture time 
under optimal play,6 and both players have optimal positional strategies.

As already mentioned, we can assume that the cop (resp. robber) player tries to minimize (resp. maximize) the capture 
time. Let T N (G|s0) be the capture time when the cop player has N − 1 tokens and both players play optimally (note the 
dependence on the initial position s0). Hence, if T N (G|s0) is finite (resp. infinite) then the cop’s (resp. robber’s) optimal 
strategies are winning (for the respective player). We denote the maximum value of optimal capture time over all starting 
positions by

T N (G) = max
s0

T N (G|s0) .

Assuming the game is played with N − 1 cops and one robber, it is easily seen that:

1. if T N (G) < ∞, then the cop player has an (optimal) winning strategy for every starting position;
2. for every starting position, assuming subsequent optimal play by the cop player (but not necessarily by the robber 

player), the capture time is less than or equal to T N (G).

The cop number of a graph G is denoted by c (G) and defined to be the smallest number of cop tokens which guarantees 
finite capture time (i.e., one less than the smallest N for which T N (G) < ∞). We call G cop-win if capture time is finite for 
CR on G with one optimally played cop token (i.e., T2 (G) < ∞ or, equivalently, c (G) = 1).

The above remarks show that all essential aspects of the classic CR are captured by the modified CR. In the rest of the 
paper, the term “CR game” will denote the modified game (unless we specifically use the term “classic CR”).

Finally note that, when N = 3 (two cops vs. one robber) the modified two-cops CR is path-equivalent to �3 (G), i.e., both 
games produce the same infinite history when strategies σ 1, σ 2, σ 3 are applied (starting from the same position s0) to:

1. �3 (G), with σ n being the strategy of the n-th player;
2. the modified two-cops CR, with σ 1 (resp. σ 2) being the strategy the cop player uses for his first (resp. second) token, 

and σ 3 being the strategy the robber player uses.

4. Three-player SCAR

In this section we study �3 (G) and prove that it always has both positional and non-positional NE; we also study the 
connection between classic cop number and existence of capturing NE.

4.1. Existence of a positional NE

First we prove the existence of at least one positional NE in deterministic strategies for �3 (G).

Theorem 4.1. For every graph G and for every s0 ∈ S, (γ , ε) ∈ �(3) the game �3 (G|s0, γ , ε) has a deterministic positional NE. More 
specifically, there exists a deterministic positional profile σ∗ = (

σ 1∗ , σ 2∗ , σ 3∗
)

such that

∀n,∀s0,∀σ n : Q n (
s0,σ

n∗ ,σ−n∗
) ≥ Q n (

s0,σ
n,σ−n∗

)
. (7)

For every s and n let un (s) = Q n (s, σ∗). Then the following equations are satisfied

∀n,∀s ∈ Sn : σ n∗ (s) = arg max
an∈An(s)

[
qn (s) + γ un (

T
(
s,an))] , (8)

∀n,m,∀s ∈ Sn : um (s) = qm (s) + γ um (
T
(
s,σ n∗ (s)

))
. (9)

6 And, since γ ∈ (0,1), is a decreasing function of capture time.
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Proof. The existence, in every N-player discounted stochastic game, of a positional NE in probabilistic strategies has been 
proved by Fink in [9]. In addition, Fink proves that at equilibrium the following equations7 are satisfied (i.e., they have at 
least one solution) for all m ∈ {1,2,3} and s ∈ S:

um (s) = max
πm(s)

∑
a1∈A1(s)

∑
a2∈A2(s)

∑
a3∈A3(s)

π1 (
a1|s)π2

(
a2|s

)
π3

(
a3|s

)[
qm (s) + γ

∑
s′

Pr
(

s′|s,a1,a2,a3
)
um (

s′)] ,

(10)

where

1. um (s) is the expected value of um (s);
2. πm(a j |s) is the probability that, given the current state is s, the m-th player plays a j ;
3. πm(s) = (

πm(am|s))am∈Am(s) is the vector of all probabilities (i.e., for all available actions);

4. Pr
(
s′|s,a1,a2,a3

)
is the probability that the next state is s′ , given the current state is s and the players actions a1, a2, a3.

As mentioned above, (10) applies to the general game, with simultaneous moves by all players and probabilistic strategies 
and state transitions. Our task now is to prove that in SCAR the above equations yield a deterministic NE.

Choose any n and any s ∈ Sn . For all m �= n, the m-th player has a single move, i.e., we have Am (s) = {
am

}
, and so 

πm(am|s) = 1. Also, since transitions are deterministic,∑
s′

Pr
(

s′|s,a1,a2,a3
)
un (

s′) = un (
T
(
s,an)) .

Hence, for m = n, (10) becomes

un (s) = max
πn(s)

∑
an∈An(s)

πn (
an|s) [

qn (s) + γ un (
T
(
s,an))] . (11)

Furthermore let us define σ n∗ (s) (for the specific s and n) by

σ n∗ (s) = arg max
an∈An(s)

[
qn (s) + γ un (

T
(
s,an))]

. (12)

If more than one action satisfy (12), we set σ n∗ (s) to one of these actions arbitrarily. Then, to maximize the sum in (11)
the n-th player must set πn

(
σ n∗ (s) |s) = 1 and πn

(
an|s) = 0 for all an �= σ n∗ (s). Since this is true for all states and players 

(i.e., every player can, without loss, use deterministic strategies) we also have un (s) = un (s). Hence (12) and (11) become 
respectively

σ n∗ (s) := arg max
an∈An(s)

[
qn (s) + γ un (

T
(
s,an))] (13)

and

un (s) = max
an∈An(s)

[
qn (s) + γ un (

T
(
s,an))] = qn (s) + γ un (

T
(
s,σ n∗ (s)

))
. (14)

For m �= n, the m-th player has no choice of action (i.e., σm∗ (s) is the unique element of Am (s)) and (11) becomes

um (s) = qm (s) + γ um (
T
(
s,σ n∗ (s)

))
. (15)

We recognize that (13)-(15) are (8)-(9). Also, (13) defines σ n∗ (s) for every n and s and so we have obtained the required 
deterministic positional strategies σ∗ = (

σ 1∗ , σ 2∗ , σ 3∗
)
. �

Note that the initial state s0 plays no special role in the system (8)-(9). In other words, using the notation u (s) =(
u1 (s) , u2 (s) , u3 (s)

)
and u = (u (s))s∈S (with the G dependence suppressed) we see that u and σ∗ are the same for every 

starting position s0 (i.e., for every �3 (G|s0)). Also note that, because of the structure of the payoffs, if �3 (G|s0) at some 
time t1 reaches state s1, the “remainder” game which is played from t1 onward is equivalent (modulo a payoff rescaling) 
to �3 (G|s1). From these observations follows that, if the players use σ∗ in �3 (G|s0) and at some time t1 > 0 the game 
reaches s1, then σ∗ is an positional NE for both �3 (G|s0) and �3 (G|s1); the payoffs to the players are u (s0) in the former 
and u (s1) in the latter.

7 We have adapted Fink’s notation to our own, so as to fit the �3 (G) context.
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Let us also note that Theorem 4.1 in fact holds for any ε ∈ [0,1]; we have confined attention to the case ε ∈ [
0, 1

2

]
to 

represent the intuition that the capturing cop’s reward should be at least as large as that of the non-capturing one’s. In 
fact, the theorem holds for any family of bounded payoff functions qn . On the other hand, the theorem depends essentially 
on the players’ moving sequentially; in case all players played simultaneously, they would not have perfect information and 
hence they would, in general, benefit from the use of probabilistic strategies.

Finally, Theorem 4.1 (as well as Fink’s result) do not address the computation of the NE; it is well known that, in general, 
the computation of NE in multi-player games is a hard problem.

4.2. Existence of non-positional NE

Now we will construct an additional deterministic NE of �3 (G|s0), which will, generally, be non-positional.8 This NE is 
based on the use of threat strategies [5,6,26].

Let us introduce (for n ∈ {1,2,3}) auxiliary games �n
3 (G|s0); these are two-player, zero-sum, perfect-information games 

with states, action sets, movement sequence, capturing conditions etc. being the same as in �3 (G|s0). However, in �n
3 (G|s0)

player Pn controls token n and has payoff Q n; and player P−n controls tokens {1,2,3} \ {n} and has payoff −Q n . More 
specifically, the following hold.

1. �3
3 (G|s0) (played on G with initial state s0) is the game where P3, controlling R , plays against P−3, controlling C1 and 

C2; P−3 has reward (and P3 has penalty) equal to

γ TC : when either C1 or C2 captures R,

0 : when R is not captured.

It is easily seen that �3
3 (G|s0) is the two-cops, one-robber modified CR game.

2. �1
3 (G|s0) is the game in which P1, controlling C1, plays against P−1, controlling R and a “robber-friendly” C2; P1

receives reward (and P−1 receives penalty) equal to

(1 − ε)γ TC : when C1 captures R,

εγ TC : when C2 captures R,

0 : when R is not captured.

3. �2
3 (G|s0) is similar to �1

3 (G|s0), with the roles of C1 and C2 interchanged.

It can be seen that in �1
3 (G|s) an optimal action plan for P−1 is

1. when c(G) = 1: C2 and R meet in the longest possible time but before R is caught by C1;
2. when c (G) > 1 and C1 cannot alone capture R (when the game starts at s0): C2 always avoids R and R always avoids 

both C1 and C2.

Hence, for every n ∈ {1,2,3} and s0 ∈ S , �n
3(G|s0, γ , ε) is a two-player, zero-sum discounted stochastic game with perfect 

information and standard results [8, Section 4.3] give the following.

Lemma 4.2. For each m ∈ {1,2,3}, s0 ∈ S and (γ , ε) ∈ �(3) , the game �m
3 (G|s0, γ , ε) has a value and the players have optimal 

deterministic positional strategies.

Definition 4.3. For m, n ∈ {1,2,3}, we define φn
m to be the optimal strategy regarding the n-th token in the game �m

3 (G|s0, γ , ε).

We return to �m
3 (G|s0, γ , ε) and introduce the threat strategies. The n-th player plays the strategy φn

n which is optimal 
for Pn in �m

3 (G|s0, γ , ε), as long as the other players do the same. If at some point the m-th player deviates9 from the 
above, then the n-th player (with n ∈ {1,2,3} \ {m}) adopts the strategy φn

m which is the part of P−m ’s optimal strategy 
regarding the n-th token in �m

3 (G|s0, γ , ε).
In other words, the threat strategy σ n for the n-th player is “composed” by the strategies φn

m as follows:

σ n =
{

φn
n as long as every player m ∈ {1,2,3} \n follows φm

m ;
φn

m as soon as some player m ∈ {1,2,3} \n “deviates” from φm
m .

(16)

8 The non-positionality is further discussed at the end of this section.
9 We say that a player “deviates” from a strategy if he plays a move different from the one prescribed by this strategy; since the game has perfect 

information, this deviation will be immediately detected by the other players.



92 G. Konstantinidis, A. Kehagias / Theoretical Computer Science 780 (2019) 84–102
Since the φm
n ’s are positional they do not depend on the starting state s0; in fact the same φm

n is optimal for every s0 and 
corresponding game �n

3 (G|s0). We now show that, for every s0, σ = (σ 1, σ 2, σ 3) is a NE of �3 (G|s0).

Theorem 4.4. For every graph G, (γ , ε) ∈ �(3) and s0 ∈ S in the game �3 (G|s0, γ , ε) we have

∀n ∈ {1,2,3} ,∀σ n : Q n
(

s0, σ
1, σ 2, σ 3

)
≥ Q n(s0,σ

n, σ−n) (17)

where σ n (for n ∈ {1,2, ..., N}) is a strategy of the form defined in (16).

Proof. Recall that we can write payoffs in any of the equivalent forms: Q n (s0, σ ), Q n (s0, s1, s2, ...), Q n (h) (where h =(
s0, s1, s2,....

)
).

We choose some initial state s and fix it for the rest of the proof. Now let us prove (17) for the case n = 1. In other 
words, we need to show that

∀σ 1 : Q 1(s, σ 1, σ 2, σ 3) ≥ Q 1(s,σ 1, σ 2, σ 3). (18)

We take any σ 1 and let

h = (s0, s1, s2, ...) be the history produced by (σ 1, σ 2, σ 3) and initial state s0 = s,

h̃ = (̃s0, s̃1, s̃2, ...) be the history produced by (σ 1, σ 2, σ 3) and initial state s̃0 = s = s0.

We also define T1 as the earliest time in which (σ 1, σ 2, σ 3) (and (σ 1, σ 2, σ 3)) produce different states:

T1 = min
{

t : s̃t �= st
}
.

If T1 = ∞, then ̃h = h and (18) holds with equality:

Q 1(s, σ 1, σ 2, σ 3) = Q 1(h) = Q 1(̃h) = Q 1(σ 1, σ 2, σ 3). (19)

If T1 < ∞, then at t = T1 player 1 deviated from φ1
1 , the first difference in states appeared and it was detected by players 2 

and 3, who switched to φ2
1 and φ3

1 , respectively. We have

Q 1(s, σ 1, σ 2, σ 3) = Q 1(h) =
T1−2∑
t=0

γ tq1 (
st

) +
∞∑

t=T1−1

γ tq1 (
st

)
, (20)

Q 1(s,σ 1, σ 2, σ 3) = Q 1(̃h) =
T1−2∑
t=0

γ tq1 (̃st) +
∞∑

t=T1−1

γ tq1 (̃st) . (21)

Since ̃st = st for every t < T1, it suffices to compare the second sums of (20) and (21). In what follows we let s∗ = sT1−1 =
s̃T1−1.

1. Consider first h = (s0, s1, s2, ...). It is produced by σ = (σ 1, σ 2, σ 3) (and s0) which means that the entire h is actually 
produced by 

(
φ1

1 , φ2
2 , φ3

3

)
(and s0). Since every φm

m is positional, the history (s0, s1, ..., sT1−2) does not influence the 
moves produced at times T1, T1 + 1, .... Hence we have

∞∑
t=T1−1

γ tq1 (
st

) = γ T1−1
∞∑

t=0

γ tq1 (
sT1−1+t

) = γ T1−1 Q 1(s∗, φ1
1 , φ2

2 , φ3
3). (22)

In other words, the sum in (22) is proportional to the payoff of player 1 in �3 (G|s∗) when each player n ∈ {1, 2, 3} uses 
strategy φn

n . But Q 1(s∗, φ1
1 , φ2

2 , φ3
3) is also the payoff of P1 in �1

3 (G|s∗) (which starts at s∗) with P1 playing φ1
1 and P−1

playing (φ2
2 , φ3

3). However, in �1
3 (G|s∗) the optimal strategy of P−1 is 

(
φ2

1 , φ3
1

)
; hence we have the following

γ T1−1 Q 1(s∗, φ1
1 , φ2

2 , φ3
3) ≥ γ T1−1 Q 1(s∗, φ1

1 , φ2
1 , φ3

1). (23)

2. Next consider ̃h = (̃s0, ̃s1, ̃s2, ...). It is produced by (σ 1, σ 2, σ 3) (and ̃s0 = s0) and, since σ 1 is not necessarily positional, 
s̃T1 , ̃sT1+1, ̃sT1+2... could depend on (̃s0, ̃s1, ..., ̃sT1−2). However, we can introduce the strategy ρ1 induced by σ 1 on the 
game starting at s∗ , which will produce the same history (̃sT1 , ̃sT1+1, ̃sT1+2, ...) as σ 1.10 Then, from the optimality of φ1

1
as a response to 

(
φ2

1 , φ3
1

)
in �1

3 (G|s∗), we have

10 We define ρ1 such that, when combined with ̃sT1−1, φ2
1 , φ3

1 , will produce the same history (̃sT1 , ̃sT1+1, ̃sT1+2, ...) as σ 1. Note that ρ1 will in general 
depend (in an indirect way) on (̃s0, ̃s1, ..., ̃sT1−2).
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∞∑
t=T1−1

q1 (̃st) = γ T1−1 Q 1(s∗,ρ1, φ2
1 , φ3

1) ≤ γ T1−1 Q 1(s∗, φ1
1 , φ2

1 , φ3
1). (24)

Combining (20)-(24) we have:

Q 1(s,σ 1, σ 2, σ 3) =
T1−2∑
t=0

γ tq1 (̃st) + γ T1−1 Q 1(s∗,ρ1, φ2
1 , φ3

1) ≤
T1−2∑
t=0

γ tq1 (̃st) + γ T1−1 Q 1(s∗, φ1
1 , φ2

1 , φ3
1)

≤
T1−2∑
t=0

γ tq1 (
st

) + γ T1−1 Q 1(s∗, φ1
1 , φ2

2 , φ3
3) = Q 1(s, σ 1, σ 2, σ 3)

and we have proved (18), which is (17) for n = 1. The proof for the cases n = 2 and n = 3 is similar and hence omitted. �
In general, the profile 

(
σ 1, σ 2, σ 3

)
is non-positional, since the action of a player at time t may be influenced by the 

action (deviation) performed by another player at time t − 2. However, it is possible that ∀m, n ∈ {1, 2, 3} we have φn
n = φn

m

in which case the profile 
(
σ 1, σ 2, σ 3

)
is positional.

Just like Theorem 4.1, Theorem 4.4 actually holds for any bounded qn ’s, not just for the specific form of the SCAR game. 
Moreover, the theorem depends essentially on the sequential moving of the players (so that deviations can be detected).

Finally, it is worth noting that the NE of Theorem 4.4 can be computed in polynomial time, since the component strategies 
φn

m concern the two-player games �n
3 (G|s), for which polynomial algorithms are available [3,12].

4.3. Cop number, capturing and non-capturing NE

In this section we examine the connection of c (G) to the existence of capturing and non-capturing NE in �3 (G|s0, γ , ε).

Theorem 4.5. For any G with c (G) = 1 the following holds:

∀ (γ , ε) ∈ �(3),∀s0 ∈ S : every NE of �3 (G|s0, γ , ε) is capturing.

Proof. Let G = (V , E) with c (G) = 1 and take any s0 ∈ SNC (the case s0 ∈ SC is trivial). To reach a contradiction assume 
that there exists a non-capturing NE 

(
σ 1, σ 2, σ 3

)
of �3 (G|s0). Then we have

∀ρ1 : 0 = Q 1(s0,σ
1,σ 2,σ 3) ≥ Q 1(s0,ρ

1,σ 2,σ 3). (25)

Now let σ̂ 1 be a strategy of C1 in �3 (G|s0) which imitates an optimal cop strategy, in the respective CR game with one cop. 
Formally, define σ̂ 1 by

∀(x1, x2, x3) ∈ V 3 : σ̂ 1
(

x1, x2, x3,1
)

:= σ 1∗
(

x1, x3,1
)

,

where σ 1∗ is an optimal cop strategy in the one-cop CR played on G .11

In this latter game given c (G) = 1 and optimal cop play, capture will occur in some finite time which depends on R ’s 
strategy but is bounded above by T2 (G) defined in Section 3.

Consider now game �3 (G|s0) and the case where C1 employs σ̂ 1. It is not hard to see (and can be formally shown) that 
for any pair of strategies of C2, R capture will also occur in �3 (G|s0) in at most T2 (G) moves, as C2 may influence the 
game by capturing R no later than C1. Hence, under profile (σ̂ 1, σ 2, σ 3) we have the following possibilities.

1. C1 captures R at some time T1.
2. C2 captures R before C1, i.e., at some time T2 < T1.
3. C1 and C2 capture R simultaneously at some time T12.

At any rate, we will have max (T1, T2, T12)≤ T2 (G) < ∞. Hence C1’s payoff satisfies

Q 1(s0, σ̂
1,σ 2,σ 3) ≥ min

(
(1 − ε)γ T1 , εγ T2 ,

1

2
γ T12

)
> 0. (26)

But (26) contradicts (25). Thus, there does not exist a non-capturing NE of �3 (G|s0). We conclude that every NE of �3 (G|s0)

is capturing. �
11 We will repeatedly use, without further comment, this method to produce SCAR strategies from optimal CR strategies. Furthermore, for reasons of 

brevity we will simply call them optimal in CR.
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1 2 3 4 5 6

C1C2 R

Fig. 1. An example where minimizing capture time does not yield a NE.

In light of the argument employed in the last proof, it might be assumed that in graphs G with c(G) = 1, a NE in �3 (G)

can be obtained when the cops use optimal strategies from one-cop CR. But this is not true, because in certain cases a 
cop may unilaterally improve his payoff by delaying capture (and thus ensuring that it is effected by him) as seen in the 
following example.

Example 4.6. Suppose �3 (G) is played on the graph G of Fig. 1 with the initial positions indicated; C1 has the first move. 
Further, take ε < 1

2 . Let σ̂ n (n ∈ {1,2}) be a one-cop CR optimal strategy of the n-th cop; in this case it consists in each cop 
moving towards the robber at every turn. Now suppose that for these σ̂ 1, ̂σ 2 there exists a NE 

(
σ̂ 1, σ̂ 2, σ̂ 3

)
; it is easily seen 

that σ̂ 3 must be an optimal robber strategy in two-cop CR. If the players use 
(
σ̂ 1, σ̂ 2, σ̂ 3

)
the game evolves as follows:

Turn 0 1 2 3 4 5
C1 vertex 6 5 5 5 4 4
C2 vertex 1 1 2 2 2 3
R vertex 4 4 4 3 3 3

Note that the robber will move so as to be captured by C2, because this increases capture time by 1. So the payoffs are

Q 1
(

s0, σ̂
1, σ̂ 2, σ̂ 3

)
= εγ 5,

Q 2
(

s0, σ̂
1, σ̂ 2, σ̂ 3

)
= (1 − ε)γ 5,

Q 3
(

s0, σ̂
1, σ̂ 2, σ̂ 3

)
= −γ 5.

Now, suppose C2, R stick to their strategies, while C1 uses the following strategy σ̃ 1: on his first move he stays in vertex 6 
and afterwards moves directly towards the robber. The game evolves as follows.

Turn 0 1 2 3 4 5 6 7
C1 vertex 6 6 6 6 5 5 5 4
C2 vertex 1 1 2 2 2 3 3 3
R vertex 4 4 4 4 4 4 4 4

So the payoffs are

Q 1
(

s0, σ̃
1, σ̂ 2, σ̂ 3

)
= (1 − ε)γ 7,

Q 2
(

s0, σ̃
1, σ̂ 2, σ̂ 3

)
= εγ 7,

Q 3
(

s0, σ̃
1, σ̂ 2, σ̂ 3

)
= −γ 7.

It is easy to see that

γ 2 >
ε

1 − ε
⇒ (1 − ε)γ 7 > εγ 5 ⇒ Q 1

(
s0, σ̃

1, σ̂ 2, σ̂ 3
)

> Q 1
(

s0, σ̂
1, σ̂ 2, σ̂ 3

)
.

Thus, if γ 2 > ε
1−ε , C1 can unilaterally improve his payoff; hence 

(
σ̂ 1, σ̂ 2, σ̂ 3

)
is not a NE of �3 (G|s0, γ , ε).

We now move to graphs with cop number greater than one.

Theorem 4.7. For any G with c (G) = 2 the following holds:

∀ (γ , ε) ∈ �(3),∀s0 ∈ S : there exists a capturing NE of �3 (G|s0, γ , ε) .

Proof. Take any G with c (G) = 2, any (γ , ε) ∈ �(3) and any s0 ∈ SNC (the case s0 ∈ SC is trivial) and fix them for the rest 
of the proof. Now take any threat strategy profile σ =

(
σ 1, σ 2, σ 3

)
; according to Theorem 4.4, σ is a NE and it can be 

either capturing or non-capturing. If it is capturing we are done; let us then suppose that σ is non-capturing. Recall that, 
for all n ∈ {1,2,3}: σ n has the form of (16), where, in the game �n (G|s0, γ , ε):
3
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1. φn
n is an optimal strategy of Pn against P−n;

2. φm
n (for m �= n) is an optimal strategy used (for the m-th token) by P−n against Pn .

As mentioned, when σ is used in �3 (G|s0, γ , ε) the n-th player (for n ∈ {1,2,3}) will follow strategy φn
n for the entire 

game. We will now construct a new profile σ̃ = (
σ̃ 1, σ̃ 2, σ̃ 3

)
which will be a capturing NE of �3 (G|s0, γ , ε). To this end we 

first select an optimal strategy profile σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
in the two-cops CR; since c (G) = 2, σ̂ will be capturing for every 

s0. Then, for each n ∈ {1,2,3}, we let

σ̃ n =
{

σ̂ n as long as every player m ∈ {1,2,3} \n follows σ̂m;
φn

m as soon as some player m ∈ {1,2,3} \n deviates from σ̂m.

The φn
m ’s above are the same as in σ . Hence, to show that σ̃ is of the form prescribed by Theorem 4.4, we have to show 

that each σ̂ n is optimal in the corresponding �n
3 (G|s0, γ , ε). In what follows, note that �3 (G|s0, γ , ε) is (for all n ∈ {1,2,3}) 

path-equivalent12 to �n
3 (G|s0, γ , ε).

1. Consider C1 playing φ1
1 in �3 (G|s0, γ , ε); by assumption σ is non-capturing in �3 (G|s0, γ , ε), hence also in 

�1
3 (G|s0, γ , ε). Therefore, C1 playing φ1

1 against φ2
2 and φ3

3 receives a payoff of zero, in both �3 (G|s0, γ , ε) and 
�1

3 (G|s0, γ , ε). But then, by the optimality of (φ2
1 , φ3

1) against φ1
1 in �1

3 (G|s0, γ , ε) the same holds when C1 plays 
φ1

1 against (φ2
1 , φ3

1). So C1’s optimal payoff in �1
3 (G|s0, γ , ε) is zero and hence any strategy is optimal for him in 

�1
3 (G|s0, γ , ε); so is, in particular σ̂ 1.

2. By a similar argument, any strategy, and in particular σ̂ 2, will be optimal for C2 in �2
3 (G|s0, γ , ε).

3. Finally, the game �3
3 (G|s0, γ , ε) is the two-cop CR, and hence σ̂ 3 will be optimal for R in �3

3 (G|s0, γ , ε).

By the above observations we see that, according to Theorem 4.4, σ̃ is a NE (in threat strategies) of �3 (G|s0, γ , ε). 
Furthermore, playing σ̃ at equilibrium is equivalent to playing σ̂ , which is a capturing profile in both two-cop CR (i.e., 
�3

3 (G|s0, γ , ε)) and �3 (G|s0, γ , ε). So σ̃ is a capturing NE of �3 (G|s0, γ , ε). �
Remark 4.8. Note that the NE of the above theorem is non-positional (unless, for all m, n, we have σ̂ n = φn

m).

The next theorem holds on a restricted set of (γ , ε) values:

�̃(3) =
{
(γ , ε) : γ ∈ (0,1) , ε ∈

[
0,

1

2

]
, γ <

ε

1 − ε

}
.

Theorem 4.9. For any G with c (G) = 2, let σ̂ = (
σ̂ 1, σ̂ 2, σ̂ 3

)
be an optimal strategy profile in the two-cop CR game. Then the 

following holds:

∀ (γ , ε) ∈ �̃(3),∀s0 ∈ S : σ̂ is a capturing NE of �3 (G|s0, γ , ε) .

Proof. Take any G with c (G) = 2, any (γ , ε) ∈ �̃(3) and any 
(
σ̂ 1, σ̂ 2, σ̂ 3

)
which is optimal in the two-cop CR game; we fix 

these for the rest of the proof. Obviously σ̂ is a capturing profile, since it is optimal in CR and c (G) = 2. So we need to 
show that it is also a NE of �3 (G|s0, γ , ε). This will obviously be true when s0 ∈ SC , so let us consider any s0 ∈ SNC . Let T1
be the capture time (the same in the path-equivalent games CR and �3 (G|s0, γ , ε)) corresponding to 

(
s0, σ̂

1, σ̂ 2, σ̂ 3
)
.

Assume for the time being that the capturing cop is C1; then the payoffs are

Q 1
(

s0, σ̂
1, σ̂ 2, σ̂ 3

)
= (1 − ε)γ T1 ,

Q 2
(

s0, σ̂
1, σ̂ 2, σ̂ 3

)
= εγ T1 ,

Q 3
(

s0, σ̂
1, σ̂ 2, σ̂ 3

)
= −γ T1 .

We will show that no player can improve his payoff by unilaterally changing his strategy.

1. Suppose R uses some strategy σ 3 and the capture time of 
(
s0, σ̂

1, σ̂ 2, σ 3
)

is T2. By the optimality (in CR) of σ̂ 1, ̂σ 2, ̂σ 3, 
we have T2 ≤ T1 and so

Q 3
(

s0, σ̂
1, σ̂ 2,σ 3

)
= −γ T2 ≤ −γ T1 = Q 3

(
s0, σ̂

1, σ̂ 2, σ̂ 3
)

.

12 In the sense of Section 3.
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So R has no motive to deviate from σ̂ 3.
2. Similarly, suppose C1 uses some strategy σ 1 and the capture time of 

(
s0, σ

1, σ̂ 2, σ̂ 3
)

is T2; if T2 = ∞ we have no 
capture; otherwise capture can be effected by either C1 or C2. At any rate, by the optimality of 

(
σ̂ 1, σ̂ 2, σ̂ 3

)
, we have 

T2 ≥ T1 and the maximum possible payoff to C1 is (1 − ε)γ T2 . Since

Q 1
(

s0,σ
1, σ̂ 2, σ̂ 3

)
≤ (1 − ε)γ T2 ≤ (1 − ε)γ T1 = Q 1

(
s0, σ̂

1, σ̂ 2, σ̂ 3
)

,

C1 has no motive to deviate from σ̂ 1.
3. Finally, suppose C2 uses some strategy σ 2 and the capture time of 

(
s0, σ̂

1, σ 2, σ̂ 3
)

is T2. If T2 = ∞ we have no capture; 
otherwise capture can be effected by either C1 or C2. If we have no capture then

Q 2
(

s0, σ̂
1,σ 2, σ̂ 3

)
= 0 < εγ T1 = Q 2

(
s0, σ̂

1, σ̂ 2, σ̂ 3
)

.

If capture is effected by C1, we have T2 ≥ T1 and

Q 2
(

s0, σ̂
1,σ 2, σ̂ 3

)
= εγ T2 ≤ εγ T 1 = Q 2

(
s0, σ̂

1, σ̂ 2, σ̂ 3
)

.

Finally, if capture is effected by C2, we have T2 ≥ T1 + 1 (if C2 could capture before C1 this would be achieved by (
s0, σ̂

1, σ̂ 2, σ̂ 3
)
) and, since (γ , ε) ∈ �̃(3) implies γ < ε

1−ε , we have

Q 2
(

s0, σ̂
1,σ 2, σ̂ 3

)
= (1 − ε)γ T2 ≤ (1 − ε)γ T1+1 < εγ T1 .

In every case, C2 has no motive to deviate from σ̂ 2.

Having assumed that the starting position s0 and the strategy profile
(
σ̂ 1, σ̂ 2, σ̂ 3

)
result in a capture by C1, we have 

shown that no player has a motive to change his strategy. By an analogous argument, the same holds when 
(
σ̂ 1, σ̂ 2, σ̂ 3

)
results in a capture by C2. As already mentioned, 

(
σ̂ 1, σ̂ 2, σ̂ 3

)
is a capturing profile, hence some cop will capture the 

robber, and no player has a motive to unilaterally change his strategy. Consequently 
(
σ̂ 1, σ̂ 2, σ̂ 3

)
is a capturing NE of 

�3 (G|s0, γ , ε). �
Remark 4.10. Note that in the above Theorem the NE 

(
σ̂ 1, σ̂ 2, σ̂ 3

)
is positional.

We also have the following.

Theorem 4.11. For any G with c (G) ≥ 2, the following holds:

∀ (γ , ε) ∈ �(3),∃s0 ∈ S : there exists a non-capturing NE of �3 (G|s0, γ , ε) .

Proof. Choose an s0 = (x, x, y,1) of the following form: x can be any vertex of G and y is such that, when the one-cop CR 
is started from s′

0 = (x, y,1), the robber can avoid capture (such an s0 will always exist, since c (G) ≥ 2). The strategies are 
chosen as follows.

1. R ’s strategy σ̂ 3 is the following:
(a) as long as C1, C2 stay in place R also stays in place;
(b) if at some time C1 (resp. C2) is the first cop to move, R starts playing an optimal one-cop CR strategy with respect 

to C1 (resp. C2).
2. C1’s strategy σ̃ 1 is defined as follows:

(a) if C1 and C2 are in the same vertex, C1 stays in place;
(b) if C1 and C2 are in different vertices, C1 moves in a shortest path towards C2.

3. C2’s strategy σ̃ 2 is the same as σ̃ 1, with the roles of C1 and C2 interchanged.

We now show that 
(
σ̃ 1, σ̃ 2, σ̂ 3

)
is a non-capturing NE of �3 (G|s0, γ , ε). First, since C1 and C2 start at the same vertex 

x, by σ̃ 1, ̃σ 2 they will never move towards y; hence, under 
(
σ̃ 1, σ̃ 2, σ̂ 3

)
, R is not captured.

1. Hence Q 3
(
s0, σ̃

1, σ̃ 2, σ̂ 3
) = 0 and, clearly, R cannot improve his payoff, i.e.,

∀σ 3 : 0 = Q 3
(

s0, σ̃
1, σ̃ 2, σ̂ 3

)
≥ Q 3

(
s0, σ̃

1, σ̃ 2,σ 3
)

. (27)
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2. Now suppose C1 uses some σ 1 �= σ̃ 1 by which, at the start of the game, he moves to some x′ neighbor of x. However, 
immediately afterwards C2 moves by σ̃ 2 to the same x′ . In other words, starting from a state where R can avoid capture 
in one-cop CR, C1 and C2 essentially move as one cop, specifically, as cop C1. Given (by construction of σ̂ 3) R plays 
optimally w.r.t C1, capture will never occur. Hence

∀σ 1 : 0 = Q 1
(

s0, σ̃
1, σ̃ 2, σ̂ 3

)
≥ Q 1

(
s0,σ

1, σ̃ 2, σ̂ 3
)

= 0. (28)

3. The case of C2 is similar, but attention must be paid to some details. Suppose C2 uses some σ 2 �= σ̃ 2 by which his first 
nontrivial move is to some x′ neighbor of x. Right after R starts playing optimally w.r.t C2 and let y′ be his next move. 
Obviously y′ will be such that y′ �= x, i.e., R does not run into C1 (or otherwise C2 could capture R in the next move). 
Next it is C1’s turn to move and by σ̃ 1 he moves to the same vertex x′ as C2 (and of course capture does not occur). 
In other words, starting from a state where R can avoid capture in one-cop CR, C1 and C2 essentially move as one cop, 
specifically, as cop C2. Given R plays optimally w.r.t C2, and in doing so, he does not run into C1, capture will never 
occur. So

∀σ 2 : 0 = Q 2
(

s0, σ̃
1, σ̃ 2, σ̂ 3

)
≥ Q 2

(
s0, σ̃

1,σ 2, σ̂ 3
)

= 0. (29)

Combining (27)-(29) we see that σ̂ = (
s0, σ̃

1, σ̃ 2, σ̂ 3
)

is a non-capturing NE of �3 (G|s0). �
The above result is rather surprising when G has c(G) = 2: while in CR played on G two optimally playing (and cooper-

ating) cops always capture the robber, in SCAR played on the same graph there exist non-capturing NE (even when ε = 1
2 , 

the cops’ interests coincide and they have the motive to cooperate fully).
On the other hand, the result is not surprising when applied to G ’s with c (G) ≥ 3. In fact, in this case Theorem 4.11 can 

be strengthened significantly: there will always exist some state with only non-capturing NE.13

Theorem 4.12. For any G with c (G) ≥ 3 the following holds:

∀ (γ , ε) ∈ �(3),∃s0 ∈ S : every NE of �3 (G|s0, γ , ε) is non-capturing.

Proof. Choose an s0 = (x, y, z,1) such that in the two-cop CR started from s0 the robber can avoid capture; this can always 
be achieved, since c (G) ≥ 3, provided R uses an optimal (in two-cop CR) strategy σ̂ 3. Also take any cop strategies σ 1, σ 2. 
Then the profile 

(
σ 1, σ 2, σ̂ 3

)
will not result in capture, in either two-cop CR or in �3 (G|s0). The �3 (G|s0) payoffs will be

∀σ 1,σ 2, ∀n ∈ {1,2,3} : Q n
(

s0,σ
1,σ 2, σ̂ 3

)
= 0.

Clearly, no player can improve his payoff by unilaterally changing his strategy. Hence, for every σ 1, σ 2, 
(
σ 1, σ 2, σ̂ 3

)
is a 

non-capturing NE in �3 (G|s0). On the other hand, take any NE 
(
σ 1, σ 2, σ 3

)
of �3 (G|s0); then we must have

Q 3
(

s0,σ
1,σ 2,σ 3

)
= 0

because otherwise R could use σ̂ 3 and unilaterally improve his payoff. Hence every NE 
(
σ 1, σ 2, σ 3

)
of �3 (G|s0) is non-

capturing. �
The following corollary illuminates the connection of capturing and non-capturing NE of �3 (G|s0, γ , ε) to the classic cop 

number. The first part of the corollary is obtained from Theorem 4.11; the second from Theorems 4.5 and 4.7.

Corollary 4.13. Given a graph G:

1. suppose that for all (γ , ε) ∈ �(3) and s0 ∈ S, every NE of �3 (G|s0, γ , ε) is capturing; then c (G) = 1.
2. suppose that for all (γ , ε) ∈ �(3) there exists some s0 ∈ S such that every NE of �3 (G|s0, γ , ε) is non-capturing; then c (G) ≥ 3.

Finally, combining Theorem 4.5 and the first part of Corollary 4.13 we get the following.

Corollary 4.14. G is cop-win iff : for all (γ , ε) ∈ �(3) and s0 ∈ S, every NE of �3 (G|s0, γ , ε) is capturing.

13 However, we still have initial positions with capturing NE; e.g., when all players start at the same vertex.
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5. N-player SCAR

5.1. Preliminaries

The generalization of �3 (G) to �N (G), i.e., the N-player SCAR game is straightforward. For any N ≥ 2, �N (G) is played 
by N − 1 cops (denoted by C1, ..., CN−1) and a robber (denoted by R) who move along the edges of G .14 The game starts 
from a prescribed initial position s0 and is played in turns, with a single player moving at every turn; the moving sequence 
is ... → C1 → C2 → ... → CN−1 → R → .... The following briefly presented quantities are direct generalizations of those 
defined in Section 2.

The player set is I = {1,2, ..., N} or I = {C1, C2, ..., CN−1, R}. A game position or state has the form s = (
x1, x2, ..., xN , p

)
, 

where xn denotes the position of the n-th player and p denotes the player who has the next move. For n ∈ {1,2, ..., N}, set

Sn =
{

s =
(

x1, ..., xN ,n
)

: (x1, ..., xN ) ∈ V N and n ∈ I
}

is the set of states where player n has the next move. The set S of all states of the game is

S = S1 ∪ S2 ∪ ... ∪ S N ∪ {τ } ,

where τ is as before the terminal state and the set S ′ = S\ {τ } is the set of non-terminal states. We also define the set SC

of capture states and the set SNC of non-capture states as follows:

SC := {s = (x1, x2, ..., xN ,n) ∈ S ′ : ∃i ∈ {1,2, ..., N − 1} : xi = xN},
SNC := {s = (x1, x2, ..., xN ,n) ∈ S ′ : ∀i ∈ {1,2, ..., N − 1} xi �= xN }.

An alternative partition of S is therefore

S = SC ∪ SNC ∪ {τ } .

Moreover, and since we can have simultaneous captures by any subset {n1, n2, ...} of {1, 2, ..., N − 1}, we define sets Sn1
C , 

Sn1n2
C , ..., S12...N−1

C analogously to the sets S1
C , S2

C , S12
C ; the union of all these sets is of course SC .

Action sets An(s) and the transition function T (s,a) are defined in a similar fashion as in Section 2. In case at time t the 
state is st = (

x1
t , x2

t , ..., xN
t ,n

) ∈ Sn and at time t + 1 the move by player n is an
t+1 ∈ An(st), then we use again the shorthand

st+1 = T
(
st,an

t+1

)
.

Capture time TC , histories and strategies are also defined analogously to Section 2. The same is true for payoffs. Specifi-
cally, at every non-capture state st ∈ SNC ∪{τ }, the immediate reward to each player qn(st) is zero; at every state st ∈ S

n1...nN1
C

(i.e., when capture is effected by N1 cops) the robber’s loss is 1 and this is distributed between the N − 1 cops as follows.

1. When 1 ≤ N1 ≤ N − 2: each capturing (resp. non-capturing) cop receives an immediate reward of 1−ε
N1

(resp. ε
N−N1−1 ).

2. When N1 = N − 1: all cops are capturing and each receives an immediate reward of 1
N−1 .

The total payoff of player n is Q n (s0, s1, s2, ...) = ∑∞
t=0 γ tqn (st). The (γ , ε) sets now are

�(N) =
{
(γ , ε) : γ ∈ (0,1) , ε ∈

[
0,

1

N − 1

]}
= (0,1) ×

[
0,

1

N − 1

]
,

�̃(N) =
{
(γ , ε) : γ ∈ (0,1) , ε ∈

[
0,

1

N − 1

]
, γ <

ε

1 − ε

}
.

The choice ε ∈
[

0, 1
N−1

]
ensures satisfaction of the intuitive requirement that capturing cops should get at least as much as 

non-capturing ones:

ε ≤ 1

N − 1
⇒

(
∀N1 ∈ {1,2, ..., N − 2} : ε ≤ N − 1 − (N − 2)

N − 1
≤ N − 1 − N1

N − 1

)
⇒ (∀N1 ∈ {1,2, ..., N − 2} : ε (N − 1) ≤ N − 1 − N1)

⇒ (∀N1 ∈ {1,2, ..., N − 2} : εN1 ≤ (1 − ε) (N − 1 − N1))

⇒
(

∀N1 ∈ {1,2, ..., N − 2} : ε

N − 1 − N1
≤ 1 − ε

N1

)
.

14 Note that the case N = 2, i.e., one cop vs. one robber, is also included in the formulation.
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In addition, again agreeing with our intuition, each capturing cop’s reward is a decreasing function of N1. Indeed, when 
1 ≤ N1 ≤ N − 2, their reward is 1−ε

N1
which is decreasing in N1, with minimum value achieved at N1 = N − 2 and equal to 

1−ε
N−2 ; and when N1 = N − 1 (all cops are capturing) we have:

ε ≤ 1

N − 1
⇒ 1 − ε

N − 2
≥ 1 − 1

N−1

N − 2
= 1

N − 1
.

In short, the fewer capturing cops we have, the more is each of them rewarded.
Before proceeding, we note that (similarly to �3 (G), see Section 3) �N (G) is path-equivalent to the modified N − 1 cops 

CR.

5.2. Existence of NE

The next theorem shows the existence of positional NE for every �N (G|s0). It generalizes Theorem 4.1 and is proved 
very similarly; hence the proof is omitted.

Theorem 5.1. For every graph G and for every s0 ∈ S, (γ , ε) ∈ �(N) the game �N (G|s0, γ , ε) has deterministic positional NE. Specif-
ically, there exists a deterministic positional profile σ∗ = (

σ 1∗ , σ 2∗ , ..., σ N∗
)

such that

∀n,∀s0,∀σ n : Q n (
s0,σ

n∗ ,σ−n∗
) ≥ Q n (

s0,σ
n,σ−n∗

)
. (30)

For every s and n, let un (s) = Q n (s, σ∗). Then the following equations are satisfied

∀n,∀s ∈ Sn : σ n∗ (s) = arg max
an∈An(s)

[
qn (s) + γ un (

T
(
s,an))] , (31)

∀n,m,∀s ∈ Sn : um (s) = qm (s) + γ um (
T
(
s,σ n∗ (s)

))
. (32)

The next theorem generalizes Theorem 4.4 and shows that every �N (G|s0) has NE which are, in general, non-positional. 
The proof (which is similar to that of Theorem 4.4 and hence will be omitted) depends on auxiliary two-player zero-sum 
games �1

N (G|s0), ..., �N
N (G|s0), where �n

N (G|s0) is the two-player game with initial state s0 in which Pn (who has payoff 
Q n) plays against P−n (who has payoff −Q n and controls {1,2, ..., N} \ {n}). Similarly to the 3-player case, for each s ∈ S and 
n ∈ {1,2, ..., N}, the game �n

N (G|s0) has a value and the players have optimal deterministic positional strategies. Strategies 
φn

n and φm
n are as in Section 4. The threat strategy of the n-th player in the N-player game �N (G|s0) is σ n , defined (exactly 

as in Section 4) as follows:

σ n =
{

φn
n as long as every player m ∈ {1,2, ..., N} \n follows φm

m ;
φn

m as soon as some player m ∈ {1,2, ..., N} \n “deviates” from φm
m .

(33)

Keeping the above in mind, we can prove the following.

Theorem 5.2. For every graph G and for every N ≥ 3, s0 ∈ S, (γ , ε) ∈ �(N) , in the game �N (G|s0, γ , ε) we have

∀n ∈ {1,2, ..., N} ,∀σ n : Q n
(

s0, σ
1, σ 2, ..., σ N

)
≥ Q n(s,σ n, σ−n) (34)

where σ n (for n ∈ {1,2, ..., N}) is a deterministic strategy of the form (33).

As in 3-player SCAR �3 (G|s0), the above hold for any ε ∈ [0, 1], not just for ε ∈
[

0, 1
N−1

]
.

5.3. Cop number, capturing and non-capturing NE

The following results generalize those appearing in Section 4.3 and hold for every N ≥ 2.

Theorem 5.3. For any G with c (G) = 1 the following holds:

∀ (γ , ε) ∈ �(N),∀s0 ∈ S : every NE of �N (G|s0, γ , ε) is capturing.

Theorem 5.4. For any G with c (G) ≤ N − 1 the following holds:

∀ (γ , ε) ∈ �(N),∀s0 ∈ S : there exists a capturing NE of �N (G|s0, γ , ε) .
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Theorem 5.5. For any G with c (G) ≤ N − 1, let ̂σ = (
σ̂ 1, σ̂ 2, ..., σ̂ N

)
be a strategy profile which is optimal in the (N − 1)-cop CR 

game. Then the following holds:

∀ (γ , ε) ∈ �̃(N),∀s0 ∈ S : σ̂ is a capturing NE of �N (G|s0, γ , ε) .

Theorem 5.6. For any G with c (G) ≥ 2, the following holds:

∀ (γ , ε) ∈ �(N),∃s0 ∈ S : there exists a non-capturing NE of �N (G|s0, γ , ε) .

Theorem 5.7. For any G with c (G) ≥ N the following holds:

∀ (γ , ε) ∈ �(N),∃s0 ∈ S : every NE of �N (G|s0, γ , ε) is non-capturing.

Corollary 5.8. Given a graph G:

1. suppose that for all (γ , ε) ∈ �(N) and s0 ∈ S, every NE of �N (G|s0, γ , ε) is capturing; then c (G) = 1.
2. suppose that for all (γ , ε) ∈ �(N) there exists some s0 ∈ S such that every NE of �N (G|s0, γ , ε) is non-capturing; then c (G) ≥ N.

Corollary 5.9. G is cop-win iff : for all (γ , ε) ∈ �(N) and s0 ∈ S, every NE of �N (G|s0, γ , ε) is capturing.

5.4. Selfish cop number

We know that the cop number c (G) of graph G is the minimum number of cops required to guarantee (when the cops 
play optimally and for any robber strategy and starting position) capture in CR played on G . Define correspondingly the 
selfish cop number for the SCAR game.

Definition 5.10. The selfish cop number of a graph G is denoted by cs (G) and defined to be the smallest K such that: for any 
(γ , ε) ∈ �(K+1) and any s0 ∈ S, there exists a capturing NE of �K+1 (G|s0, γ , ε).

The selfish cop number equals the classic one, as demonstrated in the following.

Theorem 5.11. For every graph G we have cs (G) = c (G).

Proof. Take any K such that K ≥ c (G), then by Theorem 5.4 we have that, for every (γ , ε) ∈ �(K+1) and every s0 ∈ S there 
exists a capturing NE of �K+1 (G|s0, γ , ε). On the other hand, take any K ≤ c (G) − 1, then by Theorem 5.7 we have that, 
for every (γ , ε) ∈ �(K+1) there exists some s0 ∈ S , such that there exists no capturing NE of �K+1 (G|s0, γ , ε). So cs (G)

(the smallest K such that for every (γ , ε) ∈ �(K+1) and every s0 ∈ S there exists a capturing NE of �K+1 (G|s0, γ , ε)) equals 
c (G). �

It follows that computing cs(G) is exactly as hard as c(G). Namely, given some k we can decide whether cs(G) ≤ k in 
polynomial time [12]; but computing cs (G) is NP-hard.

5.5. A connection between CR and SCAR

We will now show that a slightly modified version of N-player SCAR is, in a certain sense, equivalent to the CR game 
with N − 1 cops. The modification consists in letting ε be a function of N and N1, namely we use ε (N, N1) = N−1−N1

N−1 . We 
will denote the modified SCAR game by �N (G|s0, γ , ε (N, N1)).

The modification implies that the payoff of each capturing state does not depend on the number of capturing cops. The 
distribution of the payoff remains the same, i.e.,

1. each capturing cop receives a reward of 1−ε(N,N1)
N1

= 1− N−1−N1
N−1

N1
= 1

N−1 ;

2. each non-capturing cop receives a reward of ε(N,N1)
N−1−N1

=
N−1−N1

N−1
N−1−N1

= 1
N−1 .

In other words, for every capture each cop (whether he is capturing or non-capturing) receives the same reward.
SCAR with the above modification of ε falls under the general formulation of discounted stochastic games and all our 

previous results still hold. Furthermore, the (N − 1)-cops CR game is payoff-equivalent to �N (G|s0, γ , ε (N, N1)), by which 
we mean the following. Take any strategies σ 1, σ 2, ..., σ N and apply them

1. to �N (G|s0, γ , ε (N, N1)), with σ n being the strategy of the n-th player;
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2. to the respective (N − 1)-cops CR game starting from s0, with σ n (for n ∈ {1,2, ..., N − 1}) being the strategy the cop 
player uses for his n-th token, and σ N being the strategy the robber player uses.

Then the same history (s0, s1, s2, ...) will be produced in the two games (they are path-equivalent) and, furthermore, the 
sum of the total payoffs of the cops (resp. the total payoff of the robber) in �N (G|s0, γ , ε (N, N1)) will be the same as the 
payoff of the cop player (resp. robber player) in the (N − 1)-cops CR game.

Since all cops in �N (G|s0, γ , ε (N, N1)) receive the same payoff, their interests totally coincide: they all want some cop to 
capture the robber in the shortest possible time, just like in the (N − 1)-cops CR game. Hence the following can be proved 
in a similar way as Theorems 4.9 and 5.5.

Theorem 5.12. If the profile ((σ̂1, ..., σ̂N−1) , σ̂N) is optimal in the (N − 1)-cops CR game, then the profile (σ̂1, ..., σ̂N−1, σ̂N) is a NE 
of �N (G|s0, γ , ε (N, N1)).

6. Conclusion

As we have already mentioned, very little work has been previously done on multi-player pursuit games. In this sense 
SCAR furnishes a novel generalization of CR and its numerous two-player variants. We find especially interesting the follow-
ing aspects of SCAR.

1. On the “technical” side, the formulation of SCAR as a discounted game is quite advantageous. In the “natural” formu-
lation of a pursuit game, payoff is expected capture time; since this can be unbounded, there is no obvious way to 
establish the existence of NE (in the multi-player case). On the other hand, in the SCAR formulation payoff is a dis-
counted constant (see (5)); consequently the existence of a deterministic positional NE follows immediately from Fink’s 
classical result. Furthermore, because SCAR is a perfect information game, its payoff can be immediately converted to 
capture time, thus preserving the semantics of a pursuit game.

2. On the “conceptual” side, our results indicate that (perhaps surprisingly) even when N − 1 cops can capture the robber 
if they cooperate, they may settle on a non-cooperating, non-capturing Nash equilibrium. This is somewhat similar to 
the “lack-of-cooperation” phenomenon observed in other branches of Game Theory (e.g., in Prisoner’s Dilemma and the 
Tragedy of the Commons).

The above facts indicate further research directions, which we intend to pursue in the future. We conclude this paper by 
briefly discussing some such directions.

1. Refinement of equilibria. The apparent paradox of non-capturing Nash equilibria may be resolved by using more refined 
equilibria concepts (subgame perfect equilibria, strong Nash equilibria, admissible equilibria etc.). An obvious target then 
is to establish the existence and nature of such equilibria in SCAR.

2. SCAR variants. These are obtained by changing the number and / or behaviors of the cops and robbers. Some possibilities 
are listed below; the methods of the current paper can be used to study the resulting variants.
(a) One cop pursues several selfish robbers; each robber pays a penalty if he is captured and a (lower, perhaps zero) 

penalty if another robber is captured. In a sense this is the dual of the game we have studied in this paper.
(b) More generally, N − M cops pursue M robbers; the payoff of each player may reflect a completely or partially selfish 

behavior on his part.
(c) Even more generally, teams of cops pursue teams of robbers; a team is a set of tokens controlled by a single player.
(d) The robbers can be “passive”: (i) they move on the graph according to predetermined, known transition functions 

and (ii) they do not receive any payoff (but their capture results in payoffs to the capturing and non-capturing cops). 
Conversely, we can have active robbers and passive cops.

3. SCAR generalizations. More generally, a family of generalized multi-player pursuit/evasion games on graphs can be obtained 
by varying the “capture relationship” between players. Here are two examples.
(a) A game played by players P1, P2, ..., P N , in which Pn pursues Pn+1 (for n ∈ {1,2, ..., N − 1}); here we have a “linear” 

pursuit relationship.
(b) The same as above but also P N pursues P1; here we have a “cyclic” pursuit relationship.
Hence a player will, in general, be simultaneously pursuer and evader. Pursuit relationships are specified in terms of 
appropriate player payoffs,15 e.g., the capturing (resp. captured) player receives (resp. pays) one time discounted unit. 
Again, the resulting games can be studied by the methods of the current paper.

4. Non-perfect-information games. A more drastic change (which can be used in conjunction to any of the previously men-
tioned variations) is to allow for simultaneous or concurrent player moves. This results in non-perfect-information games 
and their study will require more powerful methods than the ones presented in the current paper.

15 A minimum requirement (to preserve the semantics of pursuit / evasion) is that total payoff is nondecreasing (resp. nonincreasing) with capture time 
for the evader (resp. pursuer).
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